
3-1Department of Computer Science and Engineering

3 Transformation and projection

Chapter 3

Transformation and projection

3-2Department of Computer Science and Engineering

3 Transformation and projection

3.1 Overview

The basis for generating images on a display or other
output devices are coordinate transformation in 2-D or
3-D.

Generally, we distinguish between the coordinate system
of the objects (world coordinate system) and the
coordinate system of the output device (display
coordinate system).

The world coordinate system is often defined by
geometric properties for objects, e.g. special directions,
symmetries, …

The display coordinate system is defined by the output
device itself (e.g. origin at lower left corner, axes parallel
to the edges of boundary).

3-3Department of Computer Science and Engineering

3 Transformation and projection

3.1 Overview

Using coordinate transformations (translation, scaling,

rotation), we can transform the world coordinate system

into the display coordinate system.

Generally, we assume that the coordinate systems are

orthonormalized (Cartesian) coordinate systems.

Usual way of finding a coordinate transformation:

1. Define a coordinate system for the output device

(usually based on the pixel grid)

2. Define a world coordinate system for the objects

3. Project the world coordinates onto an image plane

using parallel or perspective projection

3-4Department of Computer Science and Engineering

3 Transformation and projection

3.1 Overview
4. The display coordinate system usually is not identical

to the projection of the world coordinate system,

therefore requiring another coordinate transformation

Assume we have two coordinate systems S (e.g. display

coordinate system) and S’ (world coordinate system) as

S=(O, x1, x2) and S’=(O’, x1’, x2’).

3-5Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations
Translation

The simplest transformation between the coordinate

systems S and S’ is a translation. We presume that the

coordinate axes of the two systems are mutually parallel.

To transform from one coordinate system to the other,

every point is moved along a constant vector.

3-6Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations
Translation (continued)

Thus, for every point the following

equation holds:

p1 = t1 + p1´
p2 = t2 + p2´

Here, the translation vector (t1, t2)
corresponds to the origin of S’
represented in coordinates of S.
Hence, the point P defined as the
point (p1´, p2´) with respect to S’
also has the coordinates (t1 + p1´, t2

+ p2´) in S:

0 t1 p1

t2

p2 p 2´

p 1´0´

P

x1

x1´

P´
P

T

x2´
x2

PTP
p

p

t

t

p

p






























 short or

2

1

2

1

2

1

3-7Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Rotation

Assuming that the two coordinate systems S and S’ have the same

origin, a rotation with angle results in the following equations:








 




























cossin

sincos

) (i.e.matrix lorthonormaan is where

:get wenotation,matrix - vectorUsing

cossin and

sincos :Hence

cos and sin

1

212

211

12

R

RRR

PRP

ppp

pplLp

p

L

p

l

t

0=0´ p1

p2

p 2´
p 1´

P

x1

x2





l

L

3-8Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Rotation (continued)

Note: different interpretations of P=R∙P’:

– R transforms the coordinates (p1´, p2´) of a point with respect to

the coordinate system S’ into a representation with respect to

S. This corresponds to interpreting S as a global coordinate

system where applying the matrix R to (p1´, p2´) rotates a point.

– The coordinate system S is transformed (by rotating

mathematically positively) into the coordinate system S’. A

given point’s coordinates (p1´, p2´) are then represented with

respect to the coordinate system S’.

The same interpretations are valid for other types of

transformations.

3-9Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Rotation (continued)

When rotating with an arbitrary point as rotational center,

we need to include two additional translations:

1. Translate P1 onto the origin

2. Rotate around the origin

3. Translate back to P1 using the inverse translation from step 1.

3-10Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Rotation (continued)

Comments:

Multiplying matrices is generally not commutative, i.e.

A∙B ≠ B∙A.

Special care has to be taken to ensure that the order in

which the matrices are applied in the correct order when

using more than one rotations.

3-11Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Scaling

If the coordinate system S’ is to be “enlarged” or

“downsized” we can scale it accordingly:

















2

1

222

111

0

0~

~

~









S

S

PSP

pp

pp

matrix scaling a with

:get wenotation,matrix -vector Using

3-12Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Shearing

A shearing transformation can be achieved by applying:

















1

1

2

1

2122

2111

s

s
S

S

PSP

ppsp

pspp

matrix ing

-shear the with

:notationmatrix

-vector Using

3-13Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Affine transformations

Affine transformations can be described as a linear

mapping combined with a translation:

The previous transformations (translation, rotation,

scaling, and shearing are examples of affine

transformations.

