Chapter 6: Process
Synchronization

Operating System Concepts — 8 Edition, Silberschatz, Galvin and Gagne ©2009



P

“»”’Module 6: Process Synchronization
m Background
m The Critical-Section Problem
m Peterson’s Solution
® Synchronization Hardware
B Semaphores

Operating System Concepts — 8t Edition 6.2 Silberschatz, Galvin and Gagne ©2009



(}L‘ \&5

Objectives

B To introduce the critical-section problem, whose solutions can be used to
ensure the consistency of shared data

B To present both software and hardware solutions of the critical-section
problem

Operating System Concepts — 8t Edition 6.3 Silberschatz, Galvin and Gagne ©2009



" o Background

m Concurrent access to shared data may result in data
inconsistency

® Maintaining data consistency requires mechanisms to
ensure the orderly execution of cooperating processes

Operating System Concepts — 8" Edition 6.4 Silberschatz, Galvin and Gagne ©2009



=

P . -
“$¥/  The Critical-Section Problem

O\

® pnprocesses
each has a segment of code called critical section in which it may
change common var’s, updating tables or lists, writing a file, ........

m The goal : if one process is executing in its critical section,
no other process to be allowed to enter its critical section

B Each process must request permission to enter C.S.
this is implemented in entry section

Operating System Concepts — 8t Edition 6.5 Silberschatz, Galvin and Gagne ©2009



The Critical-Section Problem

do {

critical section

remainder section
} while (TRUE)

Operating System Concepts — 8t Edition 6.6



ir L T,

“»”/Solution to Critical-Section Problem

1. Mutual Exclusion - If process P, is executing in its critical section, then no
other processes can be executing in their critical sections

2. Progress - If no process is executing in its critical section and there exist
some processes that wish to enter their critical section, then the selection
of the processes that will enter the critical section next cannot be
postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is
granted

)\ 5
PV

Operating System Concepts — 8t Edition 6.7 Silberschatz, Galvin and Gagne ©2009



(“/""’ Peterson’s Solution

m Two process solution
® The two processes share two variables:
e intturn;

e Boolean flag[2]

B The variable turn indicates whose turn it is to enter the critical
section.

m The flag array is used to indicate if a process is ready to enter the
critical section. flag[i] = true implies that process P, is ready!

®m [t can not be guaranteed to work properly (machine architecture)

\\
A\\

4 o
Y
AU

Operating System Concepts — 8t Edition 6.8 Silberschatz, Galvin and Gagne ©2009



Algorithm for Process P;

do {

critical section

remainder section

} while (TRUE);

Operating System Concepts — 8t Edition 6.9



{*(f?f'ﬁ " . . . .
*"" Peterson’s Solution Satisfies Requirements?

1. Mutual Exclusion — Only process P, is executing in its critical section
P, can not enter its critical section

2. Progress - If no process is executing in its critical section and there exist
a process that wishes to enter its critical section (flag), and turn can have
only one value (I or j) then that process will enter the critical section next
and cannot be postponed indefinitely

3. Bounded Waiting - Once a process(1) is allowed to enter its C.S.
it will reset its (flag==FALSE) in exit allowing the process(2) (if ready)
to enterits C.S. and p(1) can’t enter its C.S. until p(2) enters its C.S.
[ because p(1) changed (turn==2) ]

>% )
Y ?\'(
A ):E 3

Operating System Concepts — 8t Edition 6.10 Silberschatz, Galvin and Gagne ©2009



-5 Synchronization Hardware

R\
| SN

®  Any solution to critical section problem requires a simple tool
or a lock

®m  Modern computers provide special hardware instructions that allow
us to test and modify the content of a word atomically i.e. as a one

uninterrupted unit

m TestAndSet lock and Semaphores are two examples of H/W tools

\
AL

2
Y
AU

Operating System Concepts — 8t Edition 6.11 Silberschatz, Galvin and Gagne ©2009



TestAndSet Instruction

m Definition:

boolean TestAndSet (boolean *target)

{
boolean rv = *target;
*target = TRUE;
return rv:

}

SN
PR Y

/] N(\h

([ K

Operating System Concepts — 8" Edition 6.12 Silberschatz, Galvin and Gagne ©2009



0 Q?\’:«V; ;

Solution using TestAndSet

B Shared boolean variable lock., initialized to false.
B Solution:

do {
while ( TestAndSet (&lock ))
; /I do nothing
/I critical section
lock = FALSE;

/l remainder section

} while (TRUE);

Operating System Concepts — 8t Edition 6.13 Silberschatz, Galvin and Gagne ©2009



" o Semaphores

m Previous solution may be complicated to implement

m Semaphore S — integer variable accessed only through two standard
atomic operations : wait() and signal()

m Less complicated

m Can only be accessed via two indivisible (atomic) operations
e wait (S) {
while S <=0
; I/ no-op
S--;
}
e signal (S) {

S++:

) /‘2, w;

Operating System Concepts — 8t Edition 6.14 Silberschatz, Galvin and Gagne ©2009




o L Semaphores

& N

m Counting semaphore — integer value can range over an unrestricted domain
counting semaphore can be used to control access
to shared resources, initialized to # of resources

m Binary semaphore — integer value can range only between 0 and 1,
can be simpler to implement
e Also known as mutex locks

®  Provides mutual exclusion

Semaphore mutex; // initialized to 1
do{

wait (mutex);

Il Critical Section
signal (mutex);
// remainder section

} while (TRUE);

A
Operating System Concepts — 8t Edition 6.15 Silberschatz, Galvin and Gagne ©2009



=

) e
“»7’ Semaphores to Sync processes

Concurrently running processes P P,
executing statement S, first then S,
int (synch) initialized to 0
Si; N
signal (synch); - P,

wait (synch);
S,; — P,

Operating System Concepts — 8t Edition 6.16 Silberschatz, Galvin and Gagne ©2009



