
13-1Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Chapter 13

Advanced Rendering and Illumination Methods

13-2Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Objectives

What are shaders?

Introduce programmable pipelines

Vertex shaders

Fragment shaders

Introduce shading languages

Needed to write shaders

OpenGL Shading Language (GLSL)

13-3Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Programmable Pipeline

Recent major advance in real time graphics is
programmable pipeline

First introduced by NVIDIA GForce 3 (2001)

Supported by high-end commodity cards

NVIDIA, ATI, 3D Labs

Software Support

Direct X 8 and up

OpenGL Extensions

OpenGL Shading Language (GLSL)

Cg

CUDA

OpenCL

13-4Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Programmable Graphics Pipeline

GPUCPU

• Note:

– Vertex processor does all

transform and lighting

– Pipe widths vary
• Intra-GPU pipes wider than

CPUGPU pipe

• Thin GPUCPU pipe

• Here’s what’s cool:

– Can now program

vertex processor!

– Can now program

fragment processor!

Application
Vertex

Processor

Assembly

& Rasterization

Pixel

Processor
Video

Memory

(Textures)
Vertices

(3D)

transformed,

Lit Vertices

(2D)

Fragments

(pre-pixels) Final

pixels

(Color, Depth)

Graphics State

Render-to-texture

Vertex

Processor
Fragment

Processor

CS 536 4

13-5Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

GLSL: Back to the future
“OpenGL does not provide a programming

language. Its function may be controlled by

turning operations on or off or specifying

parameters to operations, but the rendering

algorithms are essentially fixed. One reason

for this decision is that, for performance

reasons, graphics hardware is usually

designed to apply certain operations in a

specific order; replacing these operations with

arbitrary algorithms is usually infeasible.

Programmability would conflict with keeping

the API close to the hardware and thus with

the goal of maximum performance.”

Segal and Akeley, The Design of the OpenGL
Graphics Interface, 1994

August 23, 1993: First OpenGL 1.0 implementation

13-6Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Present-Shaders

OpenGL version 2.0

What are Shaders?

Shaders are programs running on vertex processor (vertex

shader) and/or fragment processor (fragment shader) that

replace the fixed functionalities of OpenGL pipeline.

Can replace either or both

If we use a programmable shader we must do all required

functions of the fixed function processor

13-7Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Shaders

Written using GPU language

Low-level: assembly language

High-level: Cg, GLSL, CUDA, OpenCL

Run on GPU while the application runs at the same

time on CPU

GPU is often parallel: SIMD (single instruction

multiple data)

GPU is much faster than CPU

Use GPU for other computations other than Graphics

13-9Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Vertex Shader

A vertex shader should replace the geometric calculations on
vertices in the fixed pipeline

Per-vertex data
(x,y,z,w) coordinates of a vertex (glVertex)

Normal vector

Texture Coordinates

RGBA color

Other data: color indices, edge flags

Additional user-defined data in GLSL

Per-vertex operations

transformed by the model-view and projection matrix. Note normal is
transformed by the inverse-transpose of the MV matrix

Per vertex lighting computation

…

13-10Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Vertex Shader Applications

Moving vertices

Morphing

Wave motion

Fractals

Particle systems

Lighting

More realistic lighting models

Cartoon shaders

6-11Department of Computer Science and Engineering

6 Color Models and Color Applications

Primitive Assembly and Rasterization

Vertices are next assembled into
objects: Points, Line Segments,
and Polygons

Clipped and mapped to the
viewport

Geometric entities are rasterized
into fragments

Each fragment is a potential pixel

Each fragment has attributes such
as

A color

Possibly a depth value

Texture coordinates

13-12Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Fragment Shader

Takes in fragments from the rasterizer

Vertex values have been interpolated over primitive by rasterizer

Perform fragment operations, such as texture mapping, fog, anti-
aliasing, Scissoring, and Blending etc.

Outputs a fragment

Color

Depth-value

Fragments still go through fragment tests

alpha test

Depth test

…

13-13Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Fragment Shader Applications

Per fragment lighting calculations

per vertex lighting per fragment lighting

13-14Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Fragment Shader Applications

Texture mapping

smooth shading bump mapping

13-15Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Writing Shaders

First programmable shaders were programmed in an
assembly-like manner

OpenGL extensions added for vertex and fragment
shaders

Cg (C for graphics) C-like language for programming
shaders

Works with both OpenGL and DirectX

Interface to OpenGL complex

OpenGL Shading Language (GLSL) became part of
OpenGL 2.0 standard

13-16Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Shading Language History

RenderMan Shading Language (1988)

Offline rendering

Hardware Shading Languages

UNC, Stanford (1998, 2001)

NVIDIA (2002)

OpenGL Vertex Program Extension

OpenGL Shading Language (2004)

Cg and Microsoft HLSL (2002)

13-17Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

GLSL

Part of OpenGL 2.0

High level C-like language, but different

New data types

Matrices

Vectors

Samplers

Built-in variables and functions

Each shader has a main() function as the entrance point.

Compiler built into driver

Presumably they know your card best

IHV’s must produce (good) compilers

13-18Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Simplest Vertex Shader

const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);

void main(void)

{

gl_Position = ftransform();

gl_FrontColor = red;

}

6-19Department of Computer Science and Engineering

6 Color Models and Color Applications

Vertex Shader

Input to a vertex shader?

Per vertex attributes: e.g. glVertex, gl_Normal, gl_Color, …, and user
defined.

OpenGL states and user defined uniform variables

Output from a vertex shader

gl_Position: coordinates in the canonic space

Other values to be interpolated during rasterization into fragment values, e.g.
gl_FrontColor

6-20Department of Computer Science and Engineering

6 Color Models and Color Applications

Fragment Shader Execution Model

Input to a fragment shader

Interpolated values from the rasterizer

OpenGL states and user defined uniform variables

Output of a fragment shader

Pixel values to be processed by pixel tests and written to the frame
buffer, e.g. gl_FragColor, gl_FragDepth

13-21Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

GLSL Data Types
scalar types: int, float, bool

No implicit conversion between types

Vectors:

Float: vec2, vec3, vec4

Also int: ivec and bool: bvec

C++ style constructors

vec3 a = vec3(1.0, 2.0, 3.0)

vec2 b = vec2(a)

Matrices (only float) : mat2, mat3, mat4

Stored by columns order (OpenGL convention)

mat2 m = mat2(1.0, 2.0, 3.0, 4.0);

Standard referencing m[column][row]

What is the value of m[0][1]?

13-22Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

GLSL Sampler Types

Sampler types are used to represent textures, which may

be used in both vertex and fragment shader

samplernD

sampler1D, sampler2D, sampler3D

samplerCube

sampler1DShadow, sampler2DShadow

13-23Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Arrays and Structs

GLSL can have arrays

float x[4];

vec3 colors[5]; colors[0] = vec3(1.0, 1.0, 0.0);

mat4 matrices[3];

Only one-dimensional array and size is an integral constant

GLSL also have C-like structs

struct light {

vec4 position;

vec3 color;

}

There are no pointers in GLSL

13-24Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

GLSL scope of variables

global
Outside function

Vertex and fragment shader may share global variables
that must have the same types and names.

Local
Within function definition

Within a function

Because matrices and vectors are basic types they
can be passed into and output from GLSL
functions, e.g.

matrix3 func(matrix3 a)

13-25Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Operators

Matrix multiplication is implemented using * operator

mat4 m4, n4;

vec4 v4;

m4 * v4 // a vec4

v4 * m4 // a vec4

m4 * n4 // a mat4

13-26Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Swizzling and Selection

Can refer to vector or matrix elements by element using []
operator or selection (.) operator with

x, y, z, w

r, g, b, a

s, t, p, q

vec v4 = (1.0, 2.0, 3.0, 4.0);

v4[2], v4.b, v4.z, v4.p are the same

What are v4.xy, v4.rga, v4.zzz ?

Swizzling operator lets us manipulate components

vec4 a;

a.yz = vec2(1.0, 2.0);

a.zz = vec2(2.0, 4.0); Is it correct?

13-27Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

GLSL Qualifiers

GLSL has many of the same qualifiers such as
const as C/C++
The declaration is of a compile time constant

Need others due to the nature of the execution
model
attribute

uniform

varying

Qualifiers used for function calls
in, out, inout

13-28Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Functions
User-defined function call by value-return

Variables are copied in, Returned values are copied back

Function overload

Three possibilities for parameters

in

out

inout

vec4 func1 (float f); // in qualifier is implicit

void func2(out float f) {

f = 0.1;

} // f is used to copy values out of the function call

void func3(inout float f) {

f *= 2.0;

} // f is used to copy values in and out of the function

13-29Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Built-in Functions
Trigonometry

sin, cos, tan, asin, acos, atan, …

Exponential

pow, exp2, log2, sqrt, inversesqrt…

Common

abs, floor, sign, ceil, min, max, clamp, …

Geometric

length, dot, cross, normalize, reflect, distance, …

Texture lookup

texture1D texture2D, texture3D, textureCube, …

Noise functions

ftransform: transform vertex coordinates to clipping space by
modelview and projection matrices.

13-30Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Attribute Qualifier

Global variables that change per vertex

Only are used in vertex shaders and read-only.

