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1 Three-Dimensional Object Representations

1.1 Overview

The main goal of three-dimensional computer graphics Is
to generate two-dimensional images of a scene or of an
object based on a a description or a model.

The internal representation of an object depends on
several implications:

I The object may be a real object or it exists only as a computer

representation
I The manufacturing of the object is bound closely to the
visualization:
A Interactive CAD systems

A Modeling and visualization as a tool during design and
manufacturing

A More than just 2-D output possible!
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1 Three-Dimensional Object Representations

1.1 Overview

Implications (continued)

I The precision of the internal computer representation depends
on the application. For example, an exact description of the
geometry and shape in CAD applications vs. an approximation
sufficient for rendering of the object.

I For interactive applications, the object may be described by
several internal representations. These representations may
be generated in advance or on-the-fly.

A Level-of-detail (LOD) techniques
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1 Three-Dimensional Object Representations

1.1 Overview

The modeling and representation of an object involves the following
In particular:

AGeneration of 3-D geometry data

CAD interface, digitizer, laser scanner (reverse engineering), analytic
techniques (e.g. sweeping), image (2-D) and video (3-D) analysis

ARepresentation, efficient data access and conversion

Polygonal nets (e.g. triangulation), is the most common representation

for rendering objects. Alternatives: finite elements (FEM), constructive

solid geometry (CSG), boundary representation (B-rep), implicit surfaces

(i sosurfaces), surface el ements (su

AMani pul ati on of objects (change s

e.g. Boolean operations, local smoothing, interpolation of features (e.g.
boundary curves), fiengravingo of ge
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1 Three-Dimensional Object Representations

1.1 Overview

The topics of this chapter will be:
I Polygonal representations

I Rendering Polygons with OpenGL

I Quadric surfaces

i Blobby Objects

I Spline representations
A Cubic splines

A Bézier splines

A B-Splines

A Rational splines
I Octree, BSP tree
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1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Properties/Characteristics:

AThe precision of the approximation (number and size of

polygons) can be chosen depending on the application,
but several questions arise, e.g.:

I What polygonal resolution is required for a precise
representation?

I What polygonal resolution is required for the renderer to make
the piecewise approximation appear smooth?

I What is the correlation between number of polygons and the
size of the final display of the object?

Often the following rule of thumb is used: Choose the
polygonal resolution based on the curvature of the object

m
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1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Properties/Characteristics:
AClassic representations of three-dimensional objects in
computer graphics

AObiject is represented by a net of polygonal surfaces
(usually triangles) E piecewise linear interpolation

AThe polygonal surfaces are usually an approximation of
the curved surface, represe
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1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Hierarchy of the representation:

Concept: The object constitutes of several surface

elements. Each surface element is represented

by several polygons. Every polygon has
vertices and edges.

.
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Object —  Surfaces —=

Polygons —  Edges/vertices
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1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Hierarchy of the representation (continued):

object
Topology:

surfaces

polygons

edges

vertices

T 11 . : :
WRIGHT STATE Department of Computer Science and Engineering 19
UNIVERSITY



1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Hierarchy of the representation (continued):
Data structure:

Surface _'
o ! = v P = ProEower o Polyzons
- T—h—- L] = F]  ees —= e E.dges
| T ¥ L o
':f - IRl - —— | " VE_IFL‘X
ref, no,
- Vertices
N - ] [ L Vertex are store
only once
THEEETT _ _ _
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1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Comment on data structures:

Data structures can contain 1 besides geometry
Information i special attributes required for the
application or for the rendering:

I Surface attributes:

Representation (triangle, polygon, free-form surface), coefficients,
nor mal vector, properties (pl ane,
vertices (and edges, if necessary)

I Edge attributes:

Length, type (round edge, feature line, virtual edge, reference to
vertices and/or polygon

T Vertex attributes:

Normal vector, color, texture coordinates, reference to polygon
and/or edge
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1 Three-Dimensional Object Representations

1.2 Polygonal Representation

Comment on edges:

Obviously, there are two different kinds of
edges involved In the approximate
representation:
I Sharp edges (feature lines)
A This type of edge should be visible
i Virtual edges (Ainsideo a smoot
A These should be invisible after rendering

A Interpolative shading algorithms
E flat, Gouraud, Phong shading (now implemented in hardware)

Which kind of edge is to be used can be enforced by the
data structure by storing edges multiple times (see image).

