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3 Transformation and projection

3.1 Overview

The basis for generating images on a display or other
output devices are coordinate transformation in 2-D or
3-D.

Generally, we distinguish between the coordinate system
of the objects (world coordinate system) and the
coordinate system of the output device (display
coordinate system).

The world coordinate system is often defined by
geometric properties for objects, e.g. special directions,
symmetries, ...

The display coordinate system is defined by the output
device itself (e.g. origin at lower left corner, axes parallel
to the edges of boundary).
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3 Transformation and projection

3.1 Overview

Using coordinate transformations (translation, scaling,
rotation), we can transform the world coordinate system
Into the display coordinate system.

Generally, we assume that the coordinate systems are
orthonormalized (Cartesian) coordinate systems.

Usual way of finding a coordinate transformation:

1. Define a coordinate system for the output device
(usually based on the pixel grid)

2. Define a world coordinate system for the objects

3. Project the world coordinates onto an image plane
using parallel or perspective projection
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3 Transformation and projection

3.1 Overview

4. The display coordinate system usually is not identical
to the projection of the world coordinate system,
therefore requiring another coordinate transformation

Assume we have two coordinate systems S (e.g. display
coordinate system) and S’ (world coordinate system) as
S=(0O, x4, X,) and §’=(0’, x;’, x,°).
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3 Transformation and projection

3.2 Planar transformations
Translation

The simplest transformation between the coordinate
systems S and S’ is a translation. We presume that the
coordinate axes of the two systems are mutually parallel.

To transform from one coordinate system to the other,
every point is moved along a constant vector.
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3 Transformation and projection

3.2 Planar transformations
Translation (continued)

X ,
4 X2 A

Thus, for every point the following 2
equation holds: P,

Py =t +py

P> =16+,
Here, the translation vector (t;, t,)
corresponds to the origin of S’
represented in coordinates of S. :
Hence, the point P defined as the o t o X
point (p,’, p, ) with respect to S’
also has the coordinates (t; + p,’, t,

+p,)inS: ,
; (plj:(tlj+(pfj orshort P=T+P’
P, L, P2
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3 Transformation and projection

3.2 Planar transformations

Rotation

Assuming that the two coordinate systems S and S’ have the same
origin, a rotation with angle results in the following equations:

: L
—=singp and — =cosy

!/

P’ o 1
Hence: p,=L—-1=p;-cosp—p,-Sing

and P, = P;-Sing@+ p, -COS @ fa

Using vector - matrix notation, we get :

P=R-P'

where R is an orthonormal matrix (i.e. R™ = R")

R_ cosep —sSing
~\sing cose
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3 Transformation and projection

3.2 Planar transformations

Rotation (continued)

Note: different interpretations of P=R-P’:

— R transforms the coordinates (p,’, p,’) of a point with respect to
the coordinate system S’ into a representation with respect to
S. This corresponds to interpreting S as a global coordinate
system where applying the matrix R to (p,’, p,’) rotates a point.

— The coordinate system S is transformed (by rotating
mathematically positively) into the coordinate system §°. A

given point’s coordinates (p,’, p,’) are then represented with
respect to the coordinate system S’

The same interpretations are valid for other types of
transformations.
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3 Transformation and projection

3.2 Planar transformations

Rotation (continued)

When rotating with an arbitrary point as rotational center,
we need to include two additional translations:

1. Translate P, onto the origin

2. Rotate around the origin
3. Translate back to P, using the inverse translation from step 1.

[ .

1
:}EII.'II'I-J.' G ol Bgd baaivslalowre Al e
|.'|I.""'I L dadnagin ridl dill bidii Ly wdsynimad &

AP it Brganylgid

T ] _ : :
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3 Transformation and projection

3.2 Planar transformations

Rotation (continued)

Comments:
Multiplying matrices is generally not commutative, i.e.
A-B+B-A.

Special care has to be taken to ensure that the order in
which the matrices are applied in the correct order when
using more than one rotations.
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3 Transformation and projection

3.2 Planar transformations
Scaling

If the coordinate system S’ is to be “enlarged” or
“downsized” we can scale it accordingly:

p=4- pl’
P, =4, p;
Using vector - matrix notation, we get

—~

P=S.P'

with a scaling matrix S

5 5
0 A,
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3 Transformation and projection

3.2 Planar transformations
Shearing

A shearing transformation can be achieved by applying:
P, = p1’ +S; - p;

pz.zsz'pﬁ'pz ?’12‘ “2%
Using vector - X(1,1)
matrix notation:
P=S.P

with the shear - s,
INng matrix S -£1 3 "

S _(1 Slj Scherung in der Ebene

X (l+s, .5, +1)

I ] _ : .
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3 Transformation and projection

3.2 Planar transformations

Affine transformations

Affine transformations can be described as a linear
mapping combined with a translation:

The previous transformations (translation, rotation,
scaling, and shearing are examples of affine
transformations.