Affine invariance of subdivisions

For every affine transformation F and points P and Q, the

following equation holds:

F(λ ∙ P+(1- λ) ∙ Q)= λ ∙ F(P)+(1- λ) ∙ F(Q) for 0≤ λ ≤1

3-14Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Affine transformations (continued)

This equation shows, that the image of a straight-line

connecting P and Q remains a straight-line after applying

F and that the ratios of subdivisions λ:(1- λ) are

preserved.

Thus, it is sufficient to just map the points P and Q and

then interpolate in between F(P) and F(Q).

Note that parallel lines remain parallel after applying

affine transformations.

3-15Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Affine transformations (continued)

More affine transformations:

Mirroring along a straight-line x=y:

Mirroring along a straight-line x=-y:

Mirroring along the x-axis:

Mirroring along the y-axis:

Mirroring with respect to the origin: 



























































10

01

10

01

10

01

01

10

01

10

F

F

F

F

F

3-16Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates

Homogeneous coordinates emerged from projective
geometry. Here, however, we will introduce a different
motivation:

When concatenating rotation, translation, and scaling, we
get the following equation:

If we want to combine several of these transformations,
the addition in this equation complicates things.

Since matrix multiplications are supported by the graphics
hardware nowadays, it would be beneficial to represent
all transformations by matrices, i.e.:

)(
~

PRTSP 

PMMMMP n
 123

3-17Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates (continued)

This can be achieved by transitioning to a higher
dimension:

The triple (x, y, w), w ≠ 0 represents the homogeneous
coordinates of the point (x/w, y/w).

Since there are infinitely many representations of the
same point, we use the normalized representation with
w = 1.

Hence, a point P = (x, y) is represented in homogeneous
coordinates by (x, y, 1).

Note: we can achieve the same in 3-D by adding another
dimension

3-18Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates (continued)

This then allows for a different representation of the

translation:

Translation of a point (x’, y’) by a vector (t1, t2):

Rotation of a point (x’, y’) at angle φ:












































































111100

10

01

2

1

2

1

y

x

ty

tx

y

x

t

t










































































 

11

cossin

sincos

1100

0cossin

0sincos

y

x

yx

yx

y

x









3-19Department of Computer Science and Engineering

3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates (continued)

Scaling of a point (x’, y’) using the factors λ1 and λ2:

Rotation of a point (x’, y’) around an arbitrary point P1 at

angle φ:












































































111100

00

00

2

1

2

1

y

x

y

x

y

x


















































































 


















11100

10

01

100

0cossin

0sincos

100

10

01

1

1

1

1

y

x

y

x

P

P

P

P

y

x

y

x





3-20Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Translation

To move a point (x’, y’, z’) along a translation vector (tx, ty,

tz) results in the point (x, y, z) when applying the following

matrix:



































































































1111000

100

010

001

z

y

x

tz

ty

tx

z

y

x

t

t

t

z

y

x

z

y

x

T (tx, ty, tz)

3-21Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Scaling

Scaling using the three scaling factors s1, s2, and s3 can

be achieved using the following matrix:



































































































1111000

000

000

000

3

2

1

3

2

1

z

y

x

zs

ys

xs

z

y

x

s

s

s

3-22Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation

• All rotations are mathematically positive,

i.e. counter-clockwise

• The observer “sits” along one of the coordinate axis

and looks towards the origin of the coordinate system

• We first consider rotations around a single coordinate

axis at angle φ

→ transformation matrix Rx(φ), Ry(φ), Rz(φ)

• Think of a fixed coordinate system where points are

transformed (rotated).

x

y

z

Right handed
coordinate
system

3-23Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around the z-axis

When rotating a point (x’, y’, z’)

around the z-axis at angle φ, we get

the point (x, y, z):

Note that this rotation is similar to the 2-D case with a

fixed z-coordinate.

































































































 

11

cossin

sincos

11000

0100

00cossin

00sincos

z

y

x

z

yx

yx

z

y

x









Rz(φ)

x

y

z



3-24Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around the x-axis

When rotating a point (x’, y’, z’)

around the x-axis at angle φ, we get

the point (x, y, z):

