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Chapter 3

Transformation and projection
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3 Transformation and projection

3.1 Overview

The basis for generating images on a display or other 
output devices are coordinate transformation in 2-D or   
3-D.

Generally, we distinguish between the coordinate system 
of the objects (world coordinate system) and the 
coordinate system of the output device (display 
coordinate system).

The world coordinate system is often defined by 
geometric properties for objects, e.g. special directions, 
symmetries, …

The display coordinate system is defined by the output 
device itself (e.g. origin at lower left corner, axes parallel 
to the edges of boundary).



3-3Department of Computer Science and Engineering

3 Transformation and projection

3.1 Overview

Using coordinate transformations (translation, scaling, 

rotation), we can transform the world coordinate system 

into the display coordinate system.

Generally, we assume that the coordinate systems are 

orthonormalized (Cartesian) coordinate systems.

Usual way of finding a coordinate transformation:

1. Define a coordinate system for the output device 

(usually based on the pixel grid)

2. Define a world coordinate system for the objects

3. Project the world coordinates onto an image plane 

using parallel or perspective projection
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3.1 Overview
4. The display coordinate system usually is not identical 

to the projection of the world coordinate system, 

therefore requiring another coordinate transformation

Assume we have two coordinate systems S (e.g. display 

coordinate system) and S’ (world coordinate system) as 

S=(O, x1, x2) and S’=(O’, x1’, x2’).
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3.2 Planar transformations
Translation

The simplest transformation between the coordinate 

systems S and S’ is a translation. We presume that the 

coordinate axes of the two systems are mutually parallel.

To transform from one coordinate system to the other, 

every point is moved along a constant vector.
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3 Transformation and projection

3.2 Planar transformations
Translation (continued)

Thus, for every point the following 

equation holds:

p1 = t1 + p1´
p2 = t2 + p2´

Here, the translation vector (t1, t2)
corresponds to the origin of S’
represented in coordinates of S. 
Hence, the point P defined as the 
point (p1´, p2´) with respect to S’
also has the coordinates (t1 + p1´, t2

+ p2´) in S:
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3.2 Planar transformations

Rotation

Assuming that the two coordinate systems S and S’ have the same 

origin, a rotation with angle results in the following equations:
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3.2 Planar transformations

Rotation (continued)

Note: different interpretations of P=R∙P’:

– R transforms the coordinates (p1´, p2´) of a point with respect to 

the coordinate system S’ into a representation with respect to 

S. This corresponds to interpreting S as a global coordinate 

system where applying the matrix R to (p1´, p2´) rotates a point.

– The coordinate system S is transformed (by rotating 

mathematically positively) into the coordinate system S’. A 

given point’s coordinates (p1´, p2´) are then represented with 

respect to the coordinate system S’.

The same interpretations are valid for other types of 

transformations.
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3.2 Planar transformations

Rotation (continued)

When rotating with an arbitrary point as rotational center, 

we need to include two additional translations:

1. Translate P1 onto the origin

2. Rotate around the origin

3. Translate back to P1 using the inverse translation from step 1.
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3.2 Planar transformations

Rotation (continued)

Comments:

Multiplying matrices is generally not commutative, i.e.  

A∙B ≠ B∙A.

Special care has to be taken to ensure that the order in 

which the matrices are applied in the correct order when 

using more than one rotations.
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3.2 Planar transformations

Scaling

If the coordinate system S’ is to be “enlarged” or 

“downsized” we can scale it accordingly:
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3.2 Planar transformations

Shearing

A shearing transformation can be achieved by applying:
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3.2 Planar transformations

Affine transformations

Affine transformations can be described as a linear 

mapping combined with a translation:

The previous transformations (translation, rotation, 

scaling, and shearing are examples of affine 

transformations.

Affine invariance of subdivisions

For every affine transformation F and points P and Q, the 

following equation holds:

F(λ ∙ P+(1- λ) ∙ Q)= λ ∙ F(P)+(1- λ) ∙ F(Q) for 0≤ λ ≤1
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3.2 Planar transformations

Affine transformations (continued)

This equation shows, that the image of a straight-line 

connecting P and Q remains a straight-line after applying 

F and that the ratios of subdivisions λ:(1- λ) are 

preserved.