Pass values from the application to vertex shaders.

Number is limited, e.g. 32 (hardware-dependent)

Examples:

Built in (OpenGL state variables)
gl_Vertex

gl_Color

gl_Normal

gl_SecondaryColor

gl_MultiTexCoordn

gl_FogCoord

User defined in vertex shader
attribute float temperature;

attribute vec3 velocity;

13-31Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Uniform Qualifier
Global variables that change less often, e.g. per primitive or object

May be used in both vertex and fragment shader

Read-only

passed from the OpenGL application to the shaders.

may not be set inside glBegin and glEnd block

Number is limited, but a lot more than attribute variables

Built-in uniforms

uniform mat4 gl_ModelViewMatrix;

uniform mat4 gl_ProjectionMatrix;

uniform mat4 gl_ModelViewProjectionMatrix;

uniform mat4 gl_TextureMatrix[n];

Uniform mat3 gl_NormalMatrix; // inverse transpose

modlview matrix

Explanation for normal matrix: http://www.lighthouse3d.com/tutorials/glsl-12-
tutorial/the-normal-matrix/

http://www.lighthouse3d.com/tutorials/glsl-12-tutorial/the-normal-matrix/

13-32Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Uniforms

Built-in uniforms
uniform gl_LightSourceParameters
gl_LightSource[gl_MaxLights];

gl_LightSourceParameters is a built-in struct
describing OpenGL light sources

…

User-defined uniforms
Used to pass information to shader such as the bounding

box of a primitive

Example:
uniform float myCurrentTime;

uniform vec4 myAmbient;

13-33Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Varying Qualifier
Used for passing interpolated data between a vertex shader and a

fragment shader.

Available for writing in the vertex shader

read-only in a fragment shader.

Automatically interpolated by the rasterizer

Built in

Vertex colors: varying vec4 gl_FrontColor; // vertex

varying vec4 gl_BackColor; // vertex

varying vec4 gl_Color; // fragment

Texture coordinates: varying vec4 gl_TexCoord[];//both

…

User defined varying variables

Requires a matching definition in the vertex and fragment shader

For example varying vec3 normal can be used for per-pixel lighting

13-34Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Built-in output types

There are also built-in types available that are used as

the output of the shader programs:

glPosition 4D vector representing the final

processed vertex position (only

available in vertex shader)

gl_FragColor 4D vector representing the final color

which is written in the frame buffer

(only available in fragment shader)

gl_FragDepth float representing the depth which is

written in the depth buffer (only

available in fragment shader)

13-35Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Use GLSL Shaders

1. Create shader object
Gluint S = glCreateShader(GL_VERTEX_SHADER)

Vertex or Fragment

2. Load shader source code into object
glShaderSource(S, n, shaderArray, lenArray)

Array of strings

3. Compile shaders
glCompileShader(S)

13-36Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Loading Shaders

glShaderSource(S, n, shaderArray,

lenArray)

n – the number of strings in the array

Strings as lines

Null-terminated if lenArray is Null or length=-1

Example

const GLchar* vSource = readFile(“shader.vert”);

glShaderSource(S, 1, &vSource, NULL);

13-37Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Use GLSL Shaders

4. Create program object
GLuint P = glCreateProgram()

5. Attach all shader objects
glAttachShader(P, S)

Vertex, Fragment or both

6. Link together
glLinkProgram(P)

7. Use
glUseProgram(P)

In order to use fixed OpenGL functionality, call glUseProgram

with value 0;

13-38Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Set attribute/uniform values
We need to pass vertex attributes to the vertex shader

Vertex attributes are named in the shaders

Linker forms a table

Application can get index from table

Similar process for uniform variables

Where is my attributes/uniforms parameter? Find them in the
application
GLint i =glGetAttribLocation(P,”myAttrib”)
GLint j =glGetUniformLocation(P,”myUniform”)

Set them
glVertexAttrib1f(i,value)
glUniform1f(j,value)

glVertexAttribPointer(i,…) // passing attributes using
vertex array

13-39Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Older OpenGL versions

If your computer has an older OpenGL version (typically the

case on Windows) you will have to use the ARB calls.

In Windows, you will have to get the procedure addresses

similar to what was necessary for the VBO function calls,

for example:

PFNGLSHADERSOURCEARBPROC glShaderSourceARB;

glShaderSourceARB =

(PFNGLSHADERSOURCEARBPROC)wglGetProcAddress(

"glShaderSourceARB");

13-40Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Use GLSL Shaders

1. Create shader object
Gluint S = glCreateShaderARB(GL_VERTEX_SHADER)

Vertex or Fragment

2. Load shader source code into object
glShaderSourceARB(S, n, shaderArray, lenArray)

Array of strings

3. Compile shaders
glCompileShaderARB(S)

13-41Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Loading Shaders

glShaderSourceARB(S, n, shaderArray,

lenArray)

n – the number of strings in the array

Strings as lines

Null-terminated if lenArray is Null or length=-1

Example

const GLchar* vSource = readFile(“shader.vert”);

glShaderSourceARB(S, 1, &vSource, NULL);

13-42Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Use GLSL Shaders

4. Create program object
P = glCreateProgram()

5. Attach all shader objects
glAttachShaderARB(P, S)

or

glAttachObjectARB (P)

glAttachObjectARB (S)

Vertex, Fragment or both

6. Link together
glLinkProgramARB(P)

7. Use
glUseProgramARB(P)

In order to use fixed OpenGL functionality, call glUseProgramARB
with value 0;

13-43Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Example 1: Trivial Vertex Shader

varying vec3 Normal;

void main(void)

{

gl_Position = ftransform() ;

Normal = normalize(gl_NormalMatrix *

gl_Normal);

gl_FrontColor = gl_Color;

}

13-44Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Trivial Fragment Shader
varying vec3 Normal; // input from vp

vec3 lightColor = vec3(1.0, 1.0, 0.0);

vec3 lightDir = vec3(1.0, 0.0, 0.0);

void main(void)

{

vec3 color = clamp(dot(normalize(Normal),
lightDir), 0.0, 1.0) * lightColor;

gl_FragColor = vec4(color, 1.0);

}

13-45Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Getting Error

There is an info log function that returns compile & linking

information, errors

void glGetInfoLogARB(GLhandleARB object,

GLsizei maxLength,

GLsizei *length,

GLcharARB *infoLog);

13-46Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Per Vertex vs Per Fragment Lighting

per vertex lighting per fragment lighting

13-47Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Vertex Shader for per Fragment

Lighting

varying vec3 normal;

varying vec4 position;

void main()

{

/* first transform the normal into eye space and

normalize the result */

normal = normalize(gl_NormalMatrix*gl_Normal);

/* transform vertex coordinates into eye space */

position = gl_ModelViewMatrix*gl_Vertex;

gl_Position = ftransform();

}

13-48Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Corresponding Fragment Shader

varying vec3 normal;

varying vec4 position;

void main()

{

vec3 norm = normalize(normal);

// Light vector

vec3 lightv = normalize(gl_LightSource[0].position.xyz);

vec3 viewv = -normalize(position.xyz);

vec3 halfv = normalize(lightv + viewv);

if (dot (halfv,norm) < 0)

norm = -norm;

/* diffuse reflection */

vec4 diffuse = max(0.0, dot(lightv, norm))

*gl_FrontMaterial.diffuse*gl_LightSource[0].diffuse;

13-49Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Corresponding Fragment Shader
/* ambient reflection */

vec4 ambient =
gl_FrontMaterial.ambient*gl_LightSource[0].ambie
nt;

/* specular reflection */

vec4 specular = vec4(0.0, 0.0, 0.0, 1.0);

if(dot(lightv, viewv) > 0.0) {

specular = pow(max(0.0, dot(norm, halfv)),

gl_FrontMaterial.shininess)
*gl_FrontMaterial.specular*gl_LightSource[0].specul
ar;

}

vec3 color = clamp(vec3(ambient + diffuse +
specular), 0.0, 1.0);

gl_FragColor = vec4(color, 1.0);

}

13-50Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compiling Programs with GLSL Shaders

Download the glew from SourceForge and extract glew.h,
wglew.h, glew32.lib, glew32s.lib, and glew.dll.

Create a project and include "glew.h" before "glut.h", and add
glewInit() before your initialize shaders.

