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8 Three-Dimensional Object Representations 

8.1 Overview 

The main goal of three-dimensional computer graphics is 
to generate two-dimensional images of a scene or of an 
object based on a a description or a model. 

The internal representation of an object depends on 
several implications: 

– The object may be a real object or it exists only as a computer 
representation 

– The manufacturing of the object is bound closely to the 
visualization: 

• Interactive CAD systems 

• Modeling and visualization as a tool during design and 
manufacturing 

• More than just 2-D output possible! 



8-3 Department of Computer Science and Engineering 

8 Three-Dimensional Object Representations 

8.1 Overview 

Implications (continued) 

– The precision of the internal computer representation depends 

on the application. For example, an exact description of the 

geometry and shape in CAD applications vs. an approximation 

sufficient for rendering of the object. 

– For interactive applications, the object may be described by 

several internal representations. These representations may 

be generated in advance or on-the-fly. 

• Level-of-detail (LOD) techniques 
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8.1 Overview 
The modeling and representation of an object involves the following 

in particular: 

• Generation of 3-D geometry data 

CAD interface, digitizer, laser scanner (reverse engineering), analytic 

techniques (e.g. sweeping), image (2-D) and video (3-D) analysis 

• Representation, efficient data access and conversion 

Polygonal nets (e.g. triangulation), is the most common representation 

for rendering objects. Alternatives: finite elements (FEM), constructive 

solid geometry (CSG), boundary representation (B-rep), implicit surfaces 

(isosurfaces), surface elements (surfels = points + normals), … 

• Manipulation of objects (change shape, …) 

e.g. Boolean operations, local smoothing, interpolation of features (e.g. 

boundary curves), “engraving” of geometric details, … 
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8.1 Overview 

The topics of this chapter will be: 

– Polygonal representations 

– Rendering Polygons with OpenGL 

– Quadric surfaces 

– Blobby Objects 

– Octree, BSP tree 
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8.2 Polygonal Representation 

Properties/Characteristics: 

• The precision of the approximation (number and size of 

polygons) can be chosen depending on the application, 

but several questions arise, e.g.: 

– What polygonal resolution is required for a precise 

representation? 

– What polygonal resolution is required for the renderer to make 

the piecewise approximation appear smooth? 

– What is the correlation between number of polygons and the 

size of the final display of the object? 

 Often the following rule of thumb is used: Choose the 

polygonal resolution based on the curvature of the object 
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8.2 Polygonal Representation 

Properties/Characteristics: 

• Classic representations of three-dimensional objects in 

computer graphics 

• Object is represented by a net of polygonal surfaces 

(usually triangles)  piecewise linear interpolation 

• The polygonal surfaces are usually an approximation of 

the curved surface, representing the object’s boundary. 
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8.2 Polygonal Representation 

Hierarchy of the representation: 

Concept: The object constitutes of several surface 

elements. Each surface element is represented 

by several polygons. Every polygon has 

vertices and edges. 
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8.2 Polygonal Representation 

Hierarchy of the representation (continued): 

Topology: 
object 

surfaces 

polygons 

edges 

vertices 
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8.2 Polygonal Representation 

Hierarchy of the representation (continued): 

Data structure: 

 

Vertices 

are stored 

only once 
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8.2 Polygonal Representation 

Comment on data structures: 

Data structures can contain – besides geometry 
information – special attributes required for the 
application or for the rendering: 

– Surface attributes: 

Representation (triangle, polygon, free-form surface), coefficients, 
normal vector, properties (plane, convex, holes, …), reference to 
vertices (and edges, if necessary) 

– Edge attributes: 

Length, type (round edge, feature line, virtual edge, reference to 
vertices and/or polygon 

– Vertex attributes: 

Normal vector, color, texture coordinates, reference to polygon 
and/or edge 
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8.2 Polygonal Representation 

Comment on edges: 

Obviously, there are two different kinds of 

edges involved in the approximate 

representation: 

– Sharp edges (feature lines) 

• This type of edge should be visible 

– Virtual edges (“inside” a smooth surface) 

• These should be invisible after rendering 

• Interpolative shading algorithms 

  flat, Gouraud, Phong shading (now implemented in hardware) 

Which kind of edge is to be used can be enforced by the 
data structure by storing edges multiple times (see image). 
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8.3 Polygon Rendering with OpenGL 

OpenGL rendering pipeline: 

Both, vertex and fragment shader are programmable 
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8.3 Polygon Rendering with OpenGL 

OpenGL supports several types of polygons: 

GL_POLYGON 

GL_TRIANGLES 

GL_TRIANGLE_STRIP 

GL_TRIANGLE_FAN 

GL_QUADS 

GL_QUAD_STRIP 

Convenience functions exist for certain objects: 

glutSolidTetrahedron glutWiredTetrahedron 

glutSolidCube   glutWireCube 

… 
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8.3 Polygon Rendering with OpenGL 
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8.3 Polygon Rendering with OpenGL 

