
9-1Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

Chapter 9

Visible-Surface Detection Methods

9-2Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.1 Overview
We saw in the previous chapter how to create 3-D scenes
of different kind of objects. Since parts of some objects
can be occluded by other objects within the scene, the
computer has to determine which object is in the front to
preserve a three-dimensional impression by the viewer.
Therefore, this chapter will introduce some so-called
visibility algorithms that do just that. In particular we will
cover the following topics:

– Back-face culling
– Z-buffer algorithm
– Α-buffer algorithm
– Ray casting

9-3Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.1 Overview
The goal of visibility algorithms is to determining as exactly as
possible which parts of the scene that is to be rendered are visible
and which are invisible from a given view point. Since a high frame
rate is desirable, the user input, e.g. change of view point, should
affect the rendered image immediately. Ideally, a real-time rendering
of the scene should be achieved.
Categories of visibility algorithms:

– Object space
theoretically device independent
numerical precision depends on the machine precision

– Image space
device dependent
numerical precision depends on the resolution of the output device

9-4Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.1 Overview
Invisibility or occlusion occurs, if due to the projection of a
three-dimensional scene onto the image plane different
objects are projected onto the same location.
Then, all those parts of the object are visible, that are
closer to the eye of the viewer. Hence, cannot only
consider the (x,y)-coordinates of the projected objects but
also need to take the depth of the objects (z-coordinate)
into account.

9-5Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.1 Overview
Coherence
In this case, coherence means to exploit local similarities
• Object coherence: if the projection of two objects do

not intersect, then their surfaces do not need to be
tested against each other.

• Surface coherence: properties of neighboring points
on a single surface often do not chance significantly.

• Depth coherence: the depth z(x,y) of a projected
surface can often be computed incrementally.

9-6Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.2 Back-face Culling
Depending on the number and layout of objects within the
scenes the removal of hidden surfaces can be quite
costly. Therefore, a simple test which helps to reduce the
complexity would be beneficial before using the visibility
algorithm.

Such a simple but effective approach is back-face culling.

Depending on the position of the viewer the backsides of
opaque objects are removed since these are occluded by
the object itself, thus invisible.

9-7Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.2 Back-face Culling
Classification of backsides
• First, the normal vectors Ni of all surfaces are

computed
• For back-facing surfaces, one component of the normal

vector points in the view direction, i.e. the scalar
product of the viewing direction and the normal is
positive: p⋅Ni > 0

p N5

N4

N6N1

N2

N3
p⋅N1 < 0 p⋅N4 > 0
p⋅N2 < 0 p⋅N5 > 0
p⋅N3 < 0 p⋅N6 > 0

9-8Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.2 Back-face Culling
Properties

– The number of polygons that are required for rendering the
scene is approximately cut in half by removing the back-facing
surfaces.

– The computational effort for computing the scalar product is
minimal.

– If the scene is composed of a single convex polyhedron back-
face culling already solves the visibility problem.

With scenes consisting of concave polyhedra or more
than one convex polyhedron the objects can occlude
themselves or each other which requires more complex
algorithms.

9-9Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.3 Visibility algorithms
Known visibility algorithms:

– First solution of the hidden-line problem: Roberts, 1963
object space algorithm for convex objects

– Area sub-division (divide and conquer): Warnock, 1969
Exploits surface coherence using quadtrees

– Sample spans: Watkins, 1970
Exploits the scan-line coherence

– Depth list: Newell et al., 1972
Priority list algorithm within object space

Compared to the z-buffer algorithms above techniques did not gain
very much popularity. This is mostly due to the versatility of the z-
buffer algorithm. The listed algorithms all have certain limitations and
can be applied only to specific scenes.

9-10Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Z-buffer algorithm [Catmull, 1975]

– Determines the visibility of pixels
– Works within image space
– Suitable for image output devices using rasters

Principle:
From a functional point of view, the z-buffer algorithm
finds for each pixel within image space the polygon which
covers this specific pixel and the z-value is minimal, i.e. it
is in the front of all other polygons (for this pixel).
To implement the algorithm, additional memory is used
(the so-called z-buffer) which stores for each pixel the
currently smallest z-value.

9-11Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Algorithm

– Initialize frame buffer using the background color
– Initialize z-buffer using the maximal z-value
– Scan convert all polygons in arbitrary order:

• Compute the z-value z(x,y) for each pixel (x,y) of the
polygon

• If z(x,y) is smaller that the current value in the z-buffer at
location (x,y) change the color in the frame buffer at (x,y) to
the color of the current polygon and set the z-buffer at (x,y)
to z(x,y).

After the algorithm is finished, the frame buffer contains
the desired image and the z-buffer its depth values.