Affine invariance of subdivisions

For every affine transformation F and points P and Q, the
following equation holds:

F(A - P+(1- 2) - Q)= 4 - F(P)+(1- 2) - F(Q) for 0<A <I
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3 Transformation and projection

3.2 Planar transformations

Affine transformations (continued)

This equation shows, that the image of a straight-line
connecting P and Q remains a straight-line after applying
F and that the ratios of subdivisions 4:(1- 1) are
preserved.

Thus, it is sufficient to just map the points P and Q and
then interpolate in between F(P) and F(Q).

Note that parallel lines remain parallel after applying
affine transformations.
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3 Transformation and projection

3.2 Planar transformations

Affine transformations (continued)
More affine transformations:

o S 0 1
Mirroring along a straight-line x=y: F= 1 oj

Mirroring along a straight-line x=-y. F= 0 _1j

-1 0

o . -1 0
Mirroring along the x-axis: F - 0 1
o - 1 0
Mirroring along the y-axis: F=ly 1

Mirroring with respect to the origin: F = _01 OJ
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3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates

Homogeneous coordinates emerged from projective
geometry. Here, however, we will introduce a different
motivation:

When concatenating rotation, translation, and scaling, we
get the following equation: P=S(T +R-P’)

If we want to combine several of these transformations,
the addition in this equation complicates things.

Since matrix multiplications are supported by the graphics
hardware nowadays, it would be beneficial to represent
all transformations by matrices, 1I.e.:

P=M, -....M,-M,-M, - P’
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3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates (continued)

This can be achieved by transitioning to a higher
dimension:

The triple (x, y, w), w # 0 represents the homogeneous
coordinates of the point (x/w, y/w).

Since there are infinitely many representations of the
same point, we use the normalized representation with
w=1.

Hence, a point P = (X, y) is represented in homogeneous
coordinates by (x, y, 1).

Note: we can achieve the same in 3-D by adding another
dimension
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3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates (continued)

This then allows for a different representation of the
translation:

Translation of a point (x’, y’) by a vector (t, t,):
1 0 t)(x) (x+t) (x
0 1 t[-|Y|=|Y+L |=|Y
00 1){1) 1) (1
Rotation of a point (x’, y’) at angle ¢:

(cosgp —sing 0) (X'} (X -cosp—y'-sing) (X

/

sinp cosep O}y |=|X sihnp+Yy -cosp|=|Y

. 0 0 1){1) { 1 ) \1)
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3 Transformation and projection

3.2 Planar transformations

Homogeneous coordinates (continued)

Scaling of a point (x’, y’) using the factors 4, and 4,
A4 0 0)(x) (A-X) (x
0 A Oy |=[4-Y|=|Y
0 0 1)(1) 1 ) 1
Rotation of a point (x’, y’) around an arbitrary point P, at
angle o:

(1 0 P,)(cosp —sing 0)(1 0 —-P, )\ (x) (x
0 1 B, |-|sinp cosp O[|0 1 R, |-|Y|=|Y
0 0 1) 0 0 1)\0 0 1 ){1) 1)
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3 Transformation and projection

3.3 Transformations in 3-D

Translation

To move a point (x’, y’, z’) along a translation vector (t,, t,,
t,) results in the point (x, y, z) when applying the following

matrix:

0 tx\ /X’\
0 t, | y'
1 t, (|27

(X' +t, )
y' +t,
Z'+1,

()
o O +— O

0 1)1

— _/

'

T(t b, )

. 1

[y

WRIGHT STATE
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3 Transformation and projection

3.3 Transformations in 3-D
Scaling

Scaling using the three scaling factors s,, s,, and s; can
be achieved using the following matrix:

s, 0 0 0)(x) (s-x) (x)
0 s, O O]y | [S:Y]| |V
0 0 s, O||Z] |s,-7"| |z
0 0 0 1){1) U1 ) (1
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3.3 Transformations in 3-D "

