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Addendum

Vector Review
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Coordinate Systems

x

y

z

Right handed coordinate system
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Vector Arithmetic
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Vector Magnitude

The magnitude (length) of a vector is:

A vector with length=1.0 is called a unit vector

We can also normalize a vector to make it a unit 
vector:
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Dot Product
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Dot Product
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Example: Angle Between Vectors

How do you find the angle θ between vectors a and b?

a

b θ
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Example: Angle Between Vectors
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The dot product is a scalar value that tells us something 

about the relationship between two vectors

If  a·b > 0 then  θ < 90º

If a·b < 0  then  θ > 90º

If  a·b = 0 then  θ = 90º (or one or more of the vectors is 

degenerate (0,0,0))

Dot Products with General Vectors
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a

u

a·u

If  |u|=1.0  then a·u is the length of the projection

of a onto u

Dot Products with One Unit Vector
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A plane is described by a point p on the plane 

and a unit normal n. Find the distance from point 

x to the plane

•p

n

• x

Example: Distance to Plane
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The distance is the length of the projection of x-p onto n:

•p

n

• x

x-p

  npx dist

Example: Distance to Plane
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Dot Products with Unit Vectors

b
θ a

a·b = 0

0 < a·b < 1

a·b = -1

a·b = 1

-1 < a·b < 0

 cos
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 xyyxzxxzyzzy
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0

sin









ba

ba

baba

ba



area of parallelogram ab

is a vector perpendicular to both 

a and b, in the direction defined by 

the right hand rule

if a and b are parallel

Properties of the Cross Product
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Find the unit length normal of the triangle defined by 3D 

points a, b, and c

a
b

c

Example: Normal of a Triangle
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   
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Example: Normal of a Triangle
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Find the area of the triangle defined by 3D points a, b, 

and c

a
b

c

Example: Area of a Triangle
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   acab 
2

1
area

b-a

c-a

a
b

c

Example: Area of a Triangle
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An object is at position p with a unit length 

heading of h. We want to rotate it so that the 

heading is facing some target t. Find a unit axis a

and an angle θ to rotate around.

•

•

p

h

t

Example: Alignment to Target
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Example: Alignment to Target

•

•

p

h

tt-p

θ

a
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Addendum

Cramer’s Rule
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This is a great method. 

Cramer’s Rule is a neat way to evaluate systems and if 
you put the work in now you’ll do fine.  It can be used for 
any size (2 by 2, 3 by 3 or even larger) system.  

It is easy to memorize and fast.  

I’m going to show you where Cramer’s Rule comes from; 
but first, some definitions
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Definitions

Determinant – a square array

2nd Order Determinant – a 2 by 2 array

3rd Order Determinant – a 3 by 3 array

Elements – The things in the array
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What does a determinant look like?  

A 2nd order determinant looks like this

And the value of the determinant =

Diagonal down right – diagonal down left 

a b

d e

ae bd

aebd
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Examples

Evaluate

1.

2.  

2 2

6 1

3 1

1 3
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Why is this useful for systems?

Lets work through an elimination example using all 

variables; then we can see how the determinant will be 

useful in solving.
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 

 

ax by c

dx ey f
Lets 

eliminate y

 

 

aex bey ce

bdx bey bf

  aex bdx ce bf
  x(ae bd) ce bf






ce bf
x

ae bd

 

 b

a x b y c

dx

e e

bey

e

bf

Look familiar?



c b

f e
x

a b

d e
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If you apply the same process but eliminate x

So, what does Cramer’s Rule say?






af cd
y

ae bd


a c

d f
y

a b

d e
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Given a system

What do you think is the trick?

 

 

ax by c

dx ey f



c b

f e
x

a b

d e



a c

d f
y

a b

d e

Denominators 

are coefficient 

determinants

Replace solutions in 

y column to solve 

for y
Replace solutions in 

x column to solve 

for x

Cramer’s Rule
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Examples

Solve using Cramer’s Rule

1.

2.

  

 

6x 7y 9

   x y 5

  

 

5x 4b 1

2x b 10
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Cramer's Rule:  For the system of equations Ax = y,  

where A is an nxn nonsingular matrix, the solution for the 

ith endogenous variable, x
i
, is 

x
i
= |A

i
|/|A|  

where the matrix A
i
represents a matrix that is identical 

to the matrix A but for the replacement of the ith column 

with the nx1 vector y.

