Chapter 4: Threads

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

S S Chapter 4: Threads

Overview

Multithreading Models
Thread Libraries

Threading Issues

Operating System Examples
Windows XP Threads

Linux Threads

Operating System Concepts — 8th Edition 4.2 Silberschatz, Galvin and Gagne ©2009

{ cad At
S Objectives

B Tointroduce the notion of a thread — a fundamental unit of CPU utilization that forms the basis of
multithreaded computer systems

B To discuss the APIs for the Pthreads, Win32, and Java thread libraries

®m To examine issues related to multithreaded programming

Operating System Concepts — 8th Edition 4.3 Silberschatz, Galvin and Gagne ©2009

;@‘

f,

: “A,"f{:m-l

S Motivation

| S

® Threads run within application
m Multiple tasks with the application can be implemented by separate threads
e Update display
e Fetch data
e Spell checking
e Answer a network request
® Process creation is heavy-weight while thread creation is light-weight
m Can simplify code, increase efficiency
m Kernels are generally multithreaded

Operating System Concepts — 8th Edition 4.4 Silberschatz, Galvin and Gagne ©2009

Sy ' '
77 Single and Multithreaded Processes
code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread —>» ; <«—— thread

single-threaded process multithreaded process

Operating System Concepts — 8th Edition 4.5 Silberschatz, Galvin and Gagne ©2009

Benefits

B Responsiveness

m Resource Sharing

®m Economy

m Scalability

.{,(Z AN 2o
Operating System Concepts — 8th Edition 4.6 Silberschatz, Galvin and Gagne ©2009

Py Multicore Programming

® Multicore systems putting pressure on programmers, challenges include:
e Dividing activities
e Balance
e Data splitting
e Data dependency
e Testing and debugging

A I
Operating System Concepts — 8th Edition 4.7 Silberschatz, Galvin and Gagne ©2009

)~

4 ,«fﬂ"'%‘
i%8

*77 Multithreaded Server Architecture

|\

Iz

-
e\

(2) create new
(1) request thread to service
the request

client » Server » thread

U

(3) resume listening
for additional
client requests

Operating System Concepts — 8th Edition 4.8 Silberschatz, Galvin and Gagne ©2009

Concurrent Execution on a
Single-core System

single core T4 To T3 Ty T4 To T3 Ty Ty

time

.{,(l[AN »
Operating System Concepts — 8th Edition 4.9 Silberschatz, Galvin and Gagne ©2009

Parallel Execution on a
Multicore System

core 1

core 2

Operating System Concepts — 8" Edition

4.10

/4
Silberschatz, Galvin and Gagne ©2009

't User Threads

i‘k‘-"‘ \\Ts ’

®m Thread management done by user-level threads library

m Three primary thread libraries:
e POSIX Pthreads
e Win32 threads
e Javathreads

Operating System Concepts — 8t Edition 4.11 Silberschatz, Galvin and Gagne ©2009

Kernel Threads

m Supported by the Kernel

B Examples
e Windows XP/2000

e Solaris

e Linux

e Tru64 UNIX
e MacOS X

A N
Operating System Concepts — 8th Edition 4.12 Silberschatz, Galvin and Gagne ©2009

Multithreading Models

®m Many-to-One

B One-to-One

® Many-to-Many

Operating System Concepts — 8" Edition 4.13

A X)
Silberschatz, Galvin and Gagne ©2009

Many-to-One

® Many user-level threads mapped to single kernel thread
m Examples:

e Solaris Green Threads
e GNU Portable Threads

Operating System Concepts — 8" Edition 4.14

A X)
Silberschatz, Galvin and Gagne ©2009

s e Many-to-One Model

«— |ser thread

«— Kernel thread

AU
Operating System Concepts - 8" Edition 415 Silberschatz, Galvin and Gagne ©2009