3 Transformation and projection

Right handed
. coordinate
Rotation system
 All rotations are mathematically positive, > x
l.e. counter-clockwise z

The observer “sits” along one of the coordinate axis
and looks towards the origin of the coordinate system

We first consider rotations around a single coordinate
axis at angle ¢

— transformation matrix R,(¢), R,(¢), R,(¢)

Think of a fixed coordinate system where points are
transformed (rotated).
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around the z-axis

Ya

When rotating a point (x’, y’, z’) ¢
around the z-axis at angle ¢, we get
the point (x, Y, 2):

v

z

cose —sing 0 0) (X X"-cos@—Yy'sing X
sinp cose 0 Of|Y X'singp+y'cos y
0 0 1 0l||z| Z' RE
0 0 0 1)1 1 1
\_ ~ )
R,(¢)

Note that this rotation is similar to the 2-D case with a
fixed z-coordinate.
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around the x-axis

di

When rotating a point (x’, y’, z’) e
around the x-axis at angle ¢, we get o' X
the point (x, y, 2): ‘

1 O 0 0) (X X' X

0 cosp —sing 0|V y'-cosp—12z'sing y

0 singp <cose O 12| y'singp+z'cose BE

0 0 0 1)11 1 1

- - )
Ry(9)

Here, the x-coordinate is left unchanged so that the
matrix describes a rotation within the y-z-plane.
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around the y-axis

When rotating a point (x’, y’, z’) ' ?
around the y-axis at angle ¢, we get X
the point (X, y, 2): ’
cosp 0 sing 0) (X X'Cos@+2z'sing X
0 1 0 Oy y' |y
—sing 0 cosp 0|z | |-Xsinp+z'cose| |z
0 0O 0 1)\1 1 1
- - J
Ry(»)

Here, the y-coordinate is left unchanged so that the
matrix describes a rotation within the z-x-plane.
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3 Transformation and projection

3.3 Transformations in 3-D Note: Still right-

handed
coordinate

Rotation around an arbitrary axis z , system, just
Every rotation around an arbitrary 0 b=(byubyb;)
axis can be composed of rotations

around the coordinate axes (see >y
Euler). X 0 (b,.b,.0)
We now develop such a rotation b=sing cosd
Rs(e) that rotates around a point P b = sing sing
using an arbitrary axis of rotation G at b = oS ¢

an angle o.

First, we consider a special case where the axis of
rotation intersects with the origin and is defined by the
vector b = (b,,b,,b,) with [[b]|=1, i.e. G:A-b.
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

We now need to find the coordinates of a point P after
rotating around the axis G at an angle a.

|dea:

We transform the point P in such a way that the rotational
axis is identical to the z-axis. Then, we apply a rotation
around the z-axis at angle ¢ using the rotation matrix
R,(p). After that, we reverse the temporary rotation which
rotated G onto the z-axis.

Particularly, we follow the following five steps:
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)
Step 1.

We first rotate in such a way that the vector b is located
within the z-x-plane (5°). This transforms P onto P’'=R,(-

O)P: Z ,
cosd sing 0 O b b, 0 0 b’ b
—-sin@ cos@d 0 O -b, b, 0O O
Rz(_g): :i ’ .
0 0 1 0| d/ 0 0 d O
0 0 0 1 0O 0 0 d Yy
5 d
X (bX’b 0)
d? =b? +b;
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)
Step 2:

We now rotate in such a way that the vector 5’ is identical
with the z-axis (6"°). Then we get P"’=R (- p)P".

cose 0 —sing O b, 0 —d O N
0 1 0 0 0 1 0
R,(-¢)=]| . =
sinp 0 cosp O d 0 b, O
0o 0 o0 1) (0 0 1 "y
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3 Transformation and projection

3.3 Transformations in 3-D
Rotation around an arbitrary axis (continued)
Step 3.

Now we can rotate around the z-axis at angle a. This then
transforms the point P’’ onto P’’’ with P""’= R, (a)P"".

z

A

cosa -sina 0 O '
R (@) = sihna¢ cosaa 0 O ° .
‘ 0 0 1 0 -
0 0 01 "y
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)
Steps 4 and 5:

Finally, we apply the inverse rotation of steps 1 and 2 in
reverse order to reverse this temporary rotation. This then
maps the point P’’’ onto the desired point Q by applying
Q=R,(O) R(p)P".