Surfaces —  Polygons
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
OpenGL rendering pipeline:

Both, vertex and fragment shader are programmable
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

OpenGL supports several types of polygons:
GL_POLYGON
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
GL_QUADS
GL_QUAD_STRIP

Convenience functions exist for certain objects:

glutSolidTetrahedron glutWiredTetrahedron
glutSolidCube glutWireCube
é
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

Beware:

OpenGL will ignore invalid polygons, e.g. self
Intersecting, non-convex, or non-planar polygons

I ] ) )
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

There are basically four different ways to render
geometric objects with OpenGL.:

ADirect rendering
ADisplay lists

AVertex arrays
AVertex buffer objects
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

Direct rendering:
glBegin (GL_TRIANGLES);
gl Nor mal 3f ( é& ) ;
gl Vertex3f ( é& ) ;
é

gl Nor mal 3f ( ¢é& ) ;
gl Vertex3f ( ¢é& ) ;
glEnd ();
In case of polygons with a fixed number of vertices, i.e.

triangles, quads, etc., you can generate several such
polygons using one giBegin /glEnd block.
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

Display lists:
Stores OpenGL APl commands in graphics memory for
faster access.
GLuint index = glGenLists (1);
If (index !=0) {
gINewList (index, GL_COMPILE);
é // draw somet hing
glEndList ();
}
glCallList (index);

Using GL_COMPILE_AND_EXECUTikstead of
GL_COMPILEmMakes the glCallList unnecessary.
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

Vertex arrays:

Store vertices in bulk arrays to reduce number of OpenGL function
calls.

GLfloat vertices[] = { ¢é& };
GLfl oat normals[] = {é };
glEnableClientState (GL_VERTEX ARRAY);
glEnableClientState (GL_NORMAL_ARRAY);
gINormalPointer (GL_FLOAT, 0, normals);
glVertexPointer (3, GL_FLOAT, O, vertices);
giDrawArrays (GL_TRIANGLE_STRIP, 0, 10);
This constructs a triangle strips using the first ten elements. The 0 as

argument for the arrays is the stride parameter allowing you to skip
elements within the arrays.
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

Vertex buffer objects (VBO):

Vertex buffer objects are like vertex arrays, but stored in graphics
memory for faster access.

Fill the VBO with data; use indices to remember them:
GLuint vbovertices, vbonormals;
GLfl oat vertices[] = { € }, nor mal s|
glGenBuffers (1, vbovertices);
glGenBuffers (1, vbonormals);
glBindBuffer (GL_ARRAY_BUFFER vbovertices);
glBufferData (GL_ARRAY_BUFFER, datasize,
vertices, GL_ STREAM_DRAW);
glBindBuffer (GL_ARRAY_BUFFER, vbonormals);
glBufferData (GL_ARRAY_BUFFER, datasize,
normals, GL_STREAM_DRAW);
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1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

Vertex buffer objects (continued):

Now, draw the previously generated VBOSs:
glBindBuffer (GL_ARRAY_BUFFER vbovertices);
glVertexPointer (3, GL_FLOAT, 0, (GLvoid *)0);
glBindBuffer (GL_ARRAY_BUFFER, vbonormals);
glINormalPointer (GL_FLOAT, 0, (GLvoid *)0);
glDrawArrays (GL_TRIANGLE_STRIP, 0, count);

Notes:
I There is no actual data pointer required for the
glVertexPointer and gINormalPointer calls since the

VBOs are used as data repository.
I The client states need to be set just like with vertex arrays
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Motivation:

Free-form-curves and T surfaces became very popular
during the last decade, particularly due to their application
In several engineering disciplines. Free-form-curves are
nowadays a fundamental design method in CAD/CAM
software. This section will introduce basic concepts.