=7 One-to-One

m Each user-level thread maps to kernel thread

®m Examples
e Windows NT/XP/2000
e Linux
e Solaris 9 and later

& {)«/

Operating System Concepts — 8th Edition 4.16 Silberschatz, Galvin and Gagne ©2009

One-to-one Model

Operating System Concepts — 8" Edition

4.17

«——— User thread

é «+— Kernel thread

A X
Silberschatz, Galvin and Gagne ©2009

/ Many-to-Many Model

m Allows many user level threads to be mapped to many kernel threads

m Allows the operating system to create a sufficient number of kernel threads

B Solaris prior to version 9

®m Windows NT/2000 with the ThreadFiber package

<
AN

d A
Operating System Concepts — 8t Edition 4.18 Silberschatz, Galvin and Gagne ©2009

Many-to-Many Model

<«—— uUser thread

° ° ° <«—— Kkernel thread

A X
Operating System Concepts — 8t Edition 4.19 Silberschatz, Galvin and Gagne ©2009

5= Two-level Model

‘/" \ E
i‘k‘-"‘ \:;

m Similar to M:M, except that it allows a user thread to be bound to kernel thread

®m Examples
e [RIX
e HP-UX
e True4 UNIX
e Solaris 8 and earlier

Operating System Concepts — 8t Edition 4.20 Silberschatz, Galvin and Gagne ©2009

<7 Two-level Model

<+«——— user thread

o o o @ <«—— kernel thread

‘{)&’

Operating System Concepts — 8t Edition 4.21 Silberschatz, Galvin and Gagne ©2009

S Thread Libraries

m Thread library provides programmer with API for creating and managing threads

®m Two primary ways of implementing
e Library entirely in user space
e Kernel-level library supported by the OS

A I
Operating System Concepts — 8t Edition 4.22 Silberschatz, Galvin and Gagne ©2009

:@
(%

f,

,:f:-m-k

S Pthreads

S\

®m May be provided either as user-level or kernel-level

m A POSIX standard (IEEE 1003.1c) API for thread creation and synchronization

m APl specifies behavior of the thread library, implementation is up to development of the library

®m Common in UNIX operating systems (Solaris, Linux, Mac OS X)

Operating System Concepts — 8th Edition 4.23 Silberschatz,

= |
/ w&n
& 29%

Galvin and Gagne ©2009

57 Pthreads Example

finclude <=pthread.h>
finclude =stdioc.h:>=

int sum; /* this data is shared by the thread{s) =*/
void *runner(void *param); /* the thread =*/

int main(int argec, char =argv[])

{

pthread £t tid; /* the thread identifier =*/
pthread attr t attr; /* get of thread attributes =*/

if (argc !'= 2) |

fprintf (stderr,"usage: a.out <integer walue>'\n");
return -1;

!
if (atocifargw(1]) < 0) {

fprintf (stderr,"¥d must be >= 0"\n" ,atoilargwii]));
reaturn -1;

A \
Operating System Concepts — 8th Edition 4.24 Silberschatz, Galvin and Gagne ©2009

Pthreads Example (Cont.)

/= get the defaunlt attributes */

pthread-attr-init (Zattr);

/*= create the thread =/

pthread create(&tid,kattr ,Tunner ,argv[1]);
/= wait for the thread to exit =/

pthread join(tid NULL);

priontf("sum = Yd\n",sum) ;
I

/* The thread will begin comtrol in this function */
void *runner(vocid *param)

{

. upper = atoi{param);

int i

gum = ;

for (i = 1; i <= upper; i++)
sum += 1ij;

pthread exit (0] ;

Figure 4.9 Mutihreaded C program usng the Pihreads AP

A X

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 4.25

~$¥7Win32 APl Multithreaded C Program

#include <windows.h:=

#include <stdioc.h>

DWOAD Sum; /+ data is shared by the thread(s) =/
/= the thread runs in this separate function =/

CWORD WINAPI Summation (LPVOID Param)
{
DWORD Upper = =(DWORD*)Param;
for (DWORD i = 0; i <= Upper; i++)
Sum += i;
return {;