b, 0 d 0 b, ~b, 0 0
R R@O=HY 0
y ~d 0 b O i df0 0 d 0
0O 0 0 1 O 0 0 d
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3 Transformation and projection

3.3 Transformations in 3-D

Rotation around an arbitrary axis (continued)

Result:

The entire transformation can then be realized by concatenating all
these transformations:

Mp(a)=R,(0) - Ry(9) - R(a) - Ry(- 9) - R,(-6)
General case:

If the rotational axis is an arbitrary straight-line (i.e. does not intersect
with the origin)

G:a+ib (Ae#, ||b]|=1,a=(a, a, a,)

then we need to perform a translation first and reverse it again after
applying all the above rotations:

MG(a)z T(ax’ayvaz)'Rz(e) ' Ry( ) " Rya) - Ry(' ¢) - R(-0) - T('ax"ay"az)
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3 Transformation and projection

3.4 Projections

A projection generally is a map from an n-dimensional
space onto a space with dimension less than n.

Since a display (CRT, LCD) is often a two-dimensional
output device, three-dimensional objects need to be
rendered using a two-dimensional view. To achieve this,
a point in 3-D space is mapped along a projection ray
(projector) onto a pre-defined projection plane.

The projection ray is defined by the center of projection
and the point itself. The intersection between the
projection ray and the projection plane determines the
projected point.
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3 Transformation and projection

3.4 Projections

Examples for geometric, planar projections are
perspective and parallel projection.

For parallel projections, the center of projection is located
at a point that is infinitely far away. When using projective
geometry, the parallel projection is therefore just a special
case of the perspective projection.

The following image shows a classification of the most
common projections:
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3 Transformation and projection

3.4 Projections

Most common projections:

Projections

_:—'_'_'_'_'_'_'_'_'_'_'_\_\_\_\_\_\_\_\_‘_‘—\—\_

Perspective P arallel
(Converging projechor lines) (Parallel projector lines)
One Point Two Point Three Point Orthographic Obligue
{one principal (projectar lines perpendicular  {projectors not perpendicular
vanishing point) to wiew plane) to view plang)
_'_,_:—'—ﬁ\.\_\_
Multi-view Axonometric
(view plane parallel (view plane not parallel
to principal planes) to principal planes) Cavalier Cabinet
Isometric Dimetric Trametnc
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3 Transformation and projection

3.4 Projections

Perspective projection

For the perspective projection, all projector rays intersect
with the center of projection. We can think of the center of
projection as the location of the eye.

This projection creates an optical impression of depth and
can already be found in ancient paintings. A

Projectors

Projection

Center of plane

projection
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3 Transformation and projection

3.4 Projections

Perspective projection (continued)
Properties:

Every pair of straight-lines, which are not parallel to the
projection plane, intersect at a point, the so called
vanishing point. There may be infinitely many vanishing
points, one for every set of lines that are parallel. Often
times, one vanishing point is used for lines parallel to a
single coordinate axis, e.g. all lines parallel to the x-axis
Intersect at the same vanishing point.

Perspective projection are classified according to the
number of coordinate axes that intersect the projection
plane. This results in one point, two point, and three point
perspectives.
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3 Transformation and projection

3.4 Projections
Perspective projection (continued)

Example: /& vanishing point
g’ffrfh S

~
VA "“‘x

/" ~.

{

/; =

one point perspective
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3 Transformation and projection

3.4 Projections

Perspective projection (continued)

Example: vanishing points —

two point perspective

[Tl [ &
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3 Transformation and projection

3.4 Projections

Parallel projection

For a parallel projection, the center of projection is
Infinitely far away. Thus, all projection rays are parallel to

each other.

The parallel projection is less realistic. It is, however,

easier to estimate measurements from the projected
A

Image.

Projectors

Projectior
plane

Center of /

projection
at infinity

WRIGHT STATE

Department of Computer Science and Engineering

3-40



3 Transformation and projection

3.4 Projections

Parallel projection (continued)

The projection rays may intersect the projection plane
orthogonally (orthographic projection) or at any other
angle (oblique projection).

Orthographic Projection

For a orthographic projection, the direction of projection is

identical to the normal of the projection plane. We
distinguish between multi-view and axonometry.