Here, the x-coordinate is left unchanged so that the

matrix describes a rotation within the y-z-plane.





































































































11

cossin

sincos

11000

0cossin0

0sincos0

0001

z

y

x

zy

zy

x

z

y

x









Rx(φ)

x

y

z


3-25Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around the y-axis

When rotating a point (x’, y’, z’)

around the y-axis at angle φ, we get

the point (x, y, z):

Here, the y-coordinate is left unchanged so that the

matrix describes a rotation within the z-x-plane.





































































































11

cossin

sincos

11000

0cos0sin

0010

0sin0cos

z

y

x

zx

y

zx

z

y

x









Ry(φ)

x

y

z



3-26Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis

Every rotation around an arbitrary

axis can be composed of rotations

around the coordinate axes (see

Euler).

We now develop such a rotation

RG(α) that rotates around a point P

using an arbitrary axis of rotation G at

an angle α.

y

z

x

b=(bx,by,bz)

(bx,by,0)



b
x
= sin φ cos θ

b
y
= sinφ sinθ

b
z
= cos φ

Note: Still right-
handed
coordinate
system, just
rotated

First, we consider a special case where the axis of

rotation intersects with the origin and is defined by the

vector b = (bx,by,bz) with ||b||=1, i.e. G:λ∙b.

3-27Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

We now need to find the coordinates of a point P after
rotating around the axis G at an angle α.

Idea:

We transform the point P in such a way that the rotational
axis is identical to the z-axis. Then, we apply a rotation
around the z-axis at angle φ using the rotation matrix
Rz(φ). After that, we reverse the temporary rotation which
rotated G onto the z-axis.

Particularly, we follow the following five steps:

3-28Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Step 1:

We first rotate in such a way that the vector b is located

within the z-x-plane (b’). This transforms P onto P’=Rz(-

θ)P:















































d

d

bb

bb

d
R

xy

yx

z

000

000

00

00

1

1000

0100

00cossin

00sincos

)(






y

z

x

b

(bx,by,0) d

b´

222

yx bbd 

3-29Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Step 2:

We now rotate in such a way that the vector b’ is identical

with the z-axis (b’’). Then we get P’’= Ry(- φ)P’.



















 





















 



1000

00

0010

00

1000

0cos0sin

0010

0sin0cos

)(
z

z

y
bd

db

R






y

z

x

φb´ b´´

3-30Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Step 3:

Now we can rotate around the z-axis at angle α. This then

transforms the point P’’ onto P’’’ with P’’’= Rz(α)P’’.

y

z

x



b´´



















 



1000

0100

00cossin

00sincos

)(




zR

3-31Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Steps 4 and 5:

Finally, we apply the inverse rotation of steps 1 and 2 in

reverse order to reverse this temporary rotation. This then

maps the point P’’’ onto the desired point Q by applying

Q= Rz(θ) Ry(φ)P’’’.



















 



d

d

bb

bb

d
R

xy

yx

z

000

000

00

00

1
)(
























1000

00

0010

00

)(
z

z

y
bd

db

R 

3-32Department of Computer Science and Engineering

3 Transformation and projection

3.3 Transformations in 3-D
Rotation around an arbitrary axis (continued)

Result:

The entire transformation can then be realized by concatenating all

these transformations:

Mb(α)= Rz(θ) ∙ Ry(φ) ∙ Rz(α) ∙ Ry(- φ) ∙ Rz(-θ)

General case:

If the rotational axis is an arbitrary straight-line (i.e. does not intersect

with the origin)

G: a+λ∙b (λ, ||b||=1, a = (ax, ay, az))

then we need to perform a translation first and reverse it again after

applying all the above rotations:

MG(α)= T(ax,ay,az)∙Rz(θ) ∙ Ry(φ) ∙ Rz(α) ∙ Ry(- φ) ∙ Rz(-θ) ∙ T(-ax,-ay,-az)

3-33Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

A projection generally is a map from an n-dimensional

space onto a space with dimension less than n.

Since a display (CRT, LCD) is often a two-dimensional

output device, three-dimensional objects need to be

rendered using a two-dimensional view. To achieve this,

a point in 3-D space is mapped along a projection ray

(projector) onto a pre-defined projection plane.

The projection ray is defined by the center of projection

and the point itself. The intersection between the

projection ray and the projection plane determines the

projected point.