}

int main(int argc, char =argwv([])
{
DWORD ThreadId;
HANDLE ThreadHandle;
int Param;
/* perform some basic error checking */
if (argc 1= 2} {
fprintf{stderr,"An integer parameter is requiredin”);
return -1;
!
Param = atoifargv[1]};
if (Param < Q} {
fprintf{stderr,"An integer »>= 0 is required\n");
return -1;

}

Operating System Concepts — 8t Edition 4.26 Silberschatz, Galvin and Gagne ©2009

W

e

V\’WIHBZ APl Multithreaded C Program (Cont.)

k

/4 create the thread
ThreadHandle = CreateThreadf
NULL, // default security attributes
2, // default stack size
Summation, // thread function
kParam, // parameter to thread functiocn

@, /4 default creation flags
EThreadId):; /F/ returns the thread identifier

if (ThreadHandle != NULL) {
/{ mow wait for the thread to fimish
WaitForSinglelbject (ThreadHandle ,INFINITE) ;

'Y close the thread handle
CloseHandle{ThreadHandle) ;

printf("sum = ¥d\n",Sum);

}
}

Figure 4.10 Mutithresded C program using the Win3d2 API.

Silberschatz, Galvin and Gagne ©2009

Operating System Concepts — 8" Edition 4.27

Java Threads

m Java threads are managed by the JVM

m Typically implemented using the threads model provided by underlying OS

m Javathreads may be created by:

e Extending Thread class
e Implementing the Runnable interface

<
N

¢
Operating System Concepts — 8t Edition 4.28 Silberschatz, Galvin and Gagne ©2009

»»7 Java Multithreaded Program

i=lass Sum

4

private ink sum;

public int gecSumi{] |
return sum;

'

public void setSum{int sum] {
this_s1um = Sum:

!

"

class Summation implements Runnabhle
:

private ink upper;

private Sum sumyaliye:

public Summation(int upper, Sum sumValue) {
this_ upper = upper;
this_sumValue = soumifalioe;

'

public void run{) {
int sum = 0O
Far {int i = d; 1 == upper: i++)
SUm 4= 1
sumfalue . secSumi{sum] :

'

e

Operating System Concepts — 8t Edition 4.29 Silberschatz, Galvin and Gagne ©2009

=»¥7 Java Multithreaded Program (Cont.)

LA

public class ODriwver
{
public static woid main(String[] argsa)] {
if jargs.length = &) {
if {Integer parselnt{acgs[d]] <« Q)
System.err_printlnfargs[0] + * must be == O0.%);
else |
ff create the ohject ko be shared
Sum sumdbject = ew Sumi);
ink upper = Integer.parselint {args[6])
Thread thrd = meew Thread (new Summation {upper, SsumdbBject)]) :
thrd.start{l ;
ey {
thrd. joinil
SEystem_out . .println
1*The sum of "supper+® is "ssumlibject getSumi)) ;
} cateh {InterruptedException ie] { }§
I
1
=l ge
System.err . println{"Usage: Summation <integer value="); }

Figura 4.11 Java program for the summaton of a non-regative integer.

)

Operating System Concepts — 8t Edition 4.30 Silberschatz, Galvin and Gagne ©2009

o Threading Issues

B Semantics of fork() and exec() system calls

m Thread cancellation of target thread
e Asynchronous or deferred

® Signal handling
e Synchronous and asynchronous

El {)l«/

Operating System Concepts — 8t Edition 4.31 Silberschatz, Galvin and Gagne ©2009

Threading Issues (Cont.)

Thread pools

Thread-specific data

Create Facility needed for data private to thread

B Scheduler activations

Operating System Concepts — 8" Edition 4.32

A X)
Silberschatz, Galvin and Gagne ©2009

Semantics of fork() and exec()

m Does fork() duplicate only the calling thread or all threads?

