
8-1 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Chapter 8

Three-Dimensional Object Representations

8-2 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.1 Overview

The main goal of three-dimensional computer graphics is
to generate two-dimensional images of a scene or of an
object based on a a description or a model.

The internal representation of an object depends on
several implications:

– The object may be a real object or it exists only as a computer
representation

– The manufacturing of the object is bound closely to the
visualization:

• Interactive CAD systems

• Modeling and visualization as a tool during design and
manufacturing

• More than just 2-D output possible!

8-3 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.1 Overview

Implications (continued)

– The precision of the internal computer representation depends

on the application. For example, an exact description of the

geometry and shape in CAD applications vs. an approximation

sufficient for rendering of the object.

– For interactive applications, the object may be described by

several internal representations. These representations may

be generated in advance or on-the-fly.

• Level-of-detail (LOD) techniques

8-4 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.1 Overview
The modeling and representation of an object involves the following

in particular:

• Generation of 3-D geometry data

CAD interface, digitizer, laser scanner (reverse engineering), analytic

techniques (e.g. sweeping), image (2-D) and video (3-D) analysis

• Representation, efficient data access and conversion

Polygonal nets (e.g. triangulation), is the most common representation

for rendering objects. Alternatives: finite elements (FEM), constructive

solid geometry (CSG), boundary representation (B-rep), implicit surfaces

(isosurfaces), surface elements (surfels = points + normals), …

• Manipulation of objects (change shape, …)

e.g. Boolean operations, local smoothing, interpolation of features (e.g.

boundary curves), “engraving” of geometric details, …

8-5 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.1 Overview

The topics of this chapter will be:

– Polygonal representations

– Rendering Polygons with OpenGL

– Quadric surfaces

– Blobby Objects

– Octree, BSP tree

8-6 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Properties/Characteristics:

• The precision of the approximation (number and size of

polygons) can be chosen depending on the application,

but several questions arise, e.g.:

– What polygonal resolution is required for a precise

representation?

– What polygonal resolution is required for the renderer to make

the piecewise approximation appear smooth?

– What is the correlation between number of polygons and the

size of the final display of the object?

 Often the following rule of thumb is used: Choose the

polygonal resolution based on the curvature of the object

8-7 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Properties/Characteristics:

• Classic representations of three-dimensional objects in

computer graphics

• Object is represented by a net of polygonal surfaces

(usually triangles) piecewise linear interpolation

• The polygonal surfaces are usually an approximation of

the curved surface, representing the object’s boundary.

8-8 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Hierarchy of the representation:

Concept: The object constitutes of several surface

elements. Each surface element is represented

by several polygons. Every polygon has

vertices and edges.

8-9 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Hierarchy of the representation (continued):

Topology:
object

surfaces

polygons

edges

vertices

8-10 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Hierarchy of the representation (continued):

Data structure:

Vertices

are stored

only once

8-11 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Comment on data structures:

Data structures can contain – besides geometry
information – special attributes required for the
application or for the rendering:

– Surface attributes:

Representation (triangle, polygon, free-form surface), coefficients,
normal vector, properties (plane, convex, holes, …), reference to
vertices (and edges, if necessary)

– Edge attributes:

Length, type (round edge, feature line, virtual edge, reference to
vertices and/or polygon

– Vertex attributes:

Normal vector, color, texture coordinates, reference to polygon
and/or edge

8-12 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.2 Polygonal Representation

Comment on edges:

Obviously, there are two different kinds of

edges involved in the approximate

representation:

– Sharp edges (feature lines)

• This type of edge should be visible

– Virtual edges (“inside” a smooth surface)

• These should be invisible after rendering

• Interpolative shading algorithms

 flat, Gouraud, Phong shading (now implemented in hardware)

Which kind of edge is to be used can be enforced by the
data structure by storing edges multiple times (see image).

8-13 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

OpenGL rendering pipeline:

Both, vertex and fragment shader are programmable

8-14 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

OpenGL supports several types of polygons:

GL_POLYGON

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

Convenience functions exist for certain objects:

glutSolidTetrahedron glutWiredTetrahedron

glutSolidCube glutWireCube

…

8-15 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

8-16 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

Beware:

OpenGL will ignore invalid polygons, e.g. self

intersecting, non-convex, or non-planar polygons

8-17 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

There are basically four different ways to render

geometric objects with OpenGL:

• Direct rendering

• Display lists

• Vertex arrays

• Vertex buffer objects

• Vertex array objects

8-18 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

Direct rendering:

glBegin (GL_TRIANGLES);

glNormal3f (…);

glVertex3f (…);

…

glNormal3f (…);

glVertex3f (…);

glEnd ();

In case of polygons with a fixed number of vertices, i.e.

triangles, quads, etc., you can generate several such

polygons using one glBegin/glEnd block.