3-34Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Examples for geometric, planar projections are

perspective and parallel projection.

For parallel projections, the center of projection is located

at a point that is infinitely far away. When using projective

geometry, the parallel projection is therefore just a special

case of the perspective projection.

The following image shows a classification of the most

common projections:

3-35Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Most common projections:

3-36Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection

For the perspective projection, all projector rays intersect

with the center of projection. We can think of the center of

projection as the location of the eye.

This projection creates an optical impression of depth and

can already be found in ancient paintings.

3-37Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection (continued)

Properties:

Every pair of straight-lines, which are not parallel to the
projection plane, intersect at a point, the so called
vanishing point. There may be infinitely many vanishing
points, one for every set of lines that are parallel. Often
times, one vanishing point is used for lines parallel to a
single coordinate axis, e.g. all lines parallel to the x-axis
intersect at the same vanishing point.

Perspective projection are classified according to the
number of coordinate axes that intersect the projection
plane. This results in one point, two point, and three point
perspectives.

3-38Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection (continued)

Example:

one point perspective

vanishing point

3-39Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection (continued)

Example:

two point perspective

vanishing points

3-40Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection

For a parallel projection, the center of projection is

infinitely far away. Thus, all projection rays are parallel to

each other.

The parallel projection is less realistic. It is, however,

easier to estimate measurements from the projected

image.

3-41Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

The projection rays may intersect the projection plane

orthogonally (orthographic projection) or at any other

angle (oblique projection).

Orthographic Projection

For a orthographic projection, the direction of projection is

identical to the normal of the projection plane. We

distinguish between multi-view and axonometry.

The multi-view projection uses projection planes that are

parallel to the coordinate axes resulting in three different

views: top view, front view, and side view.

3-42Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

3-43Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

When using axonometry, the direction of projection is not

necessarily parallel to one of the coordinate axes.

Parallel lines are mapped onto parallel lines. Angles,

however, are not preserved. Distances can be measured

along the coordinate axes, the scale may be different for

each coordinate axis, though.

The most common case is the isometric

axonometry. This projection maps the

coordinate axes in such a way that each

pair of axes forms the same angle.

120° 120°

120°

3-44Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

The dimetric projection maps the
coordinate axes in such a way that two of
them form the same angle; the scale for
two of the three coordinate axes is
identical:

The trimetric projection maps the
coordinate axes in such a way that they all
form different angles, the scale is different
for each coordinate axis:

3-45Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Oblique projections occur if the direction of projection is

different from the normal of the projection plane. The

most common examples of oblique projections are the

cavalier and cabinet projection.

Cavalier projection

The angle between the direction of projection and the

projection plane is 45°. The length

of a line that is orthogonal to the

projection plane remains the same.

3-46Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Cabinet projection

In this case, the length of the projection of a line that is

orthogonal to the projection plane is supposed to be cut

in half after projecting.

The angle between the direction

of projection and the projection

plane therefore is arctan 2 = 63.4°.

Example:
z´=(-0.5, -0.5)T

x´=(1,0)T

y´=(0,1)T

projected unit vectors

3-47Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Examples:

cabinet projection

isometric: 1:1:1

cavalier projection

3-48Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection – implementation

The perspective projection depends on the application
and can be realized using different configurations using
appropriate transformations of the coordinate system.

In this example, we choose the following setup:

– The center of projection Z and the location of the
eye are identical and are positioned on the positive
z-axis at distance d>0 from the origin, i.e. Z = (0, 0,
d).

– The view direction points towards the negative z-
axis.

– The projection plane is identical to the x-y-plane.

3-49Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection – implementation (continued)

Setup:

x

y

z
Z

P

P´

y

Z=(0,0,d)

P=(x,y,z)

P´=(x´,y´,0)

z

3-50Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Perspective projection – implementation (continued)

According to the theorem on intersecting lines:

































































100

0000

0010

0001

:matrix following by the

described becan projection eperspectiv theThus,

1

1 :Hence

 and

1

1

1

d

M

d

z
x

zd

d
xx

d

z
y

zd

d
yy

zd

x

d

x

zd

y

d

y

3-51Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Extended setup

• Within the projection plane, a view window is specified

(width, height, ratio); the view window is symmetrically

placed around the origin.

• The projections intersecting the vertices of the view

window define the view frustum (view volume).