Add glew32.lib to the project properties, i.e. with the other libraries
including opengl32.lib glu32.lib and glut32.lib

GLSL is not fully supported on all hardware

Update the display driver to the latest version

Use glewinfo.exe to see what OpenGL extensions are
supported on your graphics card

Get a better graphics card.

http://glew.sourceforge.net/

13-51Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Beyond Phong: Cartoon Shader
varying vec3 lightDir,normal;

varying vec4 position;

void main() {

vec3 hiCol = vec3(1.0, 0.1, 0.1); // lit color

vec3 lowCol = vec3(0.3, 0.0, 0.0); // dark color

vec3 specCol = vec3(1.0, 1.0, 1.0); // specular color

vec4 color;

// normalizing the lights position to be on the safe side

vec3 n = normalize(normal);

// eye vector

vec3 e = -normalize(position.xyz);

vec3 l = normalize(lightDir);

13-52Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Cartoon Shader (cont)

float edgeMask = (dot(e, n) > 0.4) ? 1 : 0;

vec3 h = normalize(l + e);

float specMask = (pow(dot(h, n), 30) > 0.5)? 1:0;

float hiMask = (dot(l, n) > 0.4) ? 1 : 0;

color.xyz = edgeMask *

(lerp(lowCol, hiCol, hiMask) +
(specMask * specCol));

gl_FragColor = color;

}

13-53Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

53

Example: Wave Motion Vertex Shader
uniform float time;

varying vec3 normale;

varying vec4 positione;

void main() {

normale = gl_NormalMatrix*gl_Normal;

positione = gl_ModelViewMatrix*gl_Vertex;

float xs = 0.1, zs = 0.13;

vec4 myPos = gl_Vertex;

myPos.y = myPos.y * (1.0 + 0.2 * sin(xs*time) *
sin(zs*time));

gl_Position = gl_ModelViewProjectionMatrix * myPos;

}

13-54Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

54

Simple Particle System
uniform vec3 vel;

uniform float g, t;

void main()

{

vec3 object_pos;

object_pos.x = gl_Vertex.x + vel.x*t;

object_pos.y = gl_Vertex.y + vel.y*t

+ g/(2.0)*t*t;

object_pos.z = gl_Vertex.z + vel.z*t;

gl_Position =

gl_ModelViewProjectionMatrix*

vec4(object_pos,1);

}

6-55Department of Computer Science and Engineering

6 Color Models and Color Applications

55

Environment Cube Mapping

Use reflection vector to locate texture in cube map

We can form a cube map texture by defining six 2D texture maps that
correspond to the sides of a box

Supported by OpenGL

We can implement Cube maps in GLSL through cubemap sampler

vec4 texColor = textureCube(mycube, texcoord);

Texture coordinates must be 3D

13-56Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

56

Environment Maps with Shaders
Need to compute the reflection vector and use it to

access the cube map texture.

Environment map usually computed in world
coordinates which can differ from object
coordinates because of modeling matrix
May have to keep track of modeling matrix and pass it to

shader as a uniform variable

Can use reflection map or refraction map (for
example to simulate water)

13-57Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

57

Samplers

Provides access to a texture object

Defined for 1, 2, and 3 dimensional textures and for cube
maps
sampler1D, sampler2D, sampler3D, samplerCube

In application, link a sampler to a texture unit:
texMapLocation =
glGetUniformLocation(myProg,“MyMap”);

/* link “myTexture” to texture unit 0 */

glUniform1i(texMapLocation, 0);

13-58Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

58

Cube Map Vertex Shader
uniform mat4 modelMat;

uniform mat3 invTrModelMat;

uniform vec4 eyew;

varying vec3 reflectw;

void main(void)

{

vec4 positionw = modelMat*gl_Vertex;

vec3 normw = normalize(invTrModelMat*gl_Normal);

vec3 viewv = normalize(eyew.xyz-positionw.xyz);

/* reflection vector in world frame */

reflectw = reflect(normw, viewv);

gl_Position =
gl_ModelViewProjectionMatrix*gl_Vertex;

}

13-59Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

59

Cube Map Fragment Shader
/* fragment shader for reflection map */

varying vec3 reflectw;

uniform samplerCube MyMap;

void main(void)

{

gl_FragColor = textureCube(myMap,

reflectw);

}

13-60Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Bump Mapping

Perturb normal for each fragment

Store perturbation as textures

13-61Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Faked Global Illumination

Shadow, Reflection, BRDF…etc.

In theory, real global illumination is not possible in

current graphics pipeline:

• Conceptually a loop of individual polygons.

• No interaction between polygons.

Can this be changed by multi-pass rendering?

13-62Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Shadow Map

Using two textures: color and depth

Relatively straightforward design using pixel (fragment)

shaders on GPUs.

13-63Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Basic Idea

Image Source: Cass Everitt et al., “Hardware Shadow

Mapping” NVIDIA SDK White Paper

Eye’s View Light’s View Depth/Shadow Map

http://developer.nvidia.com/view.asp?IO=hwshadowmap_paper

13-64Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Basic Steps of Shadow Maps

Render the scene from the light’s point of view,

Use the light’s depth buffer as a texture (shadow map),

Projectively texture the shadow map onto the scene,

Use “TexGen” or shader

Use “texture color” (comparison result) in fragment

shading.

13-65Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Step #1: Create the Shadow Map

Render from the light’s view

Make sure it sees the whole scene.

Use glPolygonOffset() to solve the self-occlusion problem by

adding a bias factor to the depth values.

Use glCopyTex(Sub)Image2D()

This avoids the data movement to CPU memory.

13-66Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Step #2: Access the Shadow Map in

GLSL Shaders

Pass the texture ID to the shader using a uniform

shader variable

Compute the texture coordinate to access the shadow

map

Could use gl_TextureMatrix[0] in shader.

Remember to adjust (-1, -1) in screen space (X,Y) to (0,1) in

texture coord (S,T)

Compare with the pixel’s distance to the light, i.e. if light

is further away than depth value there is shadow.

13-67Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

References -- Shadow Map

http://www.cs.uiowa.edu/~cwyman/classes/common/gfxHandouts/s

hadowMapSteps.pdf

http://en.wikipedia.org/wiki/Shadow_mapping

http://developer.nvidia.com/object/cedec_shadowmap.html

http://www.opengl.org/wiki/Shadow_Mapping_without_shaders

http://www.cs.uiowa.edu/~cwyman/classes/common/gfxHandouts/shadowMapSteps.pdf
http://en.wikipedia.org/wiki/Shadow_mapping
http://developer.nvidia.com/object/cedec_shadowmap.html
http://www.opengl.org/wiki/Shadow_Mapping_without_shaders

13-68Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Modern GPUs allow:

The usage of multiple textures.

Rendering algorithms that use multiple passes.

Adding “Memory” to the GPU Computation

Transform

(& Lighting)
Rasterization

Textures

13-69Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

In order to achieve a mirroring effect, we can simply

render the scene from the view point of the mirror.

This can be achieved even without the use of a shader as

the stencil buffer allows us to limit rendering to a specific

area of the framebuffer.

To use the stencil buffer, we need to initialize the display

accordingly by adding GLUT_STENCIL to the list of

parameters, for example:

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA |

GLUT_DEPTH | GLUT_STENCIL);

13-70Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

The stencil buffer is a bitmap that marks the pixels of the

framebuffer that we can render to, i.e. only where the

corresponding bit is set the framebuffer will be changed.

Stencil testing can be turned on and off using the usual

OpenGL mechanism:

glEnable (GL_STENCIL_TEST);

glDisable (GL_STENCIL_TEST);

13-71Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes
The stencil buffer is a bitmap that marks the pixels of the framebuffer
that we can render to, i.e. only where the corresponding bit is set the
framebuffer will be changed.

We can use glDrawPixels to directly set the bitmap for the stencil
buffer:

glClearStencil (0x0);

glClear (GL_STENCIL_BUFFER_BIT);

glStencilFunc (GL_NOTEQUAL, 0x1, 0x1);

glStencilOp (GL_KEEP, GL_KEEP, GL_REPLACE);

glDrawPixels (w,

h,

GL_STENCIL_INDEX,

GL_BITMAP,

bitmap);

13-72Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

Using the function glStencilFunc, we can specify front and back

function and reference value for stencil testing.

void glStencilFunc(GLenum func,

GLint ref,

GLuint mask);

func: Specifies the test function (GL_NEVER, GL_LESS,

GL_LEQUAL, GL_GREATER, GL_GEQUAL, GL_EQUAL,

GL_NOTEQUAL, and GL_ALWAYS).

ref: Specifies the reference value for the stencil test. ref is clamped

to the range 0 2n-1, where n is the number of bitplanes in the

stencil buffer. The initial value is 0.

mask: Specifies a mask that is ANDed with both the reference value

and the stored stencil value when the test is done

13-73Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

We can specify the stencil operation using the

glStencilOp function:

void glStencilOp (GLenum sfail,

GLenum dpfail,

GLenum dppass);

sfail: action to take when stencil test fails

dpfail: action to take when stencil test passes but

depth test fails

dppass: action to take when depth and stencil test pass

13-74Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

To set this bitmap, we can also render objects, so that the

projection of those objects after the scan conversion mark

the pixels within the framebuffer that can be changed.

glClearStencil (0x0);

glClear (GL_STENCIL_BUFFER_BIT);

glStencilFunc (GL_NOTEQUAL, 0x1, 0x1);

glStencilOp (GL_KEEP, GL_KEEP,

GL_REPLACE);

// render geometry to mast pixels in the

//stencil as drawable

13-75Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

After drawing those areas to mask the stencil, we have to

adjust the stencil function to mark those areas as the

drawable pixels:

glStencilFunc (GL_EQUAL, 0x1, 0x1);

In order to protect the stencil buffer from being changed

any further, we can issue this:

glStencilOp (GL_KEEP, GL_KEEP, GL_KEEP);

13-76Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

This then allows us to draw specific objects to generate

the stencil. In a separate rendering step, we can then

generate different content for the stenciled areas. This

second rendering step could be from a different

perspective to create the illusion of a mirror.