8-19 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

Display lists:

Stores OpenGL API commands in graphics memory for
faster access.

GLuint index = glGenLists (1);

if (index != 0) {

 glNewList (index, GL_COMPILE);

 … // draw something

 glEndList ();

}

glCallList (index);

Using GL_COMPILE_AND_EXECUTE instead of
GL_COMPILE makes the glCallList unnecessary.

8-20 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

Vertex arrays:

Store vertices in bulk arrays to reduce number of OpenGL function

calls.

GLfloat vertices[] = { … };

GLfloat normals[] = {… };

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_NORMAL_ARRAY);

glNormalPointer (GL_FLOAT, 0, normals);

glVertexPointer (3, GL_FLOAT, 0, vertices);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);

This constructs a triangle strips using the first ten elements. The 0 as

argument for the arrays is the stride parameter allowing you to skip

elements within the arrays.

8-21 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL
Vertex buffer objects (VBO):

Vertex buffer objects are like vertex arrays, but stored in graphics
memory for faster access.

Fill the VBO with data; use indices to remember them:

GLuint vbovertices, vbonormals;

GLfloat vertices[] = { … }, normals[] = {… };

glGenBuffers (1, vbovertices);

glGenBuffers (1, vbonormals);

glBindBuffer (GL_ARRAY_BUFFER vbovertices);

glBufferData (GL_ARRAY_BUFFER, datasize,

 vertices, GL_STREAM_DRAW);

glBindBuffer (GL_ARRAY_BUFFER, vbonormals);

glBufferData (GL_ARRAY_BUFFER, datasize,

 normals, GL_STREAM_DRAW);

8-22 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.3 Polygon Rendering with OpenGL

Vertex buffer objects (continued):

Now, draw the previously generated VBOs:

glBindBuffer (GL_ARRAY_BUFFER vbovertices);

glVertexPointer (3, GL_FLOAT, 0, (GLvoid *)0);

glBindBuffer (GL_ARRAY_BUFFER, vbonormals);

glNormalPointer (GL_FLOAT, 0, (GLvoid *)0);

glDrawArrays (GL_TRIANGLE_STRIP, 0, count);

Notes:

– There is no actual data pointer required for the
glVertexPointer and glNormalPointer calls since the
VBOs are used as data repository.

– The client states need to be set just like with vertex arrays

8-23 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Vertex Array Objects (VAOs)

 VAOs can store the data of a geometric object to reflect its state so
that the OpenGL driver can use this information for optimization

 Steps in using a VAO

 generate VAO names by calling glGenVertexArrays()

 bind a specific VAO for initialization by calling
glBindVertexArray()

 update VBOs associated with this VAO

 bind VAO for use in rendering

 This approach allows a single function call to specify all the data for
an object

 previously, you might have needed to make many calls to make
all the data current

8.3 Polygon Rendering with OpenGL

8-24 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Implementing VAOs

// Create a vertex array object

GLuint vao;

glGenVertexArrays(1, &vao);

glBindVertexArray(vao);

8.3 Polygon Rendering with OpenGL

8-25 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Storing Vertex Attributes

 Vertex data must be stored in a VBO, and associated with a VAO,

so that the VAO can reference to the VBO

 The code-flow is similar to configuring a VAO

 generate VBO names by calling glGenBuffers()

 bind a specific VBO for initialization by calling

glBindBuffer(GL_ARRAY_BUFFER, …)

 load data into VBO using

glBufferData(GL_ARRAY_BUFFER, …)

 bind VAO for use in rendering glBindVertexArray()

8.3 Polygon Rendering with OpenGL

8-26 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Implementing VAOs

Create buffer indices/”names”:

GLuint buffers[2];

glGenBuffers(1, &buffers);

glGenBuffers(ARRAY_SIZE_IN_ELEMENTS(buffers),

buffers);

8.3 Polygon Rendering with OpenGL

8-27 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Creating VBOs for the VAOs