The multi-view projection uses projection planes that are
parallel to the coordinate axes resulting in three different
views: top view, front view, and side view.
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Top View

-~
i
F*‘—ﬁ——__ﬁ_ngi___
-~
~
7
7 Side View
-~
e
7
I -~
—_—
Front View
[T . o
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

When using axonometry, the direction of projection is not
necessarily parallel to one of the coordinate axes.

Parallel lines are mapped onto parallel lines. Angles,
however, are not preserved. Distances can be measured
along the coordinate axes, the scale may be different for
each coordinate axis, though.

The most common case is the isometric
axonometry. This projection maps the

coordinate axes in such a way that each
pair of axes forms the same angle. 120°

120° 120°
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

The dimetric projection maps the
coordinate axes in such a way that two of
them form the same angle; the scale for
two of the three coordinate axes is
identical:

The trimetric projection maps the
coordinate axes in such a way that they all
form different angles, the scale is different
for each coordinate axis:
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Oblique projections occur if the direction of projection is
different from the normal of the projection plane. The
most common examples of oblique projections are the
cavalier and cabinet projection.

Cavalier projection

The angle between the direction of projection and the
projection plane is 45°. The length

of a line that is orthogonal to the
projection plane remains the same.
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Cabinet projection

In this case, the length of the projection of a line that is
orthogonal to the projection plane is supposed to be cut
In half after projecting.

The angle between the direction + y'=(0,1)7

of projection and the projection

plane therefore is arctan 2 = 63.4°. X =(1,0)T

Example: 7
2’=(-0.5, -0.5)"

projected unit vectors
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3 Transformation and projection

3.4 Projections

Parallel projection (continued)

Examples:

) B /' _'_;

cabinet projection “cavalier projection

ik~ . o
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3 Transformation and projection

3.4 Projections

Perspective projection — implementation

The perspective projection depends on the application
and can be realized using different configurations using
appropriate transformations of the coordinate system.

In this example, we choose the following setup:

— The center of projection Z and the location of the
eye are identical and are positioned on the positive
z-axis at distance d>0 from the origin, i.e. Z = (0, 0,
d).

— The view direction points towards the negative z-
axis.

— The projection plane is identical to the x-y-plane.
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3 Transformation and projection

3.4 Projections

Perspective projection — implementation (continued)

Setup:

-
-
-
-
-
-
-
-
P
A Pid
-
-

P=(x.y,2)
\\\\\\\\\\\\\E;>\ttj a , v )( _________

S
\

i,
,

T 11 _ : :
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3 Transformation and projection

3.4 Projections

Perspective projection — implementation (continued)

According to the theorem on intersecting lines:

!

Y_ ¥ g 2o

d d-z d d-z

Hence: y'= y-i = y-(l—EJl
d-z d

Thus, the perspective projection can be described
by the following matrix :

1 0 0 O

01 0 O
M =

00 0 O

0 0 —-d* 1
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3 Transformation and projection

3.4 Projections

Extended setup

« Within the projection plane, a view window is specified
(width, height, ratio); the view window is symmetrically
placed around the origin.

» The projections intersecting the vertices of the view
window define the view frustum (view volume).

« Two additional planes, which are parallel to the
projection plane, (front and back clipping plane) limit
the view frustum in z-direction.

« The view frustum limits the space that is displayed
(—clipping).

WRIGHT STATE Department of Computer Science and Engineering 351



3 Transformation and projection

3.4 Projections

Extended setup (continued)

WRIGHT STAf}E Department of Computer Science and Engineering 352
UNIVERSITY



3 Transformation and projection

3.4 Projections
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3 Transformation and projection

I | o
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3 Transformation and projection

3.4 Projections

EE: LR G
L5300 a3 R

[T lin4 . . .
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3 Transformation and projection

3.4 Projections
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3 Transformation and projection

3.4 Projections

Viewing in OpenGL

As seen before, viewing and projections is achieved by
transforming from the world coordinate system to the
display coordinate system using matrix multiplication.
Hence, OpenGL provides several functions for modifying
maitrices.