Beware:  

OpenGL will ignore invalid polygons, e.g. self 

intersecting, non-convex, or non-planar polygons 
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8.3 Polygon Rendering with OpenGL 

There are basically four different ways to render 

geometric objects with OpenGL: 

• Direct rendering 

• Display lists 

• Vertex arrays 

• Vertex buffer objects 

• Vertex array objects 
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8.3 Polygon Rendering with OpenGL 

Direct rendering: 

glBegin (GL_TRIANGLES); 

glNormal3f ( … ); 

glVertex3f ( … ); 

… 

glNormal3f ( … ); 

glVertex3f ( … ); 

glEnd (); 

In case of polygons with a fixed number of vertices, i.e. 

triangles, quads, etc., you can generate several such 

polygons using one glBegin/glEnd block. 
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8.3 Polygon Rendering with OpenGL 

Display lists: 

Stores OpenGL API commands in graphics memory for 
faster access. 

GLuint index = glGenLists (1); 

if (index != 0) { 

 glNewList (index, GL_COMPILE); 

  … // draw something 

 glEndList (); 

} 

glCallList (index); 

Using GL_COMPILE_AND_EXECUTE instead of 
GL_COMPILE makes the glCallList unnecessary. 
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8.3 Polygon Rendering with OpenGL 

Vertex arrays: 

Store vertices in bulk arrays to reduce number of OpenGL function 

calls. 

GLfloat vertices[] = { … }; 

GLfloat normals[] = {… }; 

glEnableClientState (GL_VERTEX_ARRAY); 

glEnableClientState (GL_NORMAL_ARRAY); 

glNormalPointer (GL_FLOAT, 0, normals); 

glVertexPointer (3, GL_FLOAT, 0, vertices); 

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10); 

This constructs a triangle strips using the first ten elements. The 0 as 

argument for the arrays is the stride parameter allowing you to skip 

elements within the arrays. 
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8.3 Polygon Rendering with OpenGL 
Vertex buffer objects (VBO): 

Vertex buffer objects are like vertex arrays, but stored in graphics 
memory for faster access. 

Fill the VBO with data; use indices to remember them: 

GLuint vbovertices, vbonormals; 

GLfloat vertices[] = { … }, normals[] = {… }; 

glGenBuffers (1, vbovertices); 

glGenBuffers (1, vbonormals); 

glBindBuffer (GL_ARRAY_BUFFER vbovertices); 

glBufferData (GL_ARRAY_BUFFER, datasize, 

      vertices, GL_STREAM_DRAW); 

glBindBuffer (GL_ARRAY_BUFFER, vbonormals); 

glBufferData (GL_ARRAY_BUFFER, datasize, 

      normals, GL_STREAM_DRAW); 
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8.3 Polygon Rendering with OpenGL 

Vertex buffer objects (continued): 

Now, draw the previously generated VBOs: 

glBindBuffer (GL_ARRAY_BUFFER vbovertices); 

glVertexPointer (3, GL_FLOAT, 0, (GLvoid *)0); 

glBindBuffer (GL_ARRAY_BUFFER, vbonormals); 

glNormalPointer (GL_FLOAT, 0, (GLvoid *)0); 

glDrawArrays (GL_TRIANGLE_STRIP, 0, count); 

Notes: 

– There is no actual data pointer required for the 
glVertexPointer and glNormalPointer calls since the 
VBOs are used as data repository. 

– The client states need to be set just like with vertex arrays 
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Vertex Array Objects (VAOs) 

 VAOs can store the data of a geometric object to reflect its state so 
that the OpenGL driver can use this information for optimization 

 Steps in using a VAO 

 generate VAO names by calling glGenVertexArrays() 

 bind a specific VAO for initialization by calling 
glBindVertexArray() 

 update VBOs associated with this VAO 

 bind VAO for use in rendering 

 This approach allows a single function call to specify all the data for 
an object 

 previously, you might have needed to make many calls to make 
all the data current  

 

 

8.3 Polygon Rendering with OpenGL 
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Implementing VAOs 

 

// Create a vertex array object 

GLuint vao; 

glGenVertexArrays(1, &vao); 

glBindVertexArray(vao); 

 

     

8.3 Polygon Rendering with OpenGL 
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Storing Vertex Attributes 

 Vertex data must be stored in a VBO, and associated with a VAO, 

so that the VAO can reference to the VBO 

 The code-flow is  similar to configuring a VAO 

 generate VBO names by calling glGenBuffers() 

 bind a specific VBO for initialization by calling  

glBindBuffer(GL_ARRAY_BUFFER, …) 

 load data into VBO using  

glBufferData(GL_ARRAY_BUFFER, …) 

 bind VAO for use in rendering glBindVertexArray() 