Uploading the vertex data to the graphics card:

glBindBuffer(GL_ARRAY_BUFFER, buffers[0]);

glBufferData(GL_ARRAY_BUFFER, 0, sizeof(points),

points, GL_STATIC_DRAW);

We now need to tell OpenGL what structure our arrays have using

glVertexAttribPointer:

void glVertexAttribPointer(index, size, type,

normalized, stride, pointer);

Following our example, this could look like this:

glEnableVertexAttribArray(0);

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0);

8.3 Polygon Rendering with OpenGL

8-28 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Creating VBOs for the VAOs

Uploading the color data to the graphics card:

glBindBuffer(GL_ARRAY_BUFFER, buffers[1]);

glBufferData(GL_ARRAY_BUFFER, sizeof(points),

sizeof(colors), colors, GL_STATIC_DRAW);

glEnableVertexAttribArray(1);

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 0, 0);

Note that this creates a structure of arrays (SOA) that the VAO handles

itself without us having to consolidate all data in a single array of

structures (AOS).

8.3 Polygon Rendering with OpenGL

8-29 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

Drawing Geometric Primitives

 For contiguous groups of vertices

 Usually invoked in display callback

 You can use something like

 glBindVertexArray(0);

 to avoid overwriting your array (you will need to switch

back for rendering).

glDrawArrays(GL_TRIANGLES, 0,

NumVertices);

8.3 Polygon Rendering with OpenGL

8-30 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.4 Quadric Surfaces

Quadric surfaces are described with second-degree

equations (quadrics). Quadratic surfaces are common

elements in computer graphics and CAD. Some examples

are:

 Sphere:

 Ellipsoid:

rzyx
222

1

222

zyx
r

z

r

y

r

x

8-31 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.4 Quadric Surfaces

OpenGL supports quadric surfaces directly using the

GLUT or GLU libraries.

For example:

 glutSolidSphere (r, xdiscretization,

 ydiscretization);

Or:

 GLUQuadric *quadric;

 quadric = gluNewQuadric ();

 gluSphere (quadric, r, xdiscretization,

 ydiscretization);

8-32 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

Idea: describe the surface or volume of an object as iso-

surface within a scalar field (i.e. a point is part of the iso-

surface if and only if the scalar field has the same so-

called iso-value). The scalar field itself is generated

through generating primitives (functions).

Example: point heat sources create a spherical field. By

adding two of those fields we get a global scalar field.

8-33 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

The appearance of the iso-surface is relatively easy to

handle if the center points and the individual scalar fields

are chosen reasonably. The following image shows two

iso-surfaces which are generated by two radial symmetric

fields. The two centers of the generating fields approach

each other when going from top to bottom and left to right

in the image until they are at the exact same location.

You can see the merging effect during the transition of

the smooth iso-surface (C1-continuous in this case) after

the two centers get close enough. In the opposite case,

where the centers move apart we would see the iso-

surface separating.

8-34 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

8-35 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

Density function:

The most commonly used density functions

with have the following properties:

– For is a polynomial

– for is the maximal radius

–

–

– is monotonically decreasing

The following graph shows an example for such a density

function.

],0[:
0

af

0, aa

fbbbt)0,](,0[

0)(tf bt

f

0)(,)0(bfaf

0)(',0)0(' bff

8-36 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

Density function (continued):

Then, a radial symmetric field of a discrete blob at a point

P can be defined as with
3

:
d

F)()(
2

PxfxF
d

8-37 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

Application example: flow simulation

8-38 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

Application example: flow simulation

8-39 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.5 Blobby Objects

Application example: flow simulation

8-40 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

For representing an object using space subdivision

techniques the object space is split up into several

smaller elements. For each element, we store if this

specific element is covered by the object.

Standard approach:

– Space is divided by a regular equidistant grid, resulting in a

grid where each cell has exact identical geometry.

– In 3-D space, we get cube-shaped cells, which are called

voxels (volume element).

 → The name is in analogy to pixel (picture element) in 2-D

8-41 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Example: volumetric image of a CT-scanned object

8-42 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Advantages:

– It can be determined very easily if a given point is part of the

object or not.

– It can be checked easily if two objects are connected or

attached to each other.

– The representation of an object is unique.

Disadvantages:

– There cannot be any cells that are only partly filled.

– Objects can generally be represented approximately.

– For a resolution of n voxels in each dimension we need n3

voxels to represent the object. Therefore, it requires a lot of

memory → save space using octrees.