Specifically, we will cover:
I Interpolation using polynomials and splines
i Bézier curves, B-splines
I Rational B-splines
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Surface consisting of several segments (patches)

1-24
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1 Three-Dimensional Object Representations

1.6 Spline Representations
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1 Three-Dimensional Object Representations

1.6 Spline Representations
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1 Three-Dimensional Object Representations

1.6 Spline Representations

e

—
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s

Piecewise smooth surface reconstruction
based on a network of curves
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1 Three-Dimensional Object Representations

1.6 Spline Representations

T

Usually, more than one possible solution exist to the interpolation problem
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Interpolation problem:
Let (t,f) i=0,.,n

be a set of pairs of real numbers with pairwise unequal
nodes t. ,

t 7t for i7 ]
A polynomial p of degree less than n+1, ;
p(t) = Z C. t
with real coefficients c; is called interpolatioh:cf)roblem of
(t, 1)
if p(t)= f for i=0,.,n
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Questions:
ADoes a unique solution to this problem exist?

Als there an algorithmic method to solve the problem? Is
it efficient enough?

Als the quality good enough for the application?

Theorem 1: There exist a unique solution to the
Interpolation problem.

WRIGHT STATE Department of Computer Science and Engineering 1-30



1 Three-Dimensional Object Representations

1.6 Spline Representations

Proof:

Plugging in the definition of the polynomial into the interpolation
problem results in a system of linear equations:

(1 t, to 3 V \ |(f0\|
-

3t || c1 f

tht,fs JLJLJ

or A'c = f.The matrix Ais the well-known Vandermonde matrix
with the property:
det A= Il (-t
IR HES

Since A\is regular, we have proven the theorem.
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Note: Let i:(xi . zi)EIRS be a set of n+1 points at
different nodes t..

Then, an interpolation 3-D curve p with p (t.)= f

can be determined in an analog fashion by solving the
linear equation system: Ac= f

Here, the coefficients are vectors, I.e. C. € IR
y

parametrisation

For each coordinate, we get a linear system with an
identical matrix A.
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Lagrange interpolation

The solution of the linear equation system of the
interpolation problem usually has complexity O(n?3).
However, we would prefer a set of basis functions with
the property:

[L (1)) such that B (t _):5_

| Ji=o0 P\

Using these so called blending functions simplifies the
matrix of the linear equation system to the identity matrix,
e.c=f [(i=o0,..., n ) and the resulting polynomial can
be written as p(t)=> L (t]
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Theorem 2: The Lagrange polynomials
n
t—t
K

L= 11

k =0,k #i ti_tk

fulfill the desired property:
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Proof:
Plugint,
Lt —t
i k
I‘| (tl o H =1
k=0, k #i t. t K
and for
t j —1 j
jZi: L. (t | )= =0
] t —t
| j
TR . _ _
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Lagrange polynomials

T 11 . : :
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Example:

1. n=1, i.e. linear interpolation

Interpolate the points (X,,Y,) and (X, ¥;) (use X,,X; as nodes)

X - X _ X X
Lo(x) - - Ll(x) B — }
Xy X, X1 %o
_ X7 X X7 Xy _ Yo (XTx) Ty (X, T x)
F’()() — )/O - 1 4 )/1 - 0 = 0 1 - 1 0
XO Xl Xl X0 X0 X1
2. Interpolate the following set of points: i |x |y
0|0 |1
111 |0.5
212 (0.2

AR ] , . .
WRIGHT STATE Department of Computer Science and Engineering
UNIVERSITY
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1.6 Spli

1 Three-Dimensional Object Representations

line Representations

L,(x) =

L, (x) ~

L,(x) ~

P(x)~

- x -%x,

_$-1-%- 2/ 1 g

—

—3x7T 2-
< - x/§ « — $-1-%-2_ 2
’(‘XO/"(_XZ O/’< 2:: W+ oy

<-
’(‘XO:’Q_XZ f 0-— f 2 —
< - -
<$-

1

-y %5
<€ 5%

2

0-%-1— 1q.