A X
Operating System Concepts — 8t Edition 4.33 Silberschatz, Galvin and Gagne ©2009

Thread Cancellation

Q"" ‘\835

m Terminating a thread before it has finished

m Two general approaches:
e Asynchronous cancellation terminates the target thread immediately.
e Deferred cancellation allows the target thread to periodically check if it should be cancelled.

<
N

A4 PAY
Operating System Concepts — 8th Edition 4.34 Silberschatz, Galvin and Gagne ©2009

;lg

f,

é)"’/ Slgnal Hand“ng

m Signals are used in UNIX systems to notify a process that a particular event has occurred.

m Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled

m Options:
e Deliver the signal to the thread to which the signal applies
e Deliver the signal to every thread in the process
e Deliver the signal to certain threads in the process
e Assign a specific thread to receive all signals for the process

Operating System Concepts — 8t Edition 4.35 Silberschatz, Galvin and Gagne ©2009

Thread Pools

m Create a number of threads in a pool where they await work

m Advantages:

Usually slightly faster to service a request with an existing thread than create a new thread
Allows the number of threads in the application(s) to be bound to the size of the pool

v/' N N
A APX

Operating System Concepts — 8th Edition 4.36 Silberschatz, Galvin and Gagne ©2009

7 Thread Specific Data

m Allows each thread to have its own copy of data

m Useful when you do not have control over the thread creation process (i.e., when using a thread pool)

Operating System Concepts — 8th Edition 4.37 Silberschatz, Galvin and Gagne ©2009

;@‘

f,

Ty

S Scheduler Activations

®m Both M:M and Two-level models require communication to maintain the appropriate number of kernel
threads allocated to the application

m Scheduler activations provide upcalls - a communication mechanism from the kernel to the thread
library

®m This communication allows an application to maintain the correct number kernel threads

Operating System Concepts — 8t Edition 4.38 Silberschatz, Galvin and Gagne ©2009

Lightwelght Processes

3 — | ser tnread

LWF | =— lightweight process

Operating System Examples

®m Windows XP Threads

B Linux Thread

‘{,(AN 2o
Operating System Concepts — 8th Edition 4.40 Silberschatz, Galvin and Gagne ©2009

~$%7 Windows XP Threads Data Structures

£

| O\
ETHREAD
thread start
address
pointer to
parent process KTHREAD
scheduling
> and
synchronization
information
kernel TEB
stack
» thread identifier
o user
. stack
thread-local
storage
kernel space user space

A I
Operating System Concepts — 8t Edition 4.41 Silberschatz, Galvin and Gagne ©2009

,‘?’
¢

f,

ot Windows XP Threads

B Implements the one-to-one mapping, kernel-level

m Each thread contains
e Athreadid
e Register set
e Separate user and kernel stacks
e Private data storage area

® The reqister set, stacks, and private storage area are known as the context of the threads

®m The primary data structures of a thread include:
e ETHREAD (executive thread block)
e KTHREAD (kernel thread block)
e TEB (thread environment block)

Operating System Concepts — 8th Edition 4.42 Silberschatz, Galvin and Gagne ©2009

Linux Threads

B Linux refers to them as tasks rather than threads

B Thread creation is done through clone () system call

B clone () allows a child task to share the address space of the parent task (process)

B struct task struct points to process data structures (shared or unique)

<
N

A4 PAY
Operating System Concepts — 8th Edition 4.43 Silberschatz, Galvin and Gagne ©2009

o Lt Linux Threads

B fork() and clone () system calls
m Doesn't distinguish between process and thread
m Uses term task rather than thread
B clone () takes options to determine sharing on process create
B struct task struct points to process data structures (shared or unique)

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHZAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

Operating System Concepts — 8th Edition 4.44 Silberschatz, Galvin and Gagne ©2009

End of Chapter 4

Operating System Concepts — 8" Edition Silberschatz, Galvin and Gagne ©2009