 

 

8.3 Polygon Rendering with OpenGL 
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Implementing VAOs 

Create buffer indices/”names”: 

GLuint buffers[2]; 

glGenBuffers(1, &buffers); 

glGenBuffers(ARRAY_SIZE_IN_ELEMENTS(buffers), 

buffers); 

8.3 Polygon Rendering with OpenGL 
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Creating VBOs for the VAOs 

Uploading the vertex data to the graphics card: 

glBindBuffer(GL_ARRAY_BUFFER, buffers[0]); 

glBufferData(GL_ARRAY_BUFFER, 0, sizeof(points), 

points, GL_STATIC_DRAW); 

We now need to tell OpenGL what structure our arrays have using 

glVertexAttribPointer: 

void glVertexAttribPointer(index, size, type, 

normalized, stride, pointer); 

Following our example, this could look like this: 

glEnableVertexAttribArray(0); 

glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, 0, 0); 

8.3 Polygon Rendering with OpenGL 
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Creating VBOs for the VAOs 

Uploading the color data to the graphics card: 

glBindBuffer(GL_ARRAY_BUFFER, buffers[1]); 

glBufferData(GL_ARRAY_BUFFER, sizeof(points), 

sizeof(colors), colors, GL_STATIC_DRAW); 

glEnableVertexAttribArray(1); 

glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, 0, 0); 

 

Note that this creates a structure of arrays (SOA) that the VAO handles 

itself without us having to consolidate all data in a single array of 

structures (AOS). 

8.3 Polygon Rendering with OpenGL 
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Drawing Geometric Primitives 

 For contiguous groups of vertices 

 

 

 

 Usually invoked in display callback 

 You can use something like     

 glBindVertexArray(0); 

 to avoid overwriting your array (you will need to switch 

back for rendering). 

glDrawArrays(GL_TRIANGLES, 0, 

NumVertices); 

8.3 Polygon Rendering with OpenGL 
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8.4 Quadric Surfaces 

Quadric surfaces are described with second-degree 

equations (quadrics). Quadratic surfaces are common 

elements in computer graphics and CAD. Some examples 

are: 

 

 Sphere:  

 

 

 Ellipsoid: 
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8.4 Quadric Surfaces 

OpenGL supports quadric surfaces directly using the 

GLUT or GLU libraries. 

For example: 

 glutSolidSphere (r, xdiscretization,  

        ydiscretization); 

Or: 

 GLUQuadric *quadric; 

 quadric = gluNewQuadric (); 

 gluSphere (quadric, r, xdiscretization, 

      ydiscretization); 
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8.5 Blobby Objects 

Idea: describe the surface or volume of an object as iso-

surface within a scalar field (i.e. a point is part of the iso-

surface if and only if the scalar field has the same so-

called iso-value). The scalar field itself is generated 

through generating primitives (functions). 

Example: point heat sources create a spherical field. By 

adding two of those fields we get a global scalar field. 
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8.5 Blobby Objects 

The appearance of the iso-surface is relatively easy to 

handle if the center points and the individual scalar fields 

are chosen reasonably. The following image shows two 

iso-surfaces which are generated by two radial symmetric 

fields. The two centers of the generating fields approach 

each other when going from top to bottom and left to right 

in the image until they are at the exact same location. 

You can see the merging effect during the transition of 

the smooth iso-surface (C1-continuous in this case) after 

the two centers get close enough. In the opposite case, 

where the centers move apart we would see the iso-

surface separating. 
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8.5 Blobby Objects 
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8.5 Blobby Objects 

Density function: 

The most commonly used density functions     

with     have the following properties: 

– For         is a polynomial 

–        for      is the maximal radius 

–   

–   

–   is monotonically decreasing 

The following graph shows an example for such a density 

function. 
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8.5 Blobby Objects 

Density function (continued): 
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8.5 Blobby Objects 

Application example: flow simulation 
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8.5 Blobby Objects 

Application example: flow simulation 
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8.5 Blobby Objects 

Application example: flow simulation 



8-40 Department of Computer Science and Engineering 

8 Three-Dimensional Object Representations 

8.8 Space Partitioning 

For representing an object using space subdivision 

techniques the object space is split up into several 

smaller elements. For each element, we store if this 

specific element is covered by the object. 

Standard approach: 

– Space is divided by a regular equidistant grid, resulting in a 

grid where each cell has exact identical geometry. 

– In 3-D space, we get cube-shaped cells, which are called 

voxels (volume element). 

 → The name is in analogy to pixel (picture element) in 2-D 
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8.8 Space Partitioning 

Example: volumetric image of a CT-scanned object 
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8.8 Space Partitioning 

Advantages: 

– It can be determined very easily if a given point is part of the 

object or not. 

– It can be checked easily if two objects are connected or 

attached to each other. 

– The representation of an object is unique. 