\/”\/”\/“

0-6-1_ >

1 ~ ~ 1 ~
—&2 —3xt 21" < x°+t2x=>05" —&2 ~ x-=>0.2
2 2

0.1°'x°~0.6"xT1
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Example:
. . . . i
cubic Lagrange polynomials with uniform nodes t. = —
3
THEEETT . _ _
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1.6 Spline

1 Three-Dimensional Object Representations

L, (1) = [

L, ()

L, (1)

Representations
EEEEE
t,~t, )\t Tt -2 -2 -1
ﬁ_2ﬁ2%{_§——§ﬁ+9ﬁ—%¢+1
=l b,
t, Tt Nt Tt ANV A
ﬁ_2ﬁ2%¢_§:—%ﬁ+%ﬁz—m

L,(17t) = ~&t°+18t° ~ 2t

= — = 9,3 — 9.2
L(t) T L, A7t)~= St°~ >t" 't

[T Tt [
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Newton interpolation

The Newton scheme has the advantage of being a
dynamic scheme, i.e. additional nodes can be added
without having to re-compute all basis functions.

For this scheme, the following basis functions are used:
| —1

N i(t)=k1:[0(t—tk)

with properties N tj)=0 for i>]

N ti);éo.
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1 Three-Dimensional Object Representations

1.6 Spline Representations

The coefficients a, for the solution

p(t)=F an, (¢

Are computed recursively using the k-th divided

differences f [t ,....t ]
fle =1 [j=0,....n]
_ f [tj-l-l""’tj-l-k]_f [tj""’tj-l-k—l]
et ls
t., —t
jtk ]
a. =f[t,,....t]
WRI STAYE Department of Computer Science and Engineering 142
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1 Three-Dimensional Object Representations

1.6 Spline Representations

This results in the following scheme:

k=0 1 2 3

t, f,=1[t]=2,

f[to,t1]=a1
ty F= [tl] f[to,tl,t2=a2

f[t1 tz] f[to ..... t3]=
t, f2=f[t2] f[tl,tz,t3]

f[tz,t3]
t, fo=1[t,]
TSR]

k

WRIGHT STATE
UNIVERSITY
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Note: the coefficients a can also be determined using a
linear equation system. Since the matrix of the resulting
linear system is a triangular matrix, solving this system
would be equivalent to the scheme using the divided
differences.

Example: (t., f .)E[(O,l); 2.3); (4’5)}

t | f
0| 1=3
1=3
2|3 0=3
1 P(X) = agta; (X-tp)+a(X-1p)(X-1y)
4|5 =1+ X
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Beware: the interpolating polynomial interpolating n+1

nodes is not necessarily of degree n, but at most
of degree n.

Note:

I The order of the nodes does not change the result when using
Newt onbés scheme

I Interpolating a continuous function f on the interval [a,b] using
n points does not necessarily ensure that the series of
interpolating polynomials f, converges to f.

Conclusion: Using more points does not
necessarily improve the quality of
the resulting interpolating polynomial!
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1 Three-Dimensional Object Representations

1.6 Spline Representations
Disadvantages of polynomial interpolation
(particularly with respect to CAD/CAM):

I Interpolating polynomials of degree larger than 5
often are quite fAwavyo

Remedy: introduce additional conditions, such as
minimization of folding energy

(Y splines)
I Each point that is to be interpolated influences the
resulting curve globally

Remedy: Use basis functions with local influence
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1 Three-Dimensional Object Representations

1.6 Spline Representations

The higher the degree of a polynomial, the more wavy its
shape, especially at the end points of the interval. The
parameterization (choice of nodes) influences the quality

of the resulting curve.

WRIGHT STATE Department of Computer Science and Engineering 147

UNIVERSITY



1 Three-Dimensional Object Representations

1.6 Spline Representations

Interpolating derivatives

Lett;( 1 = O ,bediffargént nodes and for each i the
values of the first n.-1 derivatives are known:

£.f0, @D (f =0, é, n)

We are looking for a polynomial of degree = m = 2 n ~1
m _ i=0
p(t) = 2 ct’
j=0

V4

suchthat pO(t) =fO (i =0, én;-1)j =0, é, 1
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Plugging in the desired conditions into the polynomial
equation T similar to the previous interpolation problem i
results in a linear system of equations.