Thus, it is sufficient to just map the points P and Q and 

then interpolate in between F(P) and F(Q).

Note that parallel lines remain parallel after applying 

affine transformations.
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3.2 Planar transformations

Affine transformations (continued)

More affine transformations:

Mirroring along a straight-line x=y:

Mirroring along a straight-line x=-y:

Mirroring along the x-axis:

Mirroring along the y-axis:
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3.2 Planar transformations

Homogeneous coordinates

Homogeneous coordinates emerged from projective 
geometry. Here, however, we will introduce a different 
motivation:

When concatenating rotation, translation, and scaling, we 
get the following equation:

If we want to combine several of these transformations, 
the addition in this equation complicates things.

Since matrix multiplications are supported by the graphics 
hardware nowadays, it would be beneficial to represent 
all transformations by matrices,  i.e.:
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3.2 Planar transformations

Homogeneous coordinates (continued)

This can be achieved by transitioning to a higher 
dimension:

The triple (x, y, w), w ≠ 0 represents the homogeneous 
coordinates of the point (x/w, y/w).

Since there are infinitely many representations of the 
same point, we use the normalized representation with   
w = 1.

Hence, a point P = (x, y) is represented in homogeneous 
coordinates by (x, y, 1).

Note: we can achieve the same in 3-D by adding another 
dimension
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3.2 Planar transformations

Homogeneous coordinates (continued)

This then allows for a different representation of the 

translation:

Translation of a point (x’, y’) by a vector (t1, t2):

Rotation of a point (x’, y’) at angle φ:
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3.2 Planar transformations

Homogeneous coordinates (continued)

Scaling of a point (x’, y’) using the factors λ1 and λ2:

Rotation of a point (x’, y’) around an arbitrary point P1 at 

angle φ:
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3.3 Transformations in 3-D

Translation

To move a point (x’, y’, z’) along a translation vector (tx, ty, 

tz) results in the point (x, y, z) when applying the following 

matrix:
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3.3 Transformations in 3-D

Scaling

Scaling using the three scaling factors s1, s2, and s3 can 

be achieved using the following matrix:
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation

• All rotations are mathematically positive,

i.e. counter-clockwise

• The observer “sits” along one of the coordinate axis 

and looks towards the origin of the coordinate system

• We first consider rotations around a single coordinate 

axis at angle φ

→ transformation matrix Rx(φ), Ry(φ), Rz(φ)

• Think of a fixed coordinate system where points are 

transformed (rotated).

x

y

z
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3.3 Transformations in 3-D

Rotation around the z-axis

When rotating a point (x’, y’, z’)

around the z-axis at angle φ, we get 

the point (x, y, z):

Note that this rotation is similar to the 2-D case with a 

fixed z-coordinate.
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3.3 Transformations in 3-D

Rotation around the x-axis

When rotating a point (x’, y’, z’)

around the x-axis at angle φ, we get 

the point (x, y, z):

Here, the x-coordinate is left unchanged so that the 

matrix describes a rotation within the y-z-plane.
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3.3 Transformations in 3-D

Rotation around the y-axis

When rotating a point (x’, y’, z’)

around the y-axis at angle φ, we get 

the point (x, y, z):

Here, the y-coordinate is left unchanged so that the 

matrix describes a rotation within the z-x-plane.
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3.3 Transformations in 3-D

Rotation around an arbitrary axis

Every rotation around an arbitrary 

axis can be composed of rotations 

around the coordinate axes (see 

Euler).

We now develop such a rotation 

RG(α) that rotates around a point P

using an arbitrary axis of rotation G at 

an angle α.

y

z

x

b=(bx,by,bz)

(bx,by,0)



b
x
= sin φ cos θ

b
y
= sinφ sinθ

b
z
= cos φ

Note: Still right-
handed 
coordinate 
system, just 
rotated

First, we consider a special case where the axis of 

rotation intersects with the origin and is defined by the 

vector b = (bx,by,bz) with ||b||=1, i.e. G:λ∙b.
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

We now need to find the coordinates of a point P after 
rotating around the axis G at an angle α.