13-77Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Mirror effects by using multiple passes

The Neon Helium web site provides a tutorial for this

process:

http://nehe.gamedev.net/tutorial/clipping__reflections_usi

ng_the_stencil_buffer/17004/

13-78Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Creating brick walls

Inside we fragment shader we can also generate our

texture procedurally. For example, a brick wall typically

has a very regular, repetitive pattern that can be

generated in a procedure. The fragment shader will use

the following functions:

– fract: compute the fractional part of the argument, i.e. only the

part after the decimal point

– step: generate a step function by comparing two values; it

returns 0.0 if the first value is smaller than the second and 1.0

otherwise

– mix: interpolate linearly between two values (first two

parameters) by using the third parameter as weight

13-79Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Creating brick walls
Vertex shader

uniform vec3 LightPosition;

const float SpecularContribution = 0.3;

const float DiffuseContribution = 1.0 - SpecularContribution;

varying float LightIntensity;

varying vec2 MCposition;

void main(void)

{

vec3 ecPosition = vec3 (gl_ModelViewMatrix * gl_Vertex);

vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);

vec3 lightVec = normalize(LightPosition - ecPosition);

vec3 reflectVec = reflect(-lightVec, tnorm);

vec3 viewVec = normalize(-ecPosition);

13-80Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Creating brick walls
float diffuse = max(dot(lightVec, tnorm), 0.0);

float spec = 0.0;

if (diffuse > 0.0)

{

spec = max(dot(reflectVec, viewVec), 0.0);

spec = pow(spec, 16.0);

}

LightIntensity = DiffuseContribution * diffuse +

SpecularContribution * spec;

MCposition = gl_Vertex.xy;

gl_Position = ftransform();

}

13-81Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Creating brick walls
Fragment shader

uniform vec3 BrickColor, MortarColor;

uniform vec2 BrickSize;

uniform vec2 BrickPct;

varying vec2 MCposition;

varying float LightIntensity;

void main(void)

{

vec3 color;

vec2 position, useBrick;

position = MCposition / BrickSize;

13-82Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Creating brick walls
if (fract(position.y * 0.5) > 0.5)

position.x += 0.5;

position = fract(position);

useBrick = step(position, BrickPct);

color = mix(MortarColor, BrickColor,

useBrick.x * useBrick.y);

color *= LightIntensity;

gl_FragColor = vec4 (color, 1.0);

}

13-83Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Creating brick walls

Result

13-84Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Gooch shading

Image source: “A

Non-Photorealistic

Lighting Model For

Automatic Technical

Illustration”, Gooch,

Gooch, Shirley and

Cohen (1998).

Compare the Gooch

shader, above, to the

Phong shader (right).

Gooch shading is not a shader technique per se.

It was designed by Amy and Bruce Gooch to
replace photorealistic lighting with a lighting model
that highlights structural and contextual data.

They use the diffuse term of the conventional
lighting equation to choose a map between ‘cool’
and ‘warm’ colors.

This is in contrast to conventional illumination
where diffuse lighting simply scales the underlying
surface color.

This, combined with edge-highlighting through a
second renderer pass, creates models which look
more like engineering schematic diagrams.

13-85Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Gooch shading

13-86Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Gooch shading
// From the Orange Book

varying float NdotL;

varying vec3 ReflectVec;

varying vec3 ViewVec;

void main () {

vec3 ecPos = vec3(gl_ModelViewMatrix * gl_Vertex);

vec3 tnorm = normalize(gl_NormalMatrix * gl_Normal);

vec3 lightVec = normalize(gl_LightSource[0].position.xyz - ecPos);

ReflectVec = normalize(reflect(-lightVec, tnorm));

ViewVec = normalize(-ecPos);

NdotL = (dot(lightVec, tnorm) + 1.0) * 0.5;

gl_Position = ftransform();

gl_FrontColor = vec4(vec3(0.75), 1.0);

gl_BackColor = vec4(0.0);

}

13-87Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Gooch shading
vec3 SurfaceColor = vec3(0.75, 0.75, 0.75);

vec3 WarmColor = vec3(0.1, 0.4, 0.8);

vec3 CoolColor = vec3(0.6, 0.0, 0.0);

float DiffuseWarm = 0.45;

float DiffuseCool = 0.045;

varying float NdotL;

varying vec3 ReflectVec;

varying vec3 ViewVec;

void main() {

vec3 kcool = min(CoolColor + DiffuseCool * vec3(gl_Color), 1.0);

vec3 kwarm = min(WarmColor + DiffuseWarm * vec3(gl_Color), 1.0);

vec3 kfinal = mix(kcool, kwarm, NdotL) * gl_Color.a;

vec3 nreflect = normalize(ReflectVec);

vec3 nview = normalize(ViewVec);

float spec = max(dot(nreflect, nview), 0.0);

spec = pow(spec, 32.0);

gl_FragColor = vec4(min(kfinal + spec, 1.0), 1.0);

}

13-88Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Gooch shading
In the vertex shader source, notice the use of the built-in ability to
distinguish front faces from back faces:

gl_FrontColor = vec4(vec3(0.75), 1.0);

gl_BackColor = vec4(0.0);

This supports distinguishing front faces (which should be shaded
smoothly) from the edges of back faces (which will be drawn in heavy
black.)

In the fragment shader source, this is used to choose the weighted
diffuse color by clipping with the a component:

vec3 kfinal = mix(kcool, kwarm, NdotL) *
gl_Color.a;

Here mix() is a GLSL method which returns the linear interpolation
between kcool and kwarm. The weighting factor (‘t’ in the
interpolation) is NdotL, the diffuse lighting value.

13-89Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Shaders

So far, we talked about vertex shaders and fragment

shaders. Originally, it was not possible for a vertex

shader to change the number of vertices; it was always

the case that the same number of vertices coming into

the vertex shader was the same number of vertices

coming out.

Nowadays, there is a third type of shade that does indeed

let us change the number of vertices, for example

generate additional vertices on the fly. This is done via

the geometry shader. The next slides show the

differences.

13-90Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Vertex Shader

13-91Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Fragment Shader

13-92Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader
Vertex Color

gl_FrontColorIn[gl_VerticesIn];

gl_BackColorIn[gl_VerticesIn];

gl_FrontSecondaryColorIn[gl_VerticesIn];

gl_BackSecondaryColorIn[gl_VerticesIn];

gl_FogFragCoordIn[gl_VerticesIn];

Geometry

processor

Color

gl_FrontColor;

gl_BackColor;

gl_FrontSecondaryColor;

gl_BackSecondaryColor;

gl_FogFragCoord;

Vertex Coord.

gl_TexCoordIn[gl_VerticesIn][];

gl_PositionIn[gl_VerticesIn];

Resterization Info.

gl_PointSizeIn[gl_VerticesIn];

gl_ClipVertexIn[gl_VerticesIn];

Coord.

gl_Position

gl_TexCoord[];

Number of Vertices

gl_VerticesIn

13-93Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

The geometry shader can change the primitive:

Add/remove primitives

Add/remove vertices

Edit vertex position

The geometry shader will be for every primitive you

created. The built-in variable gl_VerticesIn tells you

how many vertices your primitive consists of.

You can create a geometry shader as follows:

glCreateShader (GL_GEOMETRY_SHADER);

13-94Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

Geometry shaders only work for some primitive types,

namely:

– points (1)

– lines (2)

– lines_adjacency (4)

– triangles (3)

– triangles_adjacency (6)

The numbers in parenthesis represent the number of

vertices that are needed per individual primitive.

13-95Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

New primitives:

GL_LINES_ADJACENCY

GL_LINE_STRIP_ADJACENCY

GL_TRIANGLES_ADJACENCY

GL_TRIANGLE_STRIP_ADJECENCY

13-96Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Applications

13-97Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

The list on the previous slide does not restrict us as much

as would seem, since these types actually include more

than just one type as the following list shows the

correspondence between shader and OpenGL type:

Geometry shader: OpenGL:

points GL_POINTS

lines GL_LINES, GL_LINE_LOOP, GL_LINE_STRIP

triangles GL_TRIANGLES, GL_TRIANGLE_STRIP,

GL_TRIANGLE_FAN

lines_adjacency GL_LINE_ADJACENCY, GL_LINE_STRIP_ADJACENCY

triangles_adjacency GL_TRIANGLE_ADJACENCY,

GL_TRIANGLE_STRIP_ADJACENCY

13-98Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

The following output primitive types are valid for the

geometry shader:

– points

– line_strip

– triangle_strip

It is practically required to output “expandable” primitive

types since the geometry shader allows you to output

more primitives that were received as input.

But do not massively create geometry in a geometry

shader as it will not perform that well if you do.

13-99Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

The input and output types of a geometry shader do not

necessarily have to match. For example, it is perfectly

valid to receive points as input out use triangles as

output.

The geometry shader does have to specify what types it

works on using the layout qualifier in combination with

the keywords in and out.

This could look like this:

layout (triangles) in;

layout (line_strip, max_vertices=4) out;

13-100Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader
The parameter max_vertices for the output is
absolutely binding! If your geometry shader tries to output
more vertices all vertices beyond the maximum will
simply be ignored.