Theorem 3: There is a unique solution to this linear
system of equations

Proof: Overall, there are m+1 conditional equations with
m+1 coefficients. The system is reqgular if the
homogenous problem (f=0) only allows the trivial
solution. This is exactly the case: since p has exactly m+1
zeros (including multiplicities) and p is of degree O mthe
polynomial p has to be zero.
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Example: We are looking for the cubic polynomial which
Interpolates f(0), f 0 ,(f(D),)and f 6 .(AXkybic polynomial
can be described as:

p(t) = ct° + c,t* + ¢yt + ¢
And the derivative:

po(t X+2ct8q@

This gives us:
f(0) = ¢
fo(0) = ¢
f(1) = Cg+ Cy + Gy + G
fo(l)+26+Q@3C

WRIGHT STATE Department of Computer Science and Engineering 1-50



1 Three-Dimensional Object Representations

1.6 Spline Representations

Or In matrix form:

1 0 0 o)c,) [ f()"
0 1 0 ollc, | I+
1 1 1 1c, f (1)
0 1 2 3/ic,/ \f'@).

T 11 . : :
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Hermite interpolation:

In analogy to the Lagrange interpolation, we can find
basis polynomials that are optimal for interpolating
derivatives. These are called Hermite polynomials.

Example: we are looking for cubic Hermite polynomials
for the system resulting from the previous example. The
coefficients can be determined by inverting the matrix:

(¢,) (1 0o o o) t())
c,!| o 1 0o olfyo)
c, -3 -2 3 “1y f()
c.) L2 1 -2 1 Ni@)
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Then, the resulting Hermite polynomials are:
| H H,

H (t)=2t°~3t"*+1 1-

o — .3 _ 2
H ()Tt ~2t° Tt

- _ 3 2
H ., (t) 2t~ T 3t

H, (t) = t°—t° >
1
The Hermite polynomials have the following properties:
H. ()= 9, H.,'(j) =0 o
_ _ 1, ]~ 0,1
H, ()= 0 H,'(1) =9,

Interpolation: x (1) = H f(0)* H f()* H 1'(0)* H f'(1)
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Bézier segments:

Modeling of individual curve segments is easier and more
Intuitive if there is a correlation between the coefficients
(design parameters) and the geometry of the curve.
Interpolated points are not very suitable for this matter
because the waviness cannot be controlled by the
Interpolated points. Bézier segments are polynomial
curves, which are defined through a control polygon.
This control polygon is approximated by the resulting
curve, but only interpolates at the end points. The
vertices of the control polygon (control points, here:
Bézier points) constitute the coefficients of the
representation using Bernstein polynomials (new basis).

WRIGHT STATE Department of Computer Science and Engineering 154



1 Three-Dimensional Object Representations

1.6 Spline Representations

Bézier segments:

By changing the geometric layout of the control polygon,
the curve can be easily modified. One of the properties of
Bézier segments is that the number of inflection points of
the curve is less or equal to the number of inflection
points of the control polygon. This variation diminishing
property allows for good control of the waviness of the
curve.

Bézier segments have many applications and are often
used for modeling of composite curves and surfaces
(Béezier splines). The Beézier technique is further
explained in the following.
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Bézier segments: the de Casteljau algorithm

The de Casteljau algorithm [Cast.59][B6hm84]
generalizes linear interpolation of polynomial curves. Let
b, and b, be two points and t a parameter between 0 and
1. Then t uniquely defines a point on the linear segment
connecting by and b;:

X(t):(l't)b0+tbl /M/‘bl
t -
X(t)
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1 Three-Dimensional Object Representations

1.6 Spline Representations

de Casteljau algorithm

D b
Q
v X
b, linear
b, b,
X(1)
by
cubic b,
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1 Three-Dimensional Object Representations

1.6 Spline Representations

de Casteljau algorithm

Letb ( I = 0 ,b@n+hBézier points. Then, the de
Casteljau algorithm for evaluating a Bézier segment is
based on the following recursion:

X (t) = b, b, by p2,

Example: n=3 b,
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1 Three-Dimensional Object Representations