8-43 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Octrees

An octree is a hierarchical data structure for storing an

irregular, i.e. not equidistant, sub-division of a 3-D space.

Idea:

– The initial element is a cube which covers the entire object

space. The element can have two states: covered or

uncovered.

– In case an element is partly covered, it is

sub-divided into eight equally sized sub-

elements.

– The coverage of each element is checked

recursively until a desired resolution is

achieved.

8-44 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Octrees (continued)

In an octree, each node (element) that is not a leaf has

eight successors (sub-elements).

The root of the tree represents the initial cube. For each

sub-division a fixed numbering scheme is used for the

sub-elements when inserting a new node as a child.

Each leaf stores the state of

its corresponding (sub-)

cube.

Each inner node represents

a partly covered cube.

8-45 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Octrees (continued)

Example: representation of a 3-D object using an octree

a) Object embedded into initial cube.

b) Representation of the object using a maximal sub-

division of two.

c) Corresponding octree data structure
(a) (b) (c)

8-46 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Octrees (continued)

Octrees can not only be used for representing 3-D

objects. A very common use of octrees is the sub-division

of a 3-D scene.

– Here, the individual objects are represented by standard data

structures, e.g. polygons.

– The state of the cells of the octree is then extended to a data

structure that stores a list of objects, e.g. polygons, which are

contained by the cell.

This results in a significant performance increase for

algorithms that work on the individual areas of the object

space locally (e.g. ray tracing).

8-47 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Quadtrees

The principle of sub-dividing the 3-D space can be

generalized to an n-dimensional space.

For the case n=2 we get the sub-division of a 2-D plane

resulting in a quadtree, where each inner node of the tree

has exactly four children.

Historically, quadtrees are the older data structures. They

were used initially in the late 60’s of the last century.

Octrees were derived from quadtrees and used since the

late 70’s, early 80’s of the last century.

8-48 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

(a) (b)

Quadtrees (continued)

Example: sub-division of a 2-D space using a quadtree.

a) Sub-division of the 2-D space until each cell containes

maximally one object.

b) Corresponding data structure.

8-49 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Binary space-partitioning (BSP trees)

Octrees and quadtrees both sub-divide at each level

equally in each dimension, i.e. at the center.

A BSP tree offers an alternative representation where an

element can be sub-divided into two sub-elements at an

arbitrary (hyper-)plane

– If one sub-element is defined as part of the inside while the

other sub-element is defined as the outside, a convex

polyhedron can be represented by using properly chosen

planes limiting the volume.

– By uniting convex interior areas, arbitrary concave polyhedra

with holes can be defined.

8-50 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

BSP trees (continued)

In the realm of computer graphics, BSP trees are often

used for determining the visibility of an object.

Idea:

– BSP trees can – similar to octrees and quadtrees – be used for

sub-dividing a 3-D scene (see next example). Here, the

objects are not bound to a particular rasterization.

– The object space is to be sub-divided recursively in such a

way, that each area contains at most one object.

– Using the locations of those areas relatively to the view point,

the objects can be sorted according to the viewing distance

(depth) easily, i.e. it can be determined which objects are

completely invisible.

8-51 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

BSP trees (continued)

Example: sub-division of a 2-D scene

a) Using a quadtree

b) Using a BSP tree

(a) (b)

8-52 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Principal Component Analysis (PCA)

An ideal choice of dividing planes for a BSP tree is

offered by the principal component analysis (PCA). Let

us assume that a complex scene is given by a point cloud

 Pi IR3 (i=1,…,n)

(for example object centers or vertices of polygons).

PCA defines an orthogonal coordinate system e1, e2, e3

which orientation corresponds to the one of the point

cloud.

8-53 Department of Computer Science and Engineering

8 Three-Dimensional Object Representations

8.8 Space Partitioning

Principal Component Analysis (continued)

Now, we choose the average of all points as the center of
the coordinate system:

B has the real eigenvalues λ1, λ2, λ3 and eigenvectors e1,
e2, e3, i.e. λi·ei = B·ei. The eigenvectors in combination with
the center c form the coordinate system we are looking
for. The extent of the point cloud in direction of ei is
proportional to √λi.

znzynyxnx

zzyyxx

zzyyxx

cPcPcP

cPcPcP

cPcPcP

A

222

111

n

k

kjkiij

T

n

i

i

aa

n

b

AA

n

B

P

n

c

1

1

1

1

1

1

1

