
Signals

Signals are software interrupts

A signal corresponds to an event

It is raised by one process (or hardware) to call another process’s
attention to an event

It can be caught (or ignored) by the subject process

Signals have names start with “SIG”Signals have names start with SIG

For example SIGSTOP or SIGCONT

If you press CTRL-C at the terminal the signal SIGINT is sent

to terminate the currently running process

4.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three possible actions when receive a signal :

Tell the Kernel:

To ignore: Works for most signals.

Does not work for SIGKILL and SIGSTOP, these

signals terminate or stop the process and give the supersignals terminate or stop the process and give the super

user full control over stopping any running process

To reinstate default : Default action applies.

All signals have a default actionAll signals have a default action..

4.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Three possible actions when receive a signal : cont.

To catch: T ll h k l i k i f i h i l To catch: Tell the kernel to invoke a given function whenever signal

occurs

Example: Write signal handler for SIGTERM p g

to clean up after program is terminated

4.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Catching a Signal: signal handler

defining signal handlers:

#include <signal.h>

void (*signal (int signo, void (*func) (int))) (int);

In other word: The function signal takes two arguments:

An integer and a pointer to a function that takes an integer

and returns nothing

The function signal itself returns a pointer to a function that

takes an integer as argument and returns nothing

func : is called signal handler

4.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Catching a Signal : signal handler cont.

The signal() function chooses one of three ways to handle

the signal signo.

If the value of func is SIG_IGN, the signal shall be ignored.

If the value of func is SIG_DFL, default handling shall occur.

Otherwise (catch), the application ensures that func points

to a function to be called when that signal occurs.

This function is called a "signal handler".

Example: signal(signo, SIG_DFL);

4.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Code Example :
#include <signal.h>

#include <stdio.h>

void handler (int signal) {

switch (signal) {

case SIGUSR1: { printf ("SIGUSR1 received\n"); break; }

case SIGUSR2: { printf ("SIGUSR2 received\n"); break; }

case SIGINT: { printf ("SIGINT received\n"); break; }case SIGINT: { printf (SIGINT received\n); break; }

}

}

int main () {() {

if (signal (SIGUSR1, handler) == SIG_ERR)

printf ("error\n");

if (signal (SIGUSR2, handler) == SIG_ERR)

printf ("error\n");

if (signal (SIGINT, handler) == SIG_ERR)

printf ("error\n");

while (1)

sleep (5);

4.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

sleep (5);

}

SIGUSR1 and SIGUSR2 not used by the system and can be used for any
user-specific purpose

We can use system command “Kill” to send this to our process

>kill –USR1 4720

Normally, signals are set to their default action unless the process that call
exec is ignoring the signalg g g

ex: background process (&) the shell will set interrupt

and quit to be ignored

Unix offers sigaction to set the signal handler

4.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Example signals and their integer values:

SIGALARM = 14

SIGKILL = 9

SIGTERM = 15 SIGTERM = 15

SIGINT = 2

To send signals system calls kill or raise can be used

int kill (pid_t pid, int signo);

int raise (int signo);

4.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

four conditions for the pid (process id) assignment to kill

pid > 0 : signal is sent to the process with that id.

pid == 0 : signal is sent to all processes share same group id with sender.

pid < 0 : signal is sent to all processes that have group id equals the absolute

value of the pid.

pid ==-1 : undefinedpid ==-1 : undefined

4.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

-System call raise always send signal to calling process

-System call alarm can be used as a timer

unsigned int alarm(unsigned int seconds);

it returns 0 or the number of seconds until the previously set alarm

after the time is up the process get the SIGALARM sent It may take after the time is up the process get the SIGALARM sent. It may take

additional time due to scheduling delay

-System call pause can be used to stop the current process until a signal is
caught

int pause(void);

it returns only if a signal handler is installed and the handler returns,

in that case it returns -1

4.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threads
A thread is basic unit of cpu utilization

It comprises :

- thread IDthread ID

- program counter

- register set

- a stack

It shares with other threads belonging to the same process its

- code section

- data section

- OS resources (open files and signals)

Traditional process has a single thread of control,

if it has multiple threads of control it can perform

4.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

more than one task at a time

Multithreaded Server Architecture

4.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits of multithreading

Responsiveness: Multithreading an interactive application may allow a

program to continue running if part of it is blocked or

performing a lengthy operation

Resource Sharing : By default threads share memory and resources

allows application to have several threads of activity allows application to have several threads of activity

within same address space

4.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Benefits

Economy: allocating memory and resources is costly

since threads share resources, it is more economical to create

context-switch threads

it is more time consuming to mange process than threadsit is more time consuming to mange process than threads

Utilization of an Multiprocessor Architecture: to take advantage of the Utilization of an Multiprocessor Architecture: to take advantage of the

multiprocessor system where threads can be running in parallel

4.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Creating Threads

Depending on the OS API’s exist for creating threads

common ones are:

POSIX Pthreads on UnixPOSIX Pthreads on Unix

Win32 in Windows

4.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Pthreads

May be provided either as user-level or kernel-level

A POSIX standard (IEEE 1003.1c) API for thread creation
and synchronization

API specifies behavior of the thread library, implementation
is up to development of the library

Common in UNIX operating systems (Linux)

4.16 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

phreads

Void *runner (void *param) ; /* runner is function we create the thread for */

Pthread_t tid; /* thread ID*/

Int param; /* parameters for runner*/

pthread create (&tid NULL runner (void *)¶m);pthread_create (&tid ,NULL, runner,(void)¶m);

-Note that NULL means use default attributes

4.17 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

WIN32 threads

WIN32 thread creation is similar (text book p133,p135)

HANDLE threadhandle;

DWORD threadID;

DWORD WINAPI runner (void *param);DWORD WINAPI runner (void param);

threadhandle = CreateThread (NULL,

0,

runner,

(void *)this,

0,
&threadID);

4.18 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Threading Issues

Does fork() duplicate only the calling thread or all threads?

Using fork() copies the process as separate duplicate

Some UNIX systems have 2 versions of fork()

one duplicates all threads and another to duplicate only

the thread invoked fork()the thread invoked fork()

If the thread invoked exec() the program in the parameter

to exec() will replace the entire process including all threads

4.19 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Thread Cancellation

Terminating a thread before it has finished

Two general approaches:Two general approaches:

Asynchronous cancellation terminates the target
thread immediately

D f d ll ti ll th t t th d t Deferred cancellation allows the target thread to
periodically check if it should be cancelled

Deferred cancelation may be preferable because it allows
to free up resource otherwise system will not clam all
resources from canceled thread

exp: open files will be closed only on the termination

of the process

4.20 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Signal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurredp

A signal handler is used to process signals

1. Signal is generated by particular event

2 Signal is delivered to a process2. Signal is delivered to a process

3. Signal is handled

Options:

Deliver the signal to the thread to which the signal applies

Deliver the signal to every thread in the process

Deliver the signal to certain threads in the processDeliver the signal to certain threads in the process

Assign a specific thread to receive all signals for the
process

4.21 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