Since OpenGL is a state machine, it has two different
maitrix stacks that can change the view onto a scene
(set of objects). The first one is the projection stack, while
the other one is the modelview stack. The projection
transformation is responsible for the projection just like a
lens for a camera. This transformation also determines
the type of projection (e.g. perspective or orthographic).
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

The modelview transformation combines the view
transformation and the model transformation onto the
same stack. The view transformation indicates the shape
of the available screen (width, height, ratio). The model
transformation facilitates the change of the entire scene
as a whole before mapping it onto the projection plane.
For example, the model transformation can be used to
rotate the entire scene or zoom in or out.
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3 Transformation and projection

3.4 Projections

With a Camera

With a Computer

Viewing in OpenGL (continued)

OpenGL mainly follows the
analogy to a camera when
creating an image on the
display.

tipod

positioning the viewing volume
in the world

madeling

positioningthe models
in thé world

projection

determining shape of viewing volume

photograph

viewport

WRIGHT STATE Department of Computer Science and Engineering 359



3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

To specify which stack you want to modify, OpenGL
provides a method:

glMatrixMode (GLenum mode) ;

The mode passed onto this function as the only argument
can be specified as GL MODELVIEW or GL PROJECTION.
This then changes the state of OpenGL, so that all
following matrix commands change that specific matrix
only.

OpenGL uses homogeneous coordinates to represent
matrices, i.e. all matrices are 4x4 matrices.
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

To initialize a matrix stack with the identity matrix, the
following functions can be used:

glLoadIdentity ()
This then initializes the current matrix stack with the
matrix (1 0 0 0)
O 1 0 O
O 0 1 O
0 0 0 1

Usually, this function is used before any other matrix
modification, since it just overwrites the current matrix.
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

Alternatively, you initialize the matrix with a specific
matrix that was calculated before. The following functions
overwrites the current matrix stack with the given matrix:

float mf[l6];
double md[1l6];
glLoadMatrixf (mf);

glLoadMatrixd (md) ; ‘m, mg mg  my)
The elements of the matricesare | M2 M My, My,
specified as shown on the right: m; m; My Mg
Km4 m8 m12 m16/
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

To multiply a matrix onto the current one the following
functions are useful:

glMatrixMultf (m);
glMatrixMultd (m);

The matrix is specified exactly the same as for the
function glLoadMatrix.

Note that OpenGL multiplies the new matrix M to the
current one C from the right, i.e. after applying the
function glMatrixMult the matrix on the current stack
will be C-M.
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

OpenGL also provides function for the basic types of
transformation, i.e. translation, rotation, and scaling. The
function

glTranslatef (GLfloat x,
GLfloat v,
GLfloat z);

multiplies a translation matrix onto the
current matrix stack using the translation
vector (X, Y, z).
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3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The function

glRotatef (GLfloat anglﬁa

GLfloat x,
GLfloat vy,
GLfloat z); z

multiplies a rotational matrix onto the current matrix stack,

- -

-
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

while the function
glScalef (GLfloat x,
GLfloat v,
GLfloat z);

-

appends a scaling matrix to the
matrix stack.
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

Note, that the corresponding functions that accept
double values are also available. These use — according
to the usual OpenGL convention — the suffix d instead of
f to indicate the data type.

Using these matrix functions, both the projection as well
as the modelview matrices can be specified.

OpenGL, however, provides some functions that are
more convenient and intuitive.
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3 Transformation and projection

3.4 Projections

Viewing in OpenGL (continued)

The function gluLookAt can be used to specify the camera location
and orientation:

volid gluLookAt (GLdouble eyex,

GLdouble
GLdouble
GLdouble
GLdouble
GLdouble
GLdouble
GLdouble
GLdouble

CYCYy
eyez,
centerx,
centery,
centerz,
upx,
upy,
upz) ;

I
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL (continued)

The arguments for the function gluLookAt specify the
view coordinate with respect to the camera. The location
of the camera or eye defines the origin, while the center
point determines the direction the camera is pointing at.

Hence, eye-center determines the z-
axis. The vector up identifies the y- .
axis, while the x-axis is orthogonal to 4 f—i?%
the y- and z-axis. I~

The default it gluLookAt (0.0, -
0.0, 0.0, 0.0, 0.0, -100.0, =
0.0, 1.0, 0.0); i
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3 Transformation and projection

3.4 Projections

Projections in OpenGL

OpenGL provides built-in functions for perspective and
orthogonal projections. These can be applied directly
after changing the state to make the projection matrix the
current matrix stack and initializaing:

glMatrixMode (GL PROJECTION) ;
glLoadIdentity ()
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3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

Using the function gl Frustum, the view frustum can be
declared using a perspective projection (all arguments
are of the type GLdouble):

glFrustum (left, right,

bottom, top,
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3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

Sometimes it is more convenient to specify the view
frustum following the camera analogy more closely (all
arguments are of type GLdouble):

gluPerspective (fovy, aspect,
near, far);