Disadvantages: 

– There cannot be any cells that are only partly filled. 

– Objects can generally be represented approximately. 

– For a resolution of n voxels in each dimension we need n3 

voxels to represent the object. Therefore, it requires a lot of 

memory → save space using octrees. 
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8.8 Space Partitioning 

Octrees 

An octree is a hierarchical data structure for storing an 

irregular, i.e. not equidistant, sub-division of a 3-D space. 

Idea: 

– The initial element is a cube which covers the entire object 

space. The element can have two states: covered or 

uncovered. 

– In case an element is partly covered, it is 

sub-divided into eight equally sized sub-

elements. 

– The coverage of each element is checked 

recursively until a desired resolution is 

achieved. 
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8.8 Space Partitioning 

Octrees (continued) 

In an octree, each node (element) that is not a leaf has 

eight successors (sub-elements). 

The root of the tree represents the initial cube. For each 

sub-division a fixed numbering scheme is used for the 

sub-elements when inserting a new node as a child. 

Each leaf stores the state of 

its corresponding (sub-) 

cube. 

Each inner node represents 

a partly covered cube. 
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8.8 Space Partitioning 

Octrees (continued) 

Example: representation of a 3-D object using an octree 

a) Object embedded into initial cube. 

b) Representation of the object using a maximal sub-

division of two. 

c) Corresponding octree data structure 
(a) (b) (c) 
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8.8 Space Partitioning 

Octrees (continued) 

Octrees can not only be used for representing 3-D 

objects. A very common use of octrees is the sub-division 

of a 3-D scene. 

– Here, the individual objects are represented by standard data 

structures, e.g. polygons. 

– The state of the cells of the octree is then extended to a data 

structure that stores a list of objects, e.g. polygons, which are 

contained by the cell. 

This results in a significant performance increase for 

algorithms that work on the individual areas of the object 

space locally (e.g. ray tracing). 
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8.8 Space Partitioning 

Quadtrees 

The principle of sub-dividing the 3-D space can be 

generalized to an n-dimensional space. 

For the case n=2 we get the sub-division of a 2-D plane 

resulting in a quadtree, where each inner node of the tree 

has exactly four children. 

Historically, quadtrees are the older data structures. They 

were used initially in the late 60’s of the last century. 

Octrees were derived from quadtrees and used since the 

late 70’s, early 80’s of the last century. 
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8.8 Space Partitioning 

(a) (b) 

Quadtrees (continued) 

Example: sub-division of a 2-D space using a quadtree. 

a) Sub-division of the 2-D space until each cell containes 

maximally one object. 

b) Corresponding data structure. 
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8.8 Space Partitioning 

Binary space-partitioning (BSP trees) 

Octrees and quadtrees both sub-divide at each level 

equally in each dimension, i.e. at the center. 

A BSP tree offers an alternative representation where an 

element can be sub-divided into two sub-elements at an 

arbitrary (hyper-)plane 

– If one sub-element is defined as part of the inside while the 

other sub-element is defined as the outside, a convex 

polyhedron can be represented by using properly chosen 

planes limiting the volume. 

– By uniting convex interior areas, arbitrary concave polyhedra 

with holes can be defined. 
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8.8 Space Partitioning 

BSP trees (continued) 

In the realm of computer graphics, BSP trees are often 

used for determining the visibility of an object. 

Idea: 

– BSP trees can – similar to octrees and quadtrees – be used for 

sub-dividing a 3-D scene (see next example). Here, the 

objects are not bound to a particular rasterization. 

– The object space is to be sub-divided recursively in such a 

way, that each area contains at most one object. 

– Using the locations of those areas relatively to the view point, 

the objects can be sorted according to the viewing distance 

(depth) easily, i.e. it can be determined which objects are 

completely invisible. 
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8.8 Space Partitioning 

BSP trees (continued) 

Example: sub-division of a 2-D scene 

a) Using a quadtree 

b) Using a BSP tree 

(a) (b) 
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8.8 Space Partitioning 

Principal Component Analysis (PCA) 

An ideal choice of dividing planes for a BSP tree is 

offered by the principal component analysis (PCA). Let 

us assume that a complex scene is given by a point cloud 

 Pi IR3  (i=1,…,n) 

(for example object centers or vertices of polygons). 

PCA defines an orthogonal coordinate system e1, e2, e3 

which orientation corresponds to the one of the point 

cloud. 
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8.8 Space Partitioning 

Principal Component Analysis (continued) 

Now, we choose the average of all points as the center of 
the coordinate system: 

 

 

 

 

B has the real eigenvalues λ1, λ2, λ3 and eigenvectors e1, 
e2, e3, i.e. λi·ei = B·ei. The eigenvectors in combination with 
the center c form the coordinate system we are looking 
for. The extent of the point cloud in direction of ei is 
proportional to √λi. 
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