9-12Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Example
• Z-values are encoded by numbers where a smaller

number means that the object is closer to the viewer.
• Initialize z-buffer with the maximal z-value.
• Add a polygon with constant z-value.
m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

5

5

5

5

5

5

5

m

5

5

5

5

5

5

m

m

5

5

5

5

5

m

m

m

5

5

5

5

m

m

m

m

5

5

5

m

m

m

m

m

5

5

m

m

m

m

m

m

5

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

+ =

9-13Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Example
• Add another polygon which intersects the previous one.

5

5

5

5

5

5

5

m

5

5

5

5

5

5

m

m

5

5

5

5

5

m

m

m

5

5

5

5

m

m

m

m

5

5

5

m

m

m

m

m

5

5

m

m

m

m

m

m

5

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

5

5

5

5

5

4

3

m

5

5

5

5

5

5

4

m

5

5

5

5

5

6

5

m

5

5

5

5

8

7

6

m

5

5

5

m

m

8

7

m

5

5

m

m

m

m

8

m

5

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

8

7

6

5

4

3

8

7

6

5

4

8

7

6

5

8

7

6

8

7 8

+ =

9-14Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Computing the z-value of polygons
For calculating the z-value z(x,y) of a plane polygon (e.g.
a triangle) we can exploit the scan-line coherence:

Plane: Ax + By + Cz + D = 0
Hence: z = (-D – Ax - By)/C

z(x + dx,y) = z(x,y) - dx⋅A/C
Only one subtraction is required since A/C is constant and
distance between two consecutive pixels on the same
scan line dx=1.

9-15Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Advantages
+ Algorithm is simple to implement (especially in

hardware).
+ Independent of the representation of the objects of the

scene; the only requirement is that it needs to be
possible to compute the z-value for every point of the
object’s surface.

+ No limitation regarding complexity of the scene.
+ No special order or sorting of the objects necessary

9-16Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.4 Z-buffer algorithm
Disadvantages
– Resolution of the z-buffer determines the discretization

of the image depth, e.g. when using 20 bits 220 different
depth values are possible; hence, scenes with great
distances between objects and high detailed objects
are problematic.

– Requires additional memory – memory requirement
can be reduced by sub-division of the image and
processing each sub-image individually.

– Transparency (alpha-buffering) and anti-aliasing can
only be integrated by costly modifications.

9-17Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.5 α-buffer algorithm
Transparent surfaces have – besides the color values –
an additional attribute determining the opacity α∈[0,1]
(0=transparent, 1=opaque). The color of a pixel is
composed partly of the color of a polygon and the color of
all objects located behind at a ratio of α:1- α.

α-buffering works in the same way as z-buffering. The
only difference is that the scene needs to be assembled
back-to-front. Hence, the polygons need to be depth
sorted first.

α−value:
:Color contribution:

0.2 0.5 0.3

(background)

0.2 0.4 0.12
1.0
0.28

9-18Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

Eye

Idea:
• Trace a ray from the view point (eye) through each pixel

within the image plane
• Compute the intersections with all objects of the scene
• The object with the closest intersection is visible at the

current pixel

9.6 Ray casting

Pixel

9-19Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Computing the intersection with the ray

r(t) = e + t·v
e viewpoint (eye)
v viewing direction (Pixel - e)
t ray parameter

Example: Intersection with an implicitly given sphere
║x - m║2 – r2 = 0

Plugging in this equation into the definition of the ray then
gives us (replacing x):

9-20Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
║e + t·v - m║2 - r2 = 0
(e + t·v - m) ·(e + t·v - m) - r2 = 0
((t·v) + (e - m)) ·((t·v) + (e - m)) - r2 = 0
t2v·v + 2tv·(e - m) + (e - m) ·(e - m) - r2 = 0

Solving this quadratic equation with t as the unknown
gives us maximally two intersections:

s1,2 = r(t1,2) = e + t1,2·v
The intersection with the smaller t value with t>0 is
closest to the view point (eye).

9-21Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Example: intersection with a plane
p point on the plane
n normal vector
Plugging in the equation for the ray into the normal form
of the plane:

(x – p) ·n = 0
(e + t·v – p) ·n = 0
(t·v·n + (e – p) ·n = 0
t = (p – e) ·n / v·n

Intersection: s = r(t) = e + t·v

e v

pn

9-22Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
When computing the intersection with a polygon we also
need to verify the resulting point:

– Consider the sum of all triangular areas introduced
by the new point

– If the sum is larger than the area of the entire
polygon, then the point is outside the polygon

p1
p2

p3

p2
p1

p3

s

s

9-23Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Disadvantages:
• For every ray, the intersection with all objects need to

be computed. Depending on the complexity of the
scene, this can mean a lot of computations.

• At a resolution of 1024×1024 and a scene with 100
objects about 100 million intersections need to be
computed!

• With a typical scene, up to 95% of the computational
effort is spent on computing the intersections.

9-24Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Speed-up approaches
• Transformation of the rays onto the z-axis; if all objects

are transformed using the same transformation, then
the intersection will always occur at x=y=0.