1.6 Spline Representations

de Casteljau algorithm

b,
N\
b — b

4 4 6

1

— b__

n—1

N

b 3 — b, = X(

5 o

Scheme of the de Casteljau algorithm

Every point bJ is a convex combination of its
predecessors bl-l and b,,'1, weighted using (1-t) and t,
respectively.

bl(t) is a polynomial of degree j (or less).
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1 Three-Dimensional Object Representations

1.6 Spline Representations

Properties of Bézier segments

1) Convex hull: the curve X(t), € [0,1] is located within
the convex hull of the control polygon, i.e. there are
weights ¢ =0 with

X ()= 2 2D

i=0

Yoa =g

2) Varlatlon diminishing: an arbitrary straight line
Intersects the curves as often or less than the control
polygon (within the plane).

3) End point interpolation: X(0) = by, X(1) = D,

WRIGHT STATE Department of Computer Science and Engineering
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1 Three-Dimensional Object Representations

1.6 Spline Representations

4) Affine invariance: let G be an affine mapping
G(p) = Ap+v. Then, G(X(t)) = Y(t), with the curve Y
being defined by the transformed Bézier points U(b,).

Y (1)
X(t)

5) Bernstein basis: the de Casteljau algorithm results in
a curve of (maximal) degree n. As basis the so called
Bernstein polynomials are used:

n

X (t)= 2. bB"(t), B"(t)= [ ]ti(l_t)”i

i=0 I
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6) Properties of the Bernstein polynomials: the
Bernstein polynomials are symmetric, not negative
between [0,1], and the sum of all polynomials is one:

B'(t)= B . (171)
B"(t)= 0, t€[0]1]
> B"(t) =1 1 > 1 3
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7) Symmetry: inverting the sequence of the control
points b; of X(t) results in a Bézier segment Y (t) with
Inverted parameterization: Y(t) = X(1-t).

8) Pseudo-local control: the Bernstein polynomials
Influence the curve globally, however, their maxima
are located in the proximity of the control points:
max(B") = B,"(i/n).

Moving a control point b; results in a limited change of
the curve. The change is maximal at t=i/n.
(Interpolated polynomials do not allow for pseudo-
local control). However, small changes to the control
points can change the curve significantly.
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9) Degree increase: a Bézier segment of degree n can

be represented as a Bézier segment of degree n+1 (of

course, the actual degree will be the same but the
representation will use the higher degree Bernstein

polynomials):

|
b '~ bil"'(l_ .
nt1 \ n"‘]_)

bn = b,n+1
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10)Subdivision: a Bézier segment can be separated at a
location t into two Bézier segments using the de
Casteljau algorithm. The new control points are by
andb™ (i =0, é, n)
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11)Derivative: the derivative of a Bézier segment of
degree n can be represented as a Bézier segment of
degree n-1 using the control points

bd =, )b (i =0, 6, n), -

b, b,

X(t)

(scaled by 1/n)
g
This can be concluded from the foIIowingZequation

n-1 —

iBi" (t) = n(B ., (t) ~ B (1)) B"",B" =0
dt
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Derivatives

For higher derivatives you can use the following recursive
formula:

d P’ n! S .
X (t) = 2. APpB" P (1)
dt (n = p) -6 L
with APp = AP 'p  — APl agnd A°bD = b

iT1 i i

The derivatives can also be determined using the
derivatives of the Bernstein polynomials:

d ~B/"(t) = _n! i (—1){ pJBi"pik(t)
dt (N~ p) «=o K
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Derivatives at end points

At the end points the p-th derivative only depend on p+1
control points:

X '(0) = n(b, " b,)
X ""(0) = n(n~1)(b, ~ 2b, T b,)
X ""(0) = n(n~1)(n~2)b, ~3b,*3b, ~b,)
X'(1)=n(b, ~b_)

X'"@) = n(n~1)b, ~2b_ _, b _))
X'"'@)=n(n~1)(n~2)b, ~3b__, " 3b _, b _.)
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Derivatives

The derivatives of a Bézier segment can also be
calculated using the de Casteljau algorithm:

X'(t) = n(b,  ~ b ")

X'"'(t) = n(n~"1)b, *~2b" “* b %)

by = X(t)

Example: n=3
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Comments:

1) Due to the convex hull property the bounding box of
the control points encloses the Bézier segment. By
splitting the segment recursively into sub-segments
this enclosure can be refined.