OpenGL 4.0 introduced an optional parameter
invocations which you can use to specify how often
you want your geometry shader to be called per primitive.
By default (i.e. if omitted), this parameter is set to one, i.e.
the geometry shader will be called exactly once per
primitive.

Example:

layout (triangles, invocations=2) in;

layout (line_strip, max_vertices=4) out;

13-101Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

There are two new functions that you can use within a

geometry shader:

– EmitVertex: tells the geometry shader that you are filling in

all the information for the vertex, i.e. stored it in

gl_Position.

– EmitPrimitive: indicates that you emitted all the vertices for

a single polygon.

You do have to call these functions or otherwise nothing

will be drawn, i.e. your entire polygon is discarded. This

also shows how you can eliminate vertices by simply not

calling EmitVertex.

13-102Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader

At the same time, you can call EmitVertex and

EmitPrimitive as often as need be. This essentially

allows you to create geometry on the fly with the

geometry shader since you can call EmitVertex and

EmitPrimitive more than once per vertex.

13-103Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Geometry Shader Example Code
void main(void)

{

int i;

for(i=0; i< gl_VerticesIn; i++){

gl_Position = gl_PositionIn[i];

EmitVertex();

}

EndPrimitive();

for(i=0; i< gl_VerticesIn; i++){

gl_Position = gl_PositionIn[i];

gl_Position.xy = gl_Position.yx;

EmitVertex();

}

EndPrimitive();

}

13-104Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Result

Original input

primitive

Output primitive

13-105Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Sample Shaders and Tutorials

Some links to sample shaders from tutorials online:

http://www.davidcornette.com/glsl/gallery.html

http://www.lighthouse3d.com/tutorials/glsl-tutorial/?toon

http://www.clockworkcoders.com/oglsl/tutorials.html

http://www.davidcornette.com/glsl/gallery.html
http://www.lighthouse3d.com/tutorials/glsl-tutorial/?toon
http://www.clockworkcoders.com/oglsl/tutorials.html

13-106Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

More Programmability

OpenGL 3.2 (released August 3rd, 2009) added an

additional shading stage – geometry shaders

modify geometric primitives within the graphics pipeline

Primitive

Setup and

Rasterizatio

n

Fragment

Shader
Blending

Vertex

Data

Pixel

Data

Vertex

Shader

Texture

Store

Geometry

Shader

13-107Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

More Evolution – Context Profiles

OpenGL 3.2 also introduced context profiles

profiles control which features are exposed

it’s like GL_ARB_compatibility, only not insane

currently two types of profiles: core and compatible

Context Type Profile Description

Full
core All features of the current release

compatible All features ever in OpenGL

Forward Compatible
core All non-deprecated features

compatible Not supported

13-108Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

The Latest Pipelines

OpenGL 4.1 (released July 25th, 2010) included additional

shading stages – tessellation-control and tessellation-

evaluation shaders

Latest version is 4.3

Primitive

Setup and

Rasterization

Fragment

Shader
Blending

Vertex

Data

Pixel

Data

Vertex

Shader

Texture

Store

Geometry

Shader

Tessellation

Control

Shader

Tessellation

Evaluation

Shader

13-109Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

OpenGL ES and WebGL

OpenGL ES 2.0

Designed for embedded and hand-held devices such as cell

phones

Based on OpenGL 3.1

Shader based

WebGL

JavaScript implementation of ES 2.0

Runs on most recent browsers

13-110Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Patches

Tessellation stages operate on patches, a primitive type denoted by the

constant GL_PATCHES. A patch primitive is a general-purpose primitive,

where every n vertices is a new patch primitive. The number of vertices per

patch can be defined on the application-level using:

void glPatchParameteri(GLenum pname, GLint value);

with GL_PATCH_VERTICES as target and a value which has is on the half-

open range [1, GL_MAX_PATCH_VERTICES). The maximum number of

patch vertices is implementation-dependent, but will never be less than 32.

Patch primitives are always a sequence of individual patches; there is

no such thing as a "patch strip" or "patch loop" or such. So for a given vertex

stream, every group of value number of vertices will be a separate patch. If

you need to do something like triangle strips, you should use Indexed

Rendering to get similar behavior, though it will not reduce the number of

vertices in the index list. Fortunately, the Post-Transform Cache should deal

with any performance impact having more indices.

13-111Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellation Control Shader

The first step of tessellation is the optional invocation of a

tessellation control shader (TCS). The TCS has two jobs:

• Determine the amount of tessellation that a primitive should have.

• Perform any special transformations on the input patch data.

The TCS can change the size of a patch, adding more vertices

per-patch or providing fewer. However, a TCS cannot discard a

patch (directly; it can do so indirectly), nor can it write multiple

patches. Therefore, for each patch provided by the application, one

patch will be provided to the next tessellation stage.

13-112Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellation Control Shader (continued)

The TCS is optional. If no TCS is active in the current program or program

pipeline, then the patch data is passed directly from the Vertex Shader

invocations to the tessellation primitive generation step. The amount of

tessellation done in this case is taken from default values set into the

context. These are defined by the following function:

void glPatchParameterfv(GLenum pname,

const GLfloat *values);

When pname is GL_PATCH_DEFAULT_OUTER_LEVEL, values is a 4-element

array of floats defining the four outer tessellation levels. When pname is

GL_PATCH_DEFAULT_INNER_LEVEL, values is a 2-element array of floats

defining the two inner tessellation levels.

These default values correspond to the TCS per-patch output variables

gl_TessLevelOuter[4] and gl_TessLevelInner[2].

13-113Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellation levels

The amount of tessellation that is done over the abstract patch type is

defined by inner and outer tessellation levels. These, as previously stated,

are provided either by the TCS or by context parameters specified

via glPatchParameter. They are a 4-vector of floats defining the "outer

tessellation levels" and a 2-vector of floats defining the "inner tessellation

levels."

The specific interpretation depends on the abstract patch type being used,

but the general idea is this. In most cases, each tessellation level defines

how many segments an edge is tessellated into; so a tessellation level of 4

means that an edge will become 4 edges (2 vertices become 5). The "outer"

tessellation levels define the tessellation for the outer edges of the primitive.

This makes it possible for two or more patches to properly connect, while still

having different tessellation levels within the patch. The inner tessellation

levels are for the number of tessellations within the abstract patch.

13-114Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellation levels (continued)

The spacing affects the effective tessellation level as follows:

• equal_spacing : Each tessellation level is individually clamped to

the closed range [1, max]. Then it is rounded up to the nearest

integer to give the effective tessellation level.

• fractional_even_spacing : Each tessellation level is individually

clamped to the closed range [2, max]. Then it is rounded up to the

nearest even integer to give the effective tessellation level.

• fractional_odd_spacing : Each tessellation level is individually

clamped to the closed range [1, max - 1]. Then it is rounded up to

the nearest odd integer to give the effective tessellation level.

odd spacing even spacing

13-115Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives

Triangles: The abstract patch for triangle tessellation is a

triangle, naturally. Only the first three outer tessellation

levels are used, and only the first inner tessellation level

is used. The outer tessellation levels apply to the edges

shown in the diagram. Exactly how the inner tessellation

level works is less intuitive than it seems.

Each vertex generated and sent to the TES will be given

Barycentric coordinates as the gl_TessCoord input.

This coordinate defines where this vertex is located

within the abstract triangle patch. The barycentric

coordinates for the 3 vertices of the abstract triangle

patch are shown in the diagram. All other vertices will be

specified relative to these.

13-116Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives (continued)

The algorithm for tessellation of triangles is based on tessellating the edges

of the triangle, then building vertices and triangles from them. This makes the

behavior of the inner tessellation level a bit unintuitive, since it does not

directly correspond to the number of inner triangles.

1. Removes the most degenerate case. If all of the effective outer levels

(as computed above) levels are exactly 1.0, and the effective inner level

is also 1.0, then nothing is tessellated, and the TES will get 3 vertices

and one triangle. And thus, none of the later steps take place.

2. If the effective inner level is 1.0 (and therefore at least one of the outer

levels is > 1.0, otherwise we'd have hit the above condition), then the

effective inner level is recomputed as though the user had specified 1.0

+ e for the inner level, where e is a number infinitely close to zero. So

1.0 + e is a value just slightly above 1.0.

13-117Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives (continued)

3. Subdivide the edges of the abstract triangle patch based on the effective

inner level. Yes, the algorithm begins by ignoring the outer tessellation

levels; it applies the inner tessellation to all three outer edges

4. Build a series of concentric "rings" of inner triangles. At each corner of

the outer triangle, the two neighboring subdivided vertices are taken. A

vertex is computed from these two by finding the intersection of two

perpendicular lines from these vertices. Perpendicular lines from the

remaining vertices to the inner triangle's edges define where each edge

of the new triangle is subdivided. This process is repeated, using the

new ring triangle to generate the next inner ring, until one of two end

conditions is met. If the triangle ring has no subdivided edges (only 3

vertices), then the process stops. If the triangle ring has exactly 2

subdivided edges (only 6 total vertices), then the "ring" it generates is

not a triangle at all. It is a single vertex:

13-118Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives (continued)

By this algorithm, the number of inner triangle rings is half the

effective inner tessellation level, rounded down. Note that if the inner

level is even, the innermost ring will be a single vertex.