• Two additional planes, which are parallel to the

projection plane, (front and back clipping plane) limit

the view frustum in z-direction.

• The view frustum limits the space that is displayed

(→clipping).

3-52Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Extended setup (continued)

x

y

z

Z

P

P´

b

h

3-53Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

3-54Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

3-55Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

3-56Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

3-57Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL

As seen before, viewing and projections is achieved by
transforming from the world coordinate system to the
display coordinate system using matrix multiplication.
Hence, OpenGL provides several functions for modifying
matrices.

Since OpenGL is a state machine, it has two different
matrix stacks that can change the view onto a scene
(set of objects). The first one is the projection stack, while
the other one is the modelview stack. The projection
transformation is responsible for the projection just like a
lens for a camera. This transformation also determines
the type of projection (e.g. perspective or orthographic).

3-58Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The modelview transformation combines the view

transformation and the model transformation onto the

same stack. The view transformation indicates the shape

of the available screen (width, height, ratio). The model

transformation facilitates the change of the entire scene

as a whole before mapping it onto the projection plane.

For example, the model transformation can be used to

rotate the entire scene or zoom in or out.

3-59Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

OpenGL mainly follows the

analogy to a camera when

creating an image on the

display.

3-60Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

To specify which stack you want to modify, OpenGL

provides a method:

glMatrixMode (GLenum mode);

The mode passed onto this function as the only argument

can be specified as GL_MODELVIEW or GL_PROJECTION.

This then changes the state of OpenGL, so that all

following matrix commands change that specific matrix

only.

OpenGL uses homogeneous coordinates to represent

matrices, i.e. all matrices are 4x4 matrices.

3-61Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

To initialize a matrix stack with the identity matrix, the

following functions can be used:

glLoadIdentity ();

This then initializes the current matrix stack with the

matrix

Usually, this function is used before any other matrix

modification, since it just overwrites the current matrix.





















1000

0100

0010

0001

3-62Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

Alternatively, you initialize the matrix with a specific

matrix that was calculated before. The following functions

overwrites the current matrix stack with the given matrix:

float mf[16];

double md[16];

glLoadMatrixf (mf);

glLoadMatrixd (md);

The elements of the matrices are

specified as shown on the right:




















161284

151173

141062

13951

mmmm

mmmm

mmmm

mmmm

3-63Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

To multiply a matrix onto the current one the following

functions are useful:

glMatrixMultf (m);

glMatrixMultd (m);

The matrix is specified exactly the same as for the

function glLoadMatrix.

Note that OpenGL multiplies the new matrix M to the

current one C from the right, i.e. after applying the

function glMatrixMult the matrix on the current stack

will be C∙M.

3-64Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

OpenGL also provides function for the basic types of

transformation, i.e. translation, rotation, and scaling. The

function

glTranslatef (GLfloat x,

GLfloat y,

GLfloat z);

multiplies a translation matrix onto the

current matrix stack using the translation

vector (x, y, z).

3-65Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The function

glRotatef (GLfloat angle,

GLfloat x,

GLfloat y,

GLfloat z);

multiplies a rotational matrix onto the current matrix stack,

3-66Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

while the function

glScalef (GLfloat x,

GLfloat y,

GLfloat z);

appends a scaling matrix to the

matrix stack.

3-67Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

Note, that the corresponding functions that accept

double values are also available. These use – according

to the usual OpenGL convention – the suffix d instead of

f to indicate the data type.

Using these matrix functions, both the projection as well

as the modelview matrices can be specified.

OpenGL, however, provides some functions that are

more convenient and intuitive.

3-68Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The function gluLookAt can be used to specify the camera location
and orientation:

void gluLookAt (GLdouble eyex,

GLdouble eyey,

GLdouble eyez,

GLdouble centerx,

GLdouble centery,

GLdouble centerz,

GLdouble upx,

GLdouble upy,

GLdouble upz);

3-69Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The arguments for the function gluLookAt specify the

view coordinate with respect to the camera. The location

of the camera or eye defines the origin, while the center

point determines the direction the camera is pointing at.

Hence, eye-center determines the z-

axis. The vector up identifies the y-

axis, while the x-axis is orthogonal to

the y- and z-axis.