• Bounding box: for complex objects, a simple quad is
computed that encloses the object; Then, if there is no
intersection with the bounding box the ray will not
intersect the enclosed objects either.

• Avoiding the computation of unnecessary intersections:
hierarchies and space sub-division.

9-25Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Hierarchies
• Tree-like data structures of bounding boxes

– Leafs: objects of the scene
– Inner node: bounding box of objects with sub-trees

• If a ray does not intersect a bounding box of an inner
node, all objects within this bounding box, i.e. the
node’s sub-tree, does not need to be checked.

• Problem: it might be difficult to generate a suitable
hierarchy.

9-26Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Space sub-division
• Top-down approach
• First, the bounding boxes of a scene are computed.
• Then, this bounding box is sub-divided into equal parts.
• Each sub-division includes a list of all objects, that are

contained completely or partly by the sub-division.

9-27Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.6 Ray casting
Space sub-division (continued)
• Only if a ray intersects a sub-division, the intersections

with the contained objects need to be computed,
• Traverse the sub-divisions in the direction of the ray.

9-28Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
OpenGL implements two of the previously described
visibility methods:

– Back-face culling
– Depth-buffer (z-buffer,α-buffer)

The implemented depth-buffer works fine in case where
there are only opaque objects. However, the problem with
the depth-buffer is that it requires additional care if there
are transparent objects within the scene. Transparent
objects need to be depth-sorted manually!

9-29Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
OpenGL back-face culling
To enable OpenGL’s back-face culling you need to issue
the command:

glEnable (GL_CULL_FACE);

glCullFace (mode);

The parameter mode can have the values GL_BACK
(remove back-faces), GL_FRONT (remove front faces), or
GL_FRONT_BACK (remove both front and back faces).
To disable back-face culling you can use the command:

glDisable (GL_CULL_FACE);

9-30Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
OpenGL depth-buffer
First, we need to request a visual that supports depth-
buffering from the window system. With GLUT this can be
done by adding GLUT_DEPTH to the list of parameters
when initializing the display:

glutInitDisplay (GLUT_SINGLE, GLUT_RGB,
GLUT_DEPTH);

The depth-buffer values are initialized by:
glClear (GL_DEPTH_BUFFER_BIT);

9-31Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
OpenGL depth-buffer (continued)
The depth-buffer can be enabled or disabled if necessary:

glEnable (GL_DEPTH_TEST);

glDisable (GL_DEPTH_TEST);

You can also add graphics primitives, e.g. triangles or
polygons, without changing the depth-buffer, i.e. setting
the depth-buffer read-only:

glDepthMask (GL_FALSE);

To make the depth-buffer writable again issue:
glDepthMask (GL_TRUE);

9-32Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
OpenGL depth-buffer (continued)
In addition, you can manipulate the way the depth values
are compared by changing the test condition:

glDepthFunc (testCondition);

The following parameters are valid:
GL_LESS

GL_GREATER

GL_EQUAL

GL_NOTEQUAL

…

9-33Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
Additional depth-cues
Sometimes it is desirable to enhance the three-
dimensional impression by adding more depth-cues.
Common depth-cues are:

– Visibility (objects in the front occlude objects in the
back

– Shadows and shades
– Change in brightness reflecting distance (objects in

the back are darker)
OpenGL does not support shadows directly. To create
shadows, special shader-programs can be used.

9-34Department of Computer Science and Engineering

9 Visible-Surface Detection Methods

9.7 OpenGL Visibility Detection Methods
Additional depth-cues
To achieve a decrease in brightness based on the
distance to the view point, we can introduce a linear
depth function:

In OpenGL, we can then use fog to achieve the desired
effect:

glEnable (GL_FOG);

glFogi (GL_FOG_MODE, GL_LINEAR);

minmax

max)(
dd
dddfdepth −

−
=

	Chapter 9
	9.1 Overview
	9.1 Overview
	9.1 Overview
	9.1 Overview
	9.2 Back-face Culling
	9.2 Back-face Culling
	9.2 Back-face Culling
	9.3 Visibility algorithms
	9.4 Z-buffer algorithm
	9.4 Z-buffer algorithm
	9.4 Z-buffer algorithm
	9.4 Z-buffer algorithm
	9.4 Z-buffer algorithm
	9.4 Z-buffer algorithm
	9.4 Z-buffer algorithm
	9.5 α-buffer algorithm
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.6 Ray casting
	9.7 OpenGL Visibility Detection Methods
	9.7 OpenGL Visibility Detection Methods
	9.7 OpenGL Visibility Detection Methods
	9.7 OpenGL Visibility Detection Methods
	9.7 OpenGL Visibility Detection Methods
	9.7 OpenGL Visibility Detection Methods
	9.7 OpenGL Visibility Detection Methods