13-119Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives (continued)

After producing these inner rings, the tessellation for the main outer

triangle is discarded entirely. It is then re-tessellated in accord with

the three effective outer tessellation levels.

13-120Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives (continued)

With all the vertices generated, triangles must now be generated.

The specification outlines a particular algorithm for doing so, but it

leaves many of the details to the implementation. The specification

guarantees:

1. Area of the triangle, in (u,v,w) space, will be completely covered

by the generated triangulation.

2. No part of the area of the triangle will be covered more than once

by the generated triangulation.

3. There will be edges between the neighboring vertices of each

"ring" of triangles. That is, the dark lines in the above diagram are

guaranteed by the specification to be there.

13-121Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation
Tessellating primitives (continued)

4. If a vertex has corresponding vertices on the ring that

immediately preceded it, then there will be an edge between that

vertex and its corresponding ones (corners of ring triangles have

2 corresponding vertices). Similarly, if a vertex has a

corresponding vertex on the ring within it, there will be an edge

between them.

13-122Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader

The Tesselation Control Shader (TCS) controls how

much tessellation a particular patch gets; it also defines

the size of a patch, thus allowing it to augment data. It

can also filter vertex data taken from the vertex shader.

The main purpose of the TCS is to feed the tessellation

levels to the Tessellation primitive generator stage, as

well as to feed patch data (as its output values) to

the Tessellation Evaluation Shader stage.

13-123Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader

For each patch provided during rendering, n TCS shader invocations

will be processed, where n is the number of vertices in the output

patch. So if a drawing command draws 20 patches, and each output

patch has 4 vertices, there will be a total of 80 separate TCS

invocations.

The different invocations that provide data to the same patch are

interconnected. These invocations all share their output values. They

can read output values that other invocations for the same patch

have written to. But in order to do so, they must use

a synchronization mechanism to ensure that all other invocations for

the patch have executed at least that far.

Because of this, it is possible for TCS invocations to share data and

communicate with one another.

13-124Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader

Output patch size

The output patch size is the number of vertices in the

output patch. It also determines the number of TCS

invocations used to compute this patch data. The output

patch size does not have to match the input patch size.

The number of vertices in the output patch is defined with

an output layout qualifier:

layout(vertices = patch_size) out;

patch_size must be an integral constant expression

greater than zero and less than the patch limit.

13-125Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader

Inputs

All inputs from vertex shaders to the TCS are aggregated

into arrays, based on the size of the input patch. The size

of these arrays is the number of input patches provided

by the patch primitive.

Every TCS invocation for an input patch has access to

the same input data, save for gl_InvocationID (see

next slide) which will be different for each invocation. So

any TCS invocation can look at the input vertex data for

the entire input patch.

13-126Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
User-defined inputs can be declared as unbounded arrays:

in vec2 texCoord[];

You should not attempt to index this array past the number of input

patch vertices. TCS inputs may have interpolation qualifiers on them.

They have no actual function however. Tessellation Control Shaders

provide the following built-in input variables:

in int gl_PatchVerticesIn; // the number of

vertices in the input patch

in int gl_PrimitiveID; // the index of the current

patch within this rendering command

in int gl_InvocationID; // the index of the TCS

invocation within this patch; a TCS invocation

writes to per-vertex output variables by using this

to index them

13-127Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
The TCS also takes the built-in variables output by the vertex shader:

in gl_PerVertex

{

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

} gl_in[gl_MaxPatchVertices];

13-128Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
Outputs

TCS output variables are passed directly to the Tessellation Evaluation

Shader, without any form of interpolation (that's the TES's main job). These

can be per-vertex outputs and per-patch outputs.

Per-vertex outputs are aggregated into arrays. Therefore, a user-defined per-

vertex output variable would be defined as such:

out vec2 vertexTexCoord[];

The length of the array vertexTexCoord.length() will always be the

size of the output patch. So you don't need to restate it in the definition.

A TCS can only ever write to the per-vertex output variable that corresponds

to their invocation. So writes to per-vertex outputs must be of the form

vertexTexCoord[gl_InvocationID]. Any expression that writes to a

per-vertex output that doesn't index it with exactly gl_InvocationID

results in a compile-time error. Silly things like

vertexTexCoord[gl_InvocationID - 1 + 1] will also error.

13-129Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
Patch variables

Per-patch output variables are not aggregated into arrays

(unless you want them to be, in which case you must

specify a size). All TCS invocations for this patch see the

same patch variables. They are declared with the patch

keyword:

patch out vec4 data;

Any TCS invocation can write to a per-patch output;

indeed, all TCS invocations will generally write to a per-

patch output. As long as they all write the same value,

everything is fine.

13-130Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
Built-in outputs

Tessellation Control Shaders have the following built-in patch output

variables:

patch out float gl_TessLevelOuter[4];

patch out float gl_TessLevelInner[2];

These define the outer and inner tessellation levels used by the

tessellation primitive generator. They define how much tessellation to

apply to the patch. Their exact meaning depends on the type of patch

(and other settings) defined in the Tessellation Evaluation Shader.

As with any other patch variable, multiple TCS invocations for the

same patch can write to the same tessellation level variable, so long

as they are all computing and writing the exact same value.

13-131Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
TCS's also provide the following optional per-vertex

output variables:

out gl_PerVertex

{

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

} gl_out[];

13-132Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
Synchronization

TCS invocations that operate on the same patch can read each

others output variables, whether per-patch or per-vertex. To do so,

they must first ensure that those invocations have actually written to

those variables. The value of all output variables is undefined initially.

Ensuring that invocations have written to a variable requires

synchronization between invocations. This is done via the barrier()

function. When executed, it will not complete until all other TCS

invocations for this patch have reached that barrier. This means that

all writes have occurred by this point. However, subsequent writes to

those variables may have occurred, so if you want to read those

variables, make sure that another barrier() is issued before writing

more to them. If there are no subsequent writes to those variables,

then this should be fine.

13-133Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
Synchronization (continued)

The barrier() function has significant restrictions on where it can be placed. It

must be placed:

• Directly in the main() function. It cannot be in any other functions or

subroutines.

• Outside of any flow control. This includes if, for, switch, and the like.

• Before any use of return, even a conditional one.

This ensures that every TCS invocation hits the same sequence of barrier()

calls in the same order every time. The compiler will error if any of these

restrictions are violated.

Note: This is different from the restrictions on barrier() in Compute Shaders.

Also, writes to TCS output variables do not use the rules for Incoherent

Memory Access, so they do not need those memory barrier calls.

13-134Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Control Shader
Limitations

There is a maximum output patch size, defined by GL_MAX_PATCH_VERTICES; the

vertices output qualifier must be less than this value. The minimum required limit is 32.

There are other limitations on output size, however. The number of components for

active per-vertex output variables may not exceed

GL_MAX_TESS_CONTROL_OUTPUT_COMPONENTS. The minimum required limit

is 128.

The number of components for active per-patch output variables may not exceed

GL_MAX_TESS_PATCH_COMPONENTS. The minimum required limit is 120. Note

that the gl_TessLevelOuter and gl_TessLevelInner outputs do not count against this

limit (but other built-in outputs do if you use them.

There is a limit on the total number of components that can go into an output patch. To

compute the total number of components, multiply the number of active per-vertex

components by the number of output vertices, then add the number of active per-patch

components. This number may not exceed

GL_MAX_TESS_CONTROL_TOTAL_OUTPUT_COMPONENTS. The minimum

required limit is 4096, which is not quite enough to use a 32-vertex patch with 128 per-

vertex components and 120 per-patch components. But it's still a lot.

13-135Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

The Tesselation Evaluation Shader (TES) takes the abstract patch

generated by the tessellation primitive generation stage, as well as

the actual vertex data for the entire patch, and generates a particular

vertex from it. Each TES invocation generates a single vertex. It can

also take per-patch data provided by the Tessellation Control Shader.

The number of times the TES is invoked can differ from

implementation to implementation. It will be invoked at least once per

tessellated vertex in the abstract patch, but there is no guarantee that

the TES won't be invoked multiple times for the same vertex.

However, like the Vertex Shader, the TES is expected to output the

same value for the same vertex in the abstract patch.

13-136Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader
Tessellation options

The presence of an active TES in a program or program pipeline is what

governs whether or not the tessellation primitive generation stage will occur.

Because of that, many options that control the particular form of tessellation

are specified in the TES itself.

The details of what these mean for the tessellation results are described in

the section on the tessellation primitive generation. This section will only

describe how to specify these options, not go into detail on exactly what they

do.

All of these options are input layout qualifiers. They are specified using that

syntax:

layout(param1, param2, ...) in;

They can be specified as separate statements or all in one. However, each

particular type of parameter can only be specified once (you technically can

specify them multiple times, but they all must be the same).

13-137Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

Abstract patch type

The TES defines the type of abstract patch that will be tessellated.

The possible values for this are:

• isolines : The patch is a rectangular block of parallel lines. The

output is a series of lines.

• triangles: The patch is a triangle. The output is a series of

triangles.

• quads: The patch is a quadrilateral. The output is a series of

triangles.

The TES must provide this option.