Cramer’s Rule in General
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Linear Systems in Matrix Form
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bxA 

Each side of the equation

bAxAA
11  

Can be multiplied by A-1 :

Due to the definition of A-1: xxIxAA 1

Therefore the solution of (2) is:

(2)

bAx
1

Solution of Linear Systems
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Consistency (Solvability)
• A-1 does not exist for every A

• The linear system of equations A·x=b has a solution, or 

said to be consistent IFF

Rank{A}=Rank{A|b} 

• A system is inconsistent when

Rank{A}<Rank{A|b} 

Rank{A} is the maximum number of linearly independent columns 

or rows of A. Rank can be found by using ERO (Elementary Row 

Oparations) or ECO (Elementary column operations).
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Math for CS

Elementary row and column operations

The following operations applied to the augmented matrix 

[A|b], yield an equivalent linear system

– Interchanges: The order of two rows/columns can be 

changed

– Scaling: Multiplying a row/column by a nonzero 

constant

– Sum: The row can be replaced by the sum of that row 

and a nonzero multiple of any other row.

One can use ERO and ECO to find the Rank as follows:

EROminimum # of rows with at least one nonzero entry

or

ECOminimum # of columns with at least one nonzero entry
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An inconsistent example: Geometric interpretation


























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42

21

2

1

x

x










00

21
Rank{A}=1

Rank{A|b}=2 > Rank{A}

ERO:Multiply the first row with 

-2 and add to the second row










3

4

0

2

0

1
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Uniqueness of solutions

• The system has a unique solution IFF

Rank{A}=Rank{A|b}=n

n is the order of the system

• Such systems are called full-rank systems
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Full-rank systems

• If Rank{A}=n 

Det{A}  0  A-1 exists  Unique solution
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Math for CS

Rank deficient matrices

• If Rank{A}=m<n

Det{A} = 0  A is singular so not invertible 

infinite number of solutions (n-m free variables)

under-determined system
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Rank{A}=Rank{A|b}=1
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Ill-conditioned system of equations

• A small deviation in the entries of A matrix, causes a 

large deviation in the solution.
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Math for CS

Ill-conditioned continued.....

• A linear system of 

equations is said to be 

“ill-conditioned” if the 

coefficient matrix tends 

to be singular
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Gaussian Elimination

– By using ERO, matrix A is transformed into an upper triangular 

matrix (all elements below diagonal 0)

– Back substitution is used to solve the upper-triangular system
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Pivotal Element
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The first coefficient of the first row (pivot) is used to zero out first coefficients 

of other rows. In terms of numerical stability it is usually best to use the 

largest element in the column, i.e.
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First step of elimination
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First row, multiplied by appropriate factor is subtracted from other rows.
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Second step of elimination
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Pivotal element

The second coefficient (pivot) of the second row is used to zero out second coefficients of

other rows.
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Second step of elimination
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Second row, multiplied by appropriate factor 

is subtracted from other rows (ERO). 
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Finally, the following system is obtained:
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The answer is obtained as following:
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If we now define a matrix R

and another matrix L = (lij) with
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then we get: A = L ∙ R
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Note that the matrices R and L are upper and lower 

triangular matrices. Hence, we can solve the linear 

equation system in two steps:

L c = b

R x = c

Solving these two systems can be achieved similar to 

the using a similar algorithm we used for back 

substitution.

Also note that solving the system of linear equations for 

different solutions b does not require a repetition of the 

Gaussian elimination algorithm.
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Cholesky decomposition

If the matrix A is symmetric, a solution for the LU 

decomposition is even easier since there exist the 

following decomposition for those matrices:

A = CTC

where
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How can we compute C? Let us look at the equation:

Hence:































































nnn

n

nn

n

nnnn aa

aa

c

cc

ccc

c

c

























1

111111

21

12

11

00

0

0

00

nlk
c

cca

ccca

caccca

kk

k

j

jljkkl

kl

k

j

jljkkl

k

j

jkkkkk

k

j

jkjkkk
























for       

1

1

1

1

1

2

1