Idea:

We transform the point P in such a way that the rotational 
axis is identical to the z-axis. Then, we apply a rotation 
around the z-axis at angle φ using the rotation matrix 
Rz(φ). After that, we reverse the temporary rotation which 
rotated G onto the z-axis.

Particularly, we follow the following five steps:
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3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Step 1:

We first rotate in such a way that the vector b is located 

within the z-x-plane (b’). This transforms P onto P’=Rz(-

θ)P:
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3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Step 2:

We now rotate in such a way that the vector b’ is identical 

with the z-axis (b’’). Then we get P’’= Ry(- φ)P’.
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3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Step 3:

Now we can rotate around the z-axis at angle α. This then 

transforms the point P’’ onto P’’’ with P’’’= Rz(α)P’’.
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3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Steps 4 and 5:

Finally, we apply the inverse rotation of steps 1 and 2 in 

reverse order to reverse this temporary rotation. This then 

maps the point P’’’ onto the desired point Q by applying 

Q= Rz(θ) Ry( φ)P’’’.



















 



d

d

bb

bb

d
R

xy

yx

z

000

000

00

00

1
)(
























1000

00

0010

00

)(
z

z

y
bd

db

R 



3-32Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D
Rotation around an arbitrary axis (continued)

Result:

The entire transformation can then be realized by concatenating all 

these transformations:

Mb(α)= Rz(θ) ∙ Ry( φ) ∙ Rz(α) ∙ Ry(- φ) ∙ Rz(-θ)

General case:

If the rotational axis is an arbitrary straight-line (i.e. does not intersect 

with the origin)

G: a+λ∙b  (λ, ||b||=1, a = (ax, ay, az))

then we need to perform a translation first and reverse it again after 

applying all the above rotations:

MG(α)= T(ax,ay,az)∙Rz(θ) ∙ Ry( φ) ∙ Rz(α) ∙ Ry(- φ) ∙ Rz(-θ) ∙ T(-ax,-ay,-az)
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3.4 Projections

A projection generally is a map from an n-dimensional 

space onto a space with dimension less than n.

Since a display (CRT, LCD) is often a two-dimensional 

output device, three-dimensional objects need to be 

rendered using a two-dimensional view. To achieve this, 

a point in 3-D space is mapped along a projection ray 

(projector) onto a pre-defined projection plane.

The projection ray is defined by the center of projection 

and the point itself. The intersection between the 

projection ray and the projection plane determines the 

projected point.
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3 Transformation and projection

3.4 Projections

Examples for geometric, planar projections are 

perspective and parallel projection.

For parallel projections, the center of projection is located 

at a point that is infinitely far away. When using projective 

geometry, the parallel projection is therefore just a special 

case of the perspective projection.

The following image shows a classification of the most 

common projections:
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3.4 Projections

Most common projections:
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3 Transformation and projection

3.4 Projections

Perspective projection

For the perspective projection, all projector rays intersect 

with the center of projection. We can think of the center of 

projection as the location of the eye.

This projection creates an optical impression of depth and 

can already be found in ancient paintings.
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3 Transformation and projection

3.4 Projections

Perspective projection (continued)

Properties:

Every pair of straight-lines, which are not parallel to the 
projection plane, intersect at a point, the so called 
vanishing point. There may be infinitely many vanishing 
points, one for every set of lines that are parallel. Often 
times, one vanishing point is used for lines parallel to a 
single coordinate axis, e.g. all lines parallel to the x-axis 
intersect at the same vanishing point.

Perspective projection are classified according to the 
number of coordinate axes that intersect the projection 
plane. This results in one point, two point, and three point 
perspectives.
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3.4 Projections

Perspective projection (continued)

Example:

one point perspective

vanishing point
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3.4 Projections

Perspective projection (continued)

Example:

two point perspective

vanishing points
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3.4 Projections

Parallel projection

For a parallel projection, the center of projection is 

infinitely far away. Thus, all projection rays are parallel to 

each other.

The parallel projection is less realistic. It is, however, 

easier to estimate measurements from the projected 

image.