13-138Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

Spacing

The TES has options that control the spacing between tessellated

vertices of the abstract patch. The possible values for this are:

• equal_spacing : There will be equal distances between vertices in

the abstract patch.

• fractional_even_spacing : There will always be an even number of

segments. Two of the segments will grow and shrink based on

how close the tessellation level is to generating more vertices.

• fractional_odd_spacing : As even-spacing, but there will always be

an odd number of segments.

This is optional. If the TES does not specify this parameter,

equal_spacing will be used.

13-139Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader
Primitive ordering

When emitting triangles, the Winding Order can be important for face culling. The

process of tessellation takes place over an abstract patch, which is not in any

particular coordinate system. It is the TES's responsibility to take abstract patch

coordinates and generate real clip-space (or whatever your Geometry Shader expects)

positions from them.

Therefore, maintaining the proper winding order for triangles is the job of the TES. To

facilitate that, the TES has the ability to control the winding order of the primitive

generator. This is done via the cw and ccw parameters.

Remember that this parameter only controls the winding order of the triangles within

the abstract patch. The winding order of the final triangle primitives will ultimately be

based on the TES's generated positions. As such, different triangles generated from

the same patch can have different final winding orders.

This parameter is optional. If the TES does not specify this parameter, ccw will be

used. Since lines don't have a winding order, this parameter is useless when using the

isolines patch type or point_mode rendering.

13-140Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

Primitive generation

Normally, the kind of Primitive emitted by the primitive generator is

defined by the abstract patch type. isolines will generate a series of

line-strips, while the others will generate a series of triangles.

The TES can force the primitive generator to override this and simply

generate a point primitive for each vertex in the tessellated patch. A

Geometry Shader could modify these and build a quad from each

point, or they could simply be drawn as points.

To do this, use the layout qualifier point_mode. Obviously specifying

this makes the ordering parameter unimportant.

13-141Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader
Inputs

The inputs for the TES are the per-vertex and per-patch outputs from the

Tessellation Control Shader (or directly from the vertex shader if no TCS is

active). Each TES invocation can access all of the outputs for a particular

patch.

Per-vertex inputs from the TCS are arrays of values, indexed by a vertex

index. Like TCS outputs, TES inputs can be declared without an explicit size:

in vec2 vertexTexCoord[];

The length of the array vertexTexCoord.length() is the size of the input

patch.

Per-patch outputs from the TCS can be taken as inputs in the TES using the

patch keyword:

patch in vec4 data;

13-142Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

Inputs (continued)

Tessellation Evaluation Shaders have the following built-in inputs:

in vec3 gl_TessCoord;

he location within the tessellated abstract patch for this particular

vertex. Every input parameter other than this one will be identical for

all TES invocations within a patch.

Which components of this vec3 that have valid values depends on

the abstract patch type. For isolines and quads, only the XY

components have valid values. For triangles, all three components

have valid values. All valid values are normalized floats (on the range

[0, 1]).

13-143Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader
Inputs (continued)

in int gl_PatchVerticesIn;

the vertex count for the patch being processed. This is either the output

vertex count specified by the TCS, or the patch vertex size specified by

glPatchParameter if no TCS is active. Attempts to index per-vertex inputs by

a value greater than or equal to gl_PatchVerticesIn results in undefined

behavior.

in int gl_PrimitiveID;

he index of the current patch in the series of patches being processed for this

draw call. Primitive Restart, if used, has no effect on the primitive ID.

Note: The tessellation primitive generator will cull patches that have a zero

for one of the active outer tessellation levels. The intent of the specification

seems to be that gl_PrimitiveID will still be incremented for culled patches.

So the primitive ID for the TES is equivalent to the ID for the TCS invocations

that generated that patch. But this is not entirely clear from the spec itself.

13-144Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

Inputs (continued)

The TES also has access to the tessellation levels provided for the

patch by the TCS or by OpenGL:

patch in float gl_TessLevelOuter[4];

patch in float gl_TessLevelInner[2];

Only the outer and inner levels actually used by the abstract patch

are valid. For example, if this TES uses isolines, only

gl_TessLevelOuter[0] and gl_TessLevelOuter[1] will have valid

values.

13-145Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader

Inputs (continued)

The TES also takes the built-in per-vertex variables output by the

TCS:

in gl_PerVertex

{

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

} gl_in[gl_MaxPatchVertices];

Note that just because gl_in is defined to have gl_MaxPatchVertices

entries does not mean that you can access beyond

gl_PatchVerticesIn and get reasonable values.

13-146Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader
Outputs

Each TES invocation outputs a separate vertex worth of data.

Therefore, the TES outputs are scalars (you can have output arrays,

but, they won't be treated specially the way per-vertex input arrays

are).

User-defined outputs from the TES can have interpolation qualifiers

on them.

Tessellation Evaluation Shaders have the following built-in outputs.

out gl_PerVertex {

vec4 gl_Position;

float gl_PointSize;

float gl_ClipDistance[];

};

13-147Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Evaluation Shader
Outputs (continued)

gl_PerVertex defines an interface block for outputs. The block is defined without an

instance name, so that prefixing the names is not required.

These variables only take on the meanings below if this shader is the last active Vertex

Processing stage, and if rasterization is still active (ie: GL_RASTERIZER_DISCARD is

not enabled). The text below explains how the Vertex Post-Processing system uses

the variables. These variables may not be redeclared with interpolation qualifiers.

gl_Position : the clip-space output position of the current vertex.

gl_PointSize: the pixel width/height of the point being rasterized. It only has a

meaning when rendering point primitives, which in a TES requires using the

point_mode input layout qualifier.

gl_ClipDistance: allows the shader to set the distance from the vertex to each

User-Defined Clip Plane. A positive distance means that the vertex is inside/behind the

clip plane, and a negative distance means it is outside/in front of the clip plane. Each

element in the array is one clip plane. In order to use this variable, the user must

manually redeclare it with an explicit size.

13-148Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Shaders: Example
Tesselation Control Shader

#version 410 core

layout(vertices = 4) out;

void main(void)

{

gl_TessLevelOuter[0] = 2.0;

gl_TessLevelOuter[1] = 4.0;

gl_TessLevelOuter[2] = 6.0;

gl_TessLevelOuter[3] = 8.0;

gl_TessLevelInner[0] = 8.0;

gl_TessLevelInner[1] = 8.0;

gl_out[gl_InvocationID].gl_Position =

gl_in[gl_InvocationID].gl_Position;

}

13-149Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Shaders: Example
Tesselation Evaluation Shader

#version 410 core

layout(quads, equal_spacing, ccw) in;

//quad interpol

vec4 interpolate(in vec4 v0, in vec4 v1, in vec4 v2, in vec4

v3)

{

vec4 a = mix(v0, v1, gl_TessCoord.x);

vec4 b = mix(v3, v2, gl_TessCoord.x);

return mix(a, b, gl_TessCoord.y);

}

13-150Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Shaders: Example
Tesselation Evaluation Shader (continued)

void main()

{

gl_Position = interpolate(

gl_in[0].gl_Position,

gl_in[1].gl_Position,

gl_in[2].gl_Position,

gl_in[3].gl_Position);

}

13-151Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Tesselation Shaders: Example

13-152Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader

Compute shaders work very differently compared to the other

shaders. The "space" that a compute shader operates on is largely

abstract; it is up to each compute shader to decide what the space

means. The number of compute shader executions is defined by

the function used to execute the compute operation. Most important

of all, compute shaders have no user-defined inputs and no

outputs at all. The built-in inputs only define where in the "space" of

execution a particular compute shader invocation is.

Therefore, if a compute shader wants to take some values as

input, it is up to the shader itself to fetch that data, via texture

access, arbitrary image load, shader storage blocks, or other forms of

interface. Similarly, if a compute shader is to actually compute

anything, it must explicitly write to an image or shader storage block.

13-153Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Compute space

The space that compute shaders operate within is abstract. There is the

concept of a work group; this is the smallest amount of compute

operations that the user can execute. Or to put it another way, the user

can execute some number of work groups.

The number of work groups that a compute operation is executed with

is defined by the user when they invoke the compute operation. The space of

these groups is three dimensional, so it has a number of "X", "Y", and "Z"

groups. Any of these can be 1, so you can perform a two-dimensional or

one-dimensional compute operation instead of a 3D one. This is useful for

processing image data or linear arrays of a particle system or whatever.

When the system actually computes the work groups, it can do so in

any order. So if it is given a work group set of (3, 1, 2), it could execute

group (0, 0, 0) first, then skip to group (1, 0, 1), then jump to (2, 0, 0), etc. So

your compute shader should not rely on the order in which individual groups

are processed.

13-154Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Compute space (continued)

Every compute shader has a three-dimensional local size (again, sizes can be 1

to allow 2D or 1D local processing). This defines the number of invocations of

the shader that will take place within each work group.

Therefore, if the local size of a compute shader is (128, 1, 1), and you execute it with a

work group count of (16, 8, 64), then you will get 1,048,576 separate shader

invocations. Each invocation will have a set of inputs that uniquely identifies that

specific invocation.