The default it gluLookAt (0.0,

0.0, 0.0, 0.0, 0.0, -100.0,

0.0, 1.0, 0.0);

3-70Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Projections in OpenGL

OpenGL provides built-in functions for perspective and

orthogonal projections. These can be applied directly

after changing the state to make the projection matrix the

current matrix stack and initializaing:

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

3-71Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

Using the function glFrustum, the view frustum can be

declared using a perspective projection (all arguments

are of the type GLdouble):

glFrustum (left, right,

bottom, top,

near, far);

3-72Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

Sometimes it is more convenient to specify the view

frustum following the camera analogy more closely (all

arguments are of type GLdouble):

gluPerspective (fovy, aspect,

near, far);

3-73Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

If an orthogonal projection is desired, the following

method can be used (all arguments are of type

GLdouble):

glOrtho (left, right,

bottom, top,

near, far);

3-74Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

For a 2-D projection it does not make any difference if a

perspective or orthogonal projection is used since the

scene with all the objects does not have any depth.

Hence, there is only one function provided by OpenGL for

a 2-D projection (all arguments are of type GLdouble):

glOrtho2D (left, right,

bottom, top);

3-75Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

Viewing in OpenGL

The last step of the process of creating an image on a

computer display is the viewport transformation. Recalling

the camera analogy, the viewport transformation

corresponds to the stage where the size of the developed

photography is chosen. The viewport is measured in

window coordinates. By default, OpenGL uses the entire

window provided. The following functions allows you to

reduce the size of the image (all arguments are of type

GLint):

void glViewport (x, y, width, height);

3-76Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections
Viewing in OpenGL

The aspect ratio of a viewport should generally equal the

aspect ratio of the viewing volume. If the two ratios are

different, the projected image will be distorted as it's

mapped to the viewport. Note that subsequent changes

to the size of the

window don't explicitly

affect the viewport. Your

application should

detect window resize

events and modify the

viewport and projection

appropriately.

3-77Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

As of OpenGL 3.0 many of these functions were declared

deprecated including glLoadMatrix, glRotate, etc. While

these are still supported (and probably will be for quite a

while), the OpenGL 3.0 specifications (and later versions)

you wants you to handle matrices and view settings

manually yourself.

While using glRotate etc. is easier, especially for the

beginner, there are ways to be conform with the latest

OpenGL specifications without having to do everything

manually: use the glm library (OpenGL Mathematics).

3-78Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

OpenGL Mathematics

The glm library supports most vector and matrix algebra

to specify any type of transformation:

#include <glm/glm.hpp>

#include <glm/transform.hpp>

glm::mat4 myMatrix = glm::translate(10.0f,

0.0f, 0.0f);

glm::vec4 myVector (10.0f, 10.0f, 10.0f,

0.0f);

glm::vec4 transformedVector = myMatrix *

myVector;

3-79Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

OpenGL Mathematics

Specifying a scaling matrix:

#include <glm/glm.hpp>

#include <glm/gtc/matrix_transform.hpp>

#include <glm/gtx/transform.hpp>

glm::mat4 myScalingMatrix =

glm::scale(2.0f, 2.0f ,2.0f);

3-80Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

OpenGL Mathematics

Specifying a rotational matrix:

#include <glm/glm.hpp>

#include <glm/gtc/matrix_transform.hpp>

#include <glm/gtx/transform.hpp>

glm::vec3 myRotationAxis(1.0, 0.0, 0.0);

glm::rotate(angle_in_degrees,

myRotationAxis);

3-81Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

OpenGL Mathematics

Convenience functions for view settings are also

available:

glm::mat4 CameraMatrix =

glm::LookAt(

cameraPosition,

cameraTarget,

upVector);

3-82Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

OpenGL Mathematics

Convenience functions for projection:

glm::mat4 projectionMatrix =

glm::perspective(

FoV,

4.0f / 3.0f, // Aspect Ratio

0.1f, // Near clipping plane.

100.0f // Far clipping plane.

);

3-83Department of Computer Science and Engineering

3 Transformation and projection

3.4 Projections

OpenGL Mathematics

You could then feed the results into the different matrix

stacks. However, that is deprecated as well (even though

it is very useful).

Instead, you are according to the latest OpenGL specs

supposed to feed those matrices directly into your own

shader programs and multiply they vertices within the

vertex shader yourself (manually as the built-in variables

for these matrices are deprecated as well).

We will look into shader program during the last chapter

of this class.