3-41Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

The projection rays may intersect the projection plane 

orthogonally (orthographic projection) or at any other 

angle (oblique projection).

Orthographic Projection

For a orthographic projection, the direction of projection is 

identical to the normal of the projection plane. We 

distinguish between multi-view and axonometry.

The multi-view projection uses projection planes that are 

parallel to the coordinate axes resulting in three different 

views: top view, front view, and side view.
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3.4 Projections

Parallel projection (continued)
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

When using axonometry, the direction of projection is not 

necessarily parallel to one of the coordinate axes.

Parallel lines are mapped onto parallel lines. Angles, 

however, are not preserved. Distances can be measured 

along the coordinate axes, the scale may be different for 

each coordinate axis, though.

The most common case is the isometric

axonometry. This projection maps the 

coordinate axes in such a way that each 

pair of axes forms the same angle.

120° 120°

120°
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

The dimetric projection maps the 
coordinate axes in such a way that two of 
them form the same angle; the scale for 
two of the three coordinate axes is 
identical:

The trimetric projection maps the 
coordinate axes in such a way that they all 
form different angles, the scale is different 
for each coordinate axis:
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3.4 Projections

Parallel projection (continued)

Oblique projections occur if the direction of projection is 

different from the normal of the projection plane. The 

most common examples of oblique projections are the 

cavalier and cabinet projection.

Cavalier projection

The angle between the direction of projection and the

projection plane is 45°. The length 

of a line that is orthogonal to the 

projection plane remains the same. 
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Cabinet projection

In this case, the length of the projection of a line that is 

orthogonal to the projection plane is supposed to be cut 

in half after projecting.

The angle between the direction

of projection and the projection 

plane therefore is arctan 2 = 63.4°.

Example:
z´=(-0.5, -0.5)T

x´=(1,0)T

y´=(0,1)T

projected unit vectors
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3.4 Projections

Parallel projection (continued)

Examples:

cabinet projection

isometric: 1:1:1

cavalier projection



3-48Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection – implementation

The perspective projection depends on the application 
and can be realized using different configurations using 
appropriate transformations of the coordinate system.

In this example, we choose the following setup:

– The center of projection Z and the location of the 
eye are identical and are positioned on the positive 
z-axis at distance d>0 from the origin, i.e. Z = (0, 0, 
d).

– The view direction points towards the negative z-
axis.

– The projection plane is identical to the x-y-plane.
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3 Transformation and projection

3.4 Projections

Perspective projection – implementation (continued)

Setup:

x

y

z
Z

P

P´

y

Z=(0,0,d)

P=(x,y,z)

P´=(x´,y´,0)

z
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3 Transformation and projection

3.4 Projections

Perspective projection – implementation (continued)

According to the theorem on intersecting lines:
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3.4 Projections

Extended setup

• Within the projection plane, a view window is specified 

(width, height, ratio); the view window is symmetrically 

placed around the origin.

• The projections intersecting the vertices of the view 

window define the view frustum (view volume).

• Two additional planes, which are parallel to the 

projection plane, (front and back clipping plane) limit 

the view frustum in z-direction.

• The view frustum limits the space that is displayed 

(→clipping).
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3 Transformation and projection

3.4 Projections

Extended setup (continued)

x

y

z

Z

P

P´

b

h
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3.4 Projections
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3 Transformation and projection

3.4 Projections
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3 Transformation and projection

3.4 Projections
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3 Transformation and projection

3.4 Projections



3-57Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL

As seen before, viewing and projections is achieved by 
transforming from the world coordinate system to the 
display coordinate system using matrix multiplication. 
Hence, OpenGL provides several functions for modifying 
matrices.

Since OpenGL is a state machine, it has two different 
matrix stacks that can change the view onto a scene 
(set of objects). The first one is the projection stack, while 
the other one is the modelview stack. The projection 
transformation is responsible for the projection just like a 
lens for a camera. This transformation also determines 
the type of projection (e.g. perspective or orthographic).
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3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The modelview transformation combines the view 

transformation and the model transformation onto the 

same stack. The view transformation indicates the shape 

of the available screen (width, height, ratio). The model 

transformation facilitates the change of the entire scene 

as a whole before mapping it onto the projection plane. 