This distinction is useful for doing various forms of image compression or

decompression; the local size would be the size of a block of image data (8x8, for

example), while the group count will be the image size divided by the block size. Each

block is processed as a single work group.

The individual invocations within a work group will be executed "in parallel".

The main purpose of the distinction between work group count and local size is that

the different compute shader invocations within a work group can communicate

through a set of shared variables and special functions. Invocations in different

work groups (within the same compute shader dispatch) cannot effectively

communicate, not without potentially deadlocking the system.

13-155Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Dispatch

Compute shaders are not part of the regular rendering pipeline. So

when executing a Drawing Command, the compute shader linked into the

current program or pipeline is not involved.

There are two functions to initiate compute operations. They will use

whichever compute shader is currently active (via

glBindProgramPipeline or glUseProgram , following the usual rules for

determining the active program for a stage). Though they are not Drawing

Commands, they are Rendering Commands, so they can be conditionally

executed.

void glDispatchCompute(GLuint num_groups_x, GLuint

num_groups_y, GLuint num_groups_z);

The num_groups_* parameters define the work group count, in three

dimensions. These numbers cannot be zero. There are limitations on the

number of work groups that can be dispatched.

13-156Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Dispatch (continued)

It is possible to execute dispatch operations where the work group

counts come from information stored in a Buffer Object. This is similar to

indirect drawing for vertex data:

void glDispatchComputeIndirect(GLintptr indirect);

The indirect parameter is the byte-offset to the buffer currently bound to the

GL_DISPATCH_INDIRECT_BUFFER target. Note that the same limitations on

the work group counts still apply; however, indirect dispatch bypasses

OpenGL's usual error checking. As such, attempting to dispatch with out-of-

bounds work group sizes can cause a crash or even a GPU hard-lock, so be

careful when generating this data.

13-157Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Inputs

Compute shaders cannot have any user-defined input variables.

They have the following built-in input variables:

in uvec3 gl_NumWorkGroups;

This variable contains the number of work groups passed to the

dispatch function.

in uvec3 gl_WorkGroupID;

This is the current work group for this shader invocation. Each of the

XYZ components will be on the half-open range [0,

gl_NumWorkGroups.XYZ).

13-158Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Inputs (continued)

in uvec3 gl_LocalInvocationID;

This is the current invocation of the shader within the work group.

Each of the XYZ components will be on the half-open range [0,

gl_WorkGroupSize.XYZ).

in uvec3 gl_GlobalInvocationID;

This value uniquely identifies this particular invocation of the compute

shader among all invocations of this compute dispatch call. It's a

short-hand for the math computation: gl_WorkGroupID *

gl_WorkGroupSize + gl_LocalInvocationID;

13-159Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Inputs (continued)

in uint gl_LocalInvocationIndex;

This is a 1D version of gl_LocalInvocationID. It identifies this

invocation's index within the work group. It is short-hand for this math

computation:

gl_LocalInvocationIndex =

gl_LocalInvocationID.z *

gl_WorkGroupSize.x * gl_WorkGroupSize.y +

gl_LocalInvocationID.y *

gl_WorkGroupSize.x +

gl_LocalInvocationID.x;

13-160Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader

Local size

The local size of a compute shader is defined within the shader,

using a special layout input declaration:

layout(local_size_x = X, local_size_y = Y,

local_size_z = Z) in;

By default, the local sizes are 1, so if you only want a 1D or 2D

work group space, you can specify just the X or the X and Y

components. They must be integral constant expressions of value

greater than 0. Their values must abide by the limitations imposed

below; if they do not, a compiler or linker error occurs.

The local size is available to the shader as a compile-time constant

variable, so you don't need to define it yourself:

const uvec3 gl_WorkGroupSize;

13-161Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader

Shared variables

Global variables in compute shaders can be declared

with the shared storage qualifier. The value of such

variables are shared between all invocations within a

work group. You cannot declare any opaque types as

shared, but aggregates (arrays and structs) are fine.

At the beginning of a work group, these values are

uninitialized. Also, the variable declaration cannot have

initializers, so this is illegal:

shared uint foo = 0; //No initializers for

shared variables.

13-162Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader

Shared memory coherency

Shared variable access uses the rules for incoherent memory

access. This means that the user must perform certain

synchronization in order to ensure that shared variables are visible.

Shared variables are all implicitly declared coherent, so you don't

need to (and can't use) that qualifier. However, you still need to

provide an appropriate memory barrier.

The usual set of memory barriers is available to compute shaders,

but they also have access to memoryBarrierShared(); this

barrier is specifically for shared variable ordering.

groupMemoryBarrier() acts like memoryBarrier() , ordering

memory writes for all kinds of variables, but it only orders read/writes

for the current work group.

13-163Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Shared memory coherency (continued)

While all invocations within a work group are said to execute "in parallel", that doesn't

mean that you can assume that all of them are executing in lock-step. If you need to

ensure that an invocation has written to some variable so that you can read it,

you need to synchronize execution with the invocations, not just issue a memory

barrier (you still need the memory barrier though).

To synchronize reads and writes between invocations within a work group, you

must employ the barrier() function. This forces an explicit synchronization

between all invocations in the work group. Execution within the work group will not

proceed until all other invocations have reach this barrier. Once past the barrier() ,

all shared variables previously written across all invocations in the group will be visible.

There are limitations on how you can call barrier() . However, compute shaders

are not as limited as Tessellation Control Shaders in their use of this function.

barrier() can be called from flow-control, but it can only be called from uniform

flow control. All expressions that lead to the evaluation of a barrier() must be

dynamically uniform.

13-164Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Shared memory coherency (continued)

In short, if you execute the same compute shader, no matter how different

the data they fetch is, every execution must hit the exact same set of

barrier() calls in the exact same order. Otherwise, serious errors may occur.

13-165Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Atomic operations

A number of atomic operations can be performed on shared variables of

integral type (and vectors/arrays/structs of them). These functions are shared

with Shader Storage Buffer Object atomics.

All of the atomic functions return the original value. The term "nint" can be

int or uint.

nint atomicAdd(inout nint mem, nint data)

Adds data to mem.

nint atomicMin(inout nint mem, nint data)

The mem 's value is no lower than data.

nint atomicMax(inout nint mem, nint data)

The mem 's value is no greater than data.

13-166Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Atomic operations (continued)

nint atomicAnd (inout nint mem, nint data)

mem becomes the bitwise-and between mem and data.

nint atomicOr(inout nint mem, nint data)

mem becomes the bitwise-or between mem and data.

nint atomicXor(inout nint mem, nint data)

mem becomes the bitwise-xor between mem and data.

nint atomicExchange(inout nint mem, nint data)

Sets mem 's value to data.

nint atomicCompSwap(inout nint mem, nint compare, nint

data)

If the current value of mem is equal to compare, then mem is set to data.

Otherwise it is left unchanged.

13-167Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Limitations

The number of work groups that can be dispatched in a single dispatch call is

defined by GL_MAX_COMPUTE_WORK_GROUP_COUNT. This must be queried

with glGetIntegeri_v, with the index being on the closed range [0, 2],

representing the X, Y and Z components of the maximum work group count.

Attempting to call glDispatchCompute with values that exceed this range

is an error. Attempting to call glDispatchComputeIndirect is much

worse; it may result in program termination or other badness.

Note that the minimum these values must be is 65535 in all three axes. So

you've probably got a lot of room to work with.

There are limits on the local size as well; indeed, there are two sets of

limitations. There is a general limitation on the local size dimensions, queried

with GL_MAX_COMPUTE_WORK_GROUP_SIZE in the same way as above.

Note that the minimum requirements here are much smaller: 1024 for X and

Y, and a mere 64 for Z.

13-168Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Limitations (continued)

There is another limitation: the total number of invocations within a work

group. That is, the product of the X, Y and Z components of the local size

must be less than GL_MAX_COMPUTE_WORK_GROUP_INVOCATIONS. The

minimum value here is 1024.

There is also a limit on the total storage size for all shared variables in a

compute shader. This is GL_MAX_COMPUTE_SHARED_MEMORY_SIZE, which

is in bytes. The OpenGL-required minimum is 32KB. OpenGL does not

specify the exact mapping between GL types and shared variable storage,

though you could use the std140 layout rules and UBO/SSBO sizes as a

general guideline.

13-169Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader
Example

Calculate a simple texture:

#version 430

uniform float roll;

layout (rgba32f) uniform image2D destTex;

layout (local_size_x = 16, local_size_y = 16) in;

void main() {

ivec2 storePos = ivec2(gl_GlobalInvocationID.xy);

float localCoef = length(vec2(ivec2(gl_LocalInvocationID.xy)-

8)/8.0);

float globalCoef =

sin(float(gl_WorkGroupID.x+gl_WorkGroupID.y)*0.1 + roll)*0.5;

imageStore(destTex, storePos, vec4(1.0-globalCoef*localCoef,

0.0, 0.0, 0.0));

}

13-170Department of Computer Science and Engineering

13 Advanced Rendering and Illumination Methods

Compute Shader

Examples/Tutorials

https://capnramses.github.io/opengl/compute.html

http://wili.cc/blog/opengl-cs.html

http://wili.cc/blog/opengl-cs.html
http://wili.cc/blog/opengl-cs.html