—w
aspact = b

T

near
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3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

If an orthogonal projection is desired, the following
method can be used (all arguments are of type
GLdouble):
glOrtho (left, right,
bottom, $op,

near, NEAT) ;
Ieﬂ—j--

-

toward
the *Lright

viewpoint
; viewing wollme
bottom

near far
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3 Transformation and projection

3.4 Projections

Projections in OpenGL (continued)

For a 2-D projection it does not make any difference if a
perspective or orthogonal projection is used since the
scene with all the objects does not have any depth.
Hence, there is only one function provided by OpenGL for
a 2-D projection (all arguments are of type GLdouble):

glOrtho2D (left, right,
bottom, top);
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL

The last step of the process of creating an image on a
computer display is the viewport transformation. Recalling
the camera analogy, the viewport transformation
corresponds to the stage where the size of the developed
photography is chosen. The viewport is measured in
window coordinates. By default, OpenGL uses the entire
window provided. The following functions allows you to
reduce the size of the image (all arguments are of type
GLint):

void glViewport (x, y, width, height);
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3 Transformation and projection

3.4 Projections
Viewing in OpenGL

The aspect ratio of a viewport should generally equal the
aspect ratio of the viewing volume. If the two ratios are
different, the projected image will be distorted as it's
mapped to the viewport. Note that subsequent changes
to the size of the
window don't explicitly
affect the viewport. Your
application should
detect window resize
events and modify the
viewport and projection
appropriately.
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3 Transformation and projection

3.4 Projections

As of OpenGL 3.0 many of these functions were declared
deprecated including glLoadMatrix, glRotate, etc. While
these are still supported (and probably will be for quite a
while), the OpenGL 3.0 specifications (and later versions)
you wants you to handle matrices and view settings
manually yourself.

While using glRotate etc. is easier, especially for the
beginner, there are ways to be conform with the latest
OpenGL specifications without having to do everything
manually: use the glm library (OpenGL Mathematics).
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3 Transformation and projection

3.4 Projections
OpenGL Mathematics

The glm library supports most vector and matrix algebra
to specify any type of transformation:

#include <glm/glm.hpp>

#include <glm/transform.hpp>

glm::mat4 myMatrix = glm::translate(10.0f,
0.0£, 0.0f);

glm: :vecd4d myVector (10.0f£, 10.0f£, 10.0f,
0.0f) ;

glm: :vecd4 transformedVector = myMatrix *
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3 Transformation and projection

3.4 Projections
OpenGL Mathematics

Specifying a scaling matrix:

#include <glm/glm.hpp>
#include <glm/gtc/matrix transform.hpp>
#include <glm/gtx/transform.hpp>

glm::mat4 myScalingMatrix =
glm::scale(2.0£, 2.0f ,2.0Lf);

I _ : :
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3 Transformation and projection

3.4 Projections
OpenGL Mathematics

Specifying a rotational matrix:

#include <glm/glm.hpp>

#include <glm/gtc/matrix transform.hpp>
#include <glm/gtx/transform.hpp>
glm::vec3 myRotationAxis( 1.0, 0.0, 0.0);

glm: :rotate( angle 1in degrees,
myRotationAxis );

T 11 _ : :
WRIGHT STATE Department of Computer Science and Engineering 380
UNIVERSITY



3 Transformation and projection

3.4 Projections
OpenGL Mathematics

Convenience functions for view settings are also
available:

glm: :mat4 CameraMatrix =

glm: : LoOoKATt (
cameraPosition,
cameraTarget,

upVector) ;

T 11 _ : :
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3 Transformation and projection

3.4 Projections
OpenGL Mathematics

Convenience functions for projection:

glm::mat4 projectionMatrix =
glm: :perspective (

FoV,
4.0f / 3.0f, // Aspect Ratio

0.1f, // Near clipping plane.
100.0f // Far clipping plane.
) ;
T _ _ _
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3 Transformation and projection

3.4 Projections
OpenGL Mathematics

You could then feed the results into the different matrix
stacks. However, that is deprecated as well (even though
It Is very useful).

Instead, you are according to the latest OpenGL specs
supposed to feed those matrices directly into your own
shader programs and multiply they vertices within the
vertex shader yourself (manually as the built-in variables
for these matrices are deprecated as well).

We will look into shader program during the last chapter
of this class.
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