For example, the model transformation can be used to 

rotate the entire scene or zoom in or out.
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3.4 Projections

Viewing in OpenGL (continued)

OpenGL mainly follows the 

analogy to a camera when 

creating an image on the 

display.
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3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

To specify which stack you want to modify, OpenGL 

provides a method:

glMatrixMode (GLenum mode);

The mode passed onto this function as the only argument 

can be specified as GL_MODELVIEW or GL_PROJECTION. 

This then changes the state of OpenGL, so that all 

following matrix commands change that specific matrix 

only.

OpenGL uses homogeneous coordinates to represent 

matrices, i.e. all matrices are 4x4 matrices.
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3.4 Projections

Viewing in OpenGL (continued)

To initialize a matrix stack with the identity matrix, the 

following functions can be used:

glLoadIdentity ();

This then initializes the current matrix stack with the 

matrix

Usually, this function is used before any other matrix 

modification, since it just overwrites the current matrix.
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3.4 Projections

Viewing in OpenGL (continued)

Alternatively, you initialize the matrix with a specific 

matrix that was calculated before. The following functions 

overwrites the current matrix stack with the given matrix:

float mf[16];

double md[16];

glLoadMatrixf (mf);

glLoadMatrixd (md);

The elements of the matrices are

specified as shown on the right:
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3.4 Projections

Viewing in OpenGL (continued)

To multiply a matrix onto the current one the following 

functions are useful:

glMatrixMultf (m);

glMatrixMultd (m);

The matrix is specified exactly the same as for the 

function glLoadMatrix.

Note that OpenGL multiplies the new matrix M to the 

current one C from the right, i.e. after applying the 

function glMatrixMult the matrix on the current stack 

will be C∙M.
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3.4 Projections

Viewing in OpenGL (continued)

OpenGL also provides function for the basic types of 

transformation, i.e. translation, rotation, and scaling. The 

function

glTranslatef (GLfloat x,

GLfloat y,

GLfloat z);

multiplies a translation matrix onto the 

current matrix stack using the translation

vector (x, y, z).
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3.4 Projections

Viewing in OpenGL (continued)

The function

glRotatef (GLfloat angle,

GLfloat x,

GLfloat y,

GLfloat z);

multiplies a rotational matrix onto the current matrix stack, 
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3.4 Projections

Viewing in OpenGL (continued)

while the function

glScalef (GLfloat x,

GLfloat y,

GLfloat z);

appends a scaling matrix to the

matrix stack.
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3.4 Projections

Viewing in OpenGL (continued)

Note, that the corresponding functions that accept 

double values are also available. These use – according 

to the usual OpenGL convention – the suffix d instead of 

f to indicate the data type.

Using these matrix functions, both the projection as well 

as the modelview matrices can be specified.

OpenGL, however, provides some functions that are 

more convenient and intuitive.
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3.4 Projections

Viewing in OpenGL (continued)

The function gluLookAt can be used to specify the camera location 
and orientation:

void gluLookAt (GLdouble eyex,

GLdouble eyey,

GLdouble eyez,

GLdouble centerx,

GLdouble centery,

GLdouble centerz,

GLdouble upx,

GLdouble upy,

GLdouble upz);
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3.4 Projections

Viewing in OpenGL (continued)

The arguments for the function gluLookAt specify the 

view coordinate with respect to the camera. The location 

of the camera or eye defines the origin, while the center 

point determines the direction the camera is pointing at.

Hence, eye-center determines the z-

axis. The vector up identifies the y-

axis, while the x-axis is orthogonal to 

the y- and z-axis.

The default it gluLookAt (0.0, 

0.0, 0.0, 0.0, 0.0, -100.0, 

0.0, 1.0, 0.0);
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3.4 Projections

Projections in OpenGL

OpenGL provides built-in functions for perspective and 

orthogonal projections. These can be applied directly 

after changing the state to make the projection matrix the 

current matrix stack and initializaing:

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();
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3.4 Projections

Projections in OpenGL (continued)

Using the function glFrustum, the view frustum can be 

declared using a perspective projection (all arguments 

are of the type GLdouble):

glFrustum (left, right,

bottom, top,

near, far);
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3.4 Projections

Projections in OpenGL (continued)

Sometimes it is more convenient to specify the view 

frustum following the camera analogy more closely (all 

arguments are of type GLdouble):

gluPerspective (fovy, aspect,

near, far);
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Projections in OpenGL (continued)

If an orthogonal projection is desired, the following 

method can be used (all arguments are of type 

GLdouble):

glOrtho (left, right,

bottom, top,

near, far);
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Projections in OpenGL (continued)

For a 2-D projection it does not make any difference if a 

perspective or orthogonal projection is used since the 

scene with all the objects does not have any depth. 

Hence, there is only one function provided by OpenGL for 

a 2-D projection (all arguments are of type GLdouble):

glOrtho2D (left, right,

bottom, top);
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3.4 Projections

Viewing in OpenGL

The last step of the process of creating an image on a 

computer display is the viewport transformation. Recalling 

the camera analogy, the viewport transformation 

corresponds to the stage where the size of the developed 

photography is chosen. The viewport is measured in 

window coordinates. By default, OpenGL uses the entire 

window provided. The following functions allows you to 

reduce the size of the image (all arguments are of type 

GLint):

void glViewport (x, y, width, height);
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3.4 Projections
Viewing in OpenGL

The aspect ratio of a viewport should generally equal the 

aspect ratio of the viewing volume. If the two ratios are 

different, the projected image will be distorted as it's 

mapped to the viewport. Note that subsequent changes

to the size of the 

window don't explicitly 

affect the viewport. Your 

application should 

detect window resize 

events and modify the 

viewport and projection 

appropriately.
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As of OpenGL 3.0 many of these functions were declared 

deprecated including glLoadMatrix, glRotate, etc. While 

these are still supported (and probably will be for quite a 

while), the OpenGL 3.0 specifications (and later versions) 

you wants you to handle matrices and view settings 

manually yourself.

While using glRotate etc. is easier, especially for the 

beginner, there are ways to be conform with the latest 

OpenGL specifications without having to do everything 

manually: use the glm library (OpenGL Mathematics).
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OpenGL Mathematics

The glm library supports most vector and matrix algebra 

to specify any type of transformation:

#include <glm/glm.hpp>

#include <glm/transform.hpp>

glm::mat4 myMatrix = glm::translate(10.0f, 

0.0f, 0.0f);

glm::vec4 myVector (10.0f, 10.0f, 10.0f, 

0.0f);

glm::vec4 transformedVector = myMatrix * 

myVector;
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OpenGL Mathematics

Specifying a scaling matrix:

#include <glm/glm.hpp>

#include <glm/gtc/matrix_transform.hpp>

#include <glm/gtx/transform.hpp>

glm::mat4 myScalingMatrix = 

glm::scale(2.0f, 2.0f ,2.0f);
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OpenGL Mathematics

Specifying a rotational matrix:

#include <glm/glm.hpp>

#include <glm/gtc/matrix_transform.hpp>

#include <glm/gtx/transform.hpp>

glm::vec3 myRotationAxis( 1.0, 0.0, 0.0);

glm::rotate( angle_in_degrees, 

myRotationAxis );
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OpenGL Mathematics

Convenience functions for view settings are also 

available:

glm::mat4 CameraMatrix =

glm::LookAt(

cameraPosition,

cameraTarget,

upVector);
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3.4 Projections

OpenGL Mathematics

Convenience functions for projection:

glm::mat4 projectionMatrix = 

glm::perspective(

FoV,

4.0f / 3.0f, // Aspect Ratio

0.1f,        // Near clipping plane. 

100.0f       // Far clipping plane.

);
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OpenGL Mathematics

You could then feed the results into the different matrix 

stacks. However, that is deprecated as well (even though 

it is very useful).

Instead, you are according to the latest OpenGL specs 

supposed to feed those matrices directly into your own 

shader programs and multiply they vertices within the 

vertex shader yourself (manually as the built-in variables 

for these matrices are deprecated as well).

We will look into shader program during the last chapter 

of this class.