2) The variation diminishing property means that the
approximation using the Bernstein polynomials is at
least as smooth as the control polygon itself. Hence,
the waviness of the resulting curve can controlled by
the control polygon.
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Example (n=3): basis transformation (to monomials)
X (t) = bo(_t3 + 3t° — 3t + 1)

+ b1(3t3 — 6t° t 3t)

+ bz(_3t3 + 3t°)

—+ 3
b3(t )
(— 1 3 - 3 1Vbo\
™ 3 — 6 3 t)
- € v ¢ 1p !
- 3 3 O O b2
. 1 @) @) O/\bs/

I ] ) )
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Example (n=3): Equivalence of Bernstein basis and de

Casteljau . ) ) .
X (t) = bo(l_ t)” + b13(1— t)°t* b23(1_ t)ts + b3t

= (b @ t)ytbt)(1~ t)2 T M@ t)ytbt)2(1 t)t)
0 1\ ) 1 2 N J

2

b! BO2 b’ B,
+ (b 1r-t)t bt)t
\_Y_/
b1 2
= (b (1~ t) + bt)(l_ t) * (b ar-t)t bt)t
\_Y_/
b’ B’ b? B

2 0 3 1

=p’@L - t) T bt =Db’B°=b
2 3 0
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Example (de Casteljau algorithm)

The control polygon has the vertices (0,0), (2,4.5)
(8.5,6.5) and (11,2) Compute X(0.6)of the cubic Bézier

segment: (0)

o)

) (o

(8.5 5.9 4.02
L6-5J {5.7) {4.5}

(11) (10) (8.36) (6.63) (6.63)

LZJ Ls.sJ L4.56J L4.54J :X(O'6):L4.54J
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Example (continued)
Compute the first derivative X 0 ( @nd 6econd derivative
X00(0. 6)

((g.36) (4.02) (13.02

X (0.6)=3b?~ b = 3'|KL4_56J_L4_50J) L 0.18J

((10.000 (5.9 (1.2)) (- 3.58)

X (0.6)= 6 b~ 20"+ p' = 6‘|\L3.80 | 2°L5.7J+L2_7b - 04
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Generalization

Often, a series of Bézier segments compose a spline
curve. Therefore, the individual segments might be
parameterized differently (e.g. on the interval [a,b]
iInstead of [0,1]) so that a more general Bézier segment

can be defined as:
X(t)ZZb_B_n( w Zb{] )b Y
n (b — a)"

Caution: changing the parameterization also changes the
derivative so that the p-th derivative gets scaled by

(b~ a)’
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Integrating a Bézier segment

Let x (1) = > b_B_”(l _ a} a Bézier segment defined on
-0 \b T a
the interval [a,b]. The integral can then be computed by:

—a

[ x (t)dt = b

b *b +2 +b)
m —+ 1 0 1 m

a

Proof:

1
From _[Bim(t) = (i = 0,2 ,m)we get

m T 1

Tol =2 ) = Toos - i e - s
B )dt B(s)(b — a)ds after substituti ng with g(s) (b~ a)s ™ a

a 0
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Interpolating with Bézier segments

Interpolating with Bézier segments can be achieved using
a system of linear equations, which is derived directly
from the interpolating condition:

P =2bB"(t) (j=02 ,n)

J i J
i=0

There is a unique solution to this system of linear

equations. This is obviously the case since the solution

could be computed using the Lagrange basis as well.
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Interpolating with Bézier segments

The system for interpolating the Points P,, € , uBing a
Bézier segment is given by:

X(ti):ijB;(ti)E P (i = 0,2 ,r)

]=0

e () () e[ ool

Chordal parameterization (i.e. choosing the parameter
Intervals based on the Euclidean distance between the
points): [a,b]=[0,8.13]; t,=0; t,=1.42; t,=3.66; $,=8.13
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Interpolating condition

X(t)= X(0)= X(t)= X(1.42) =
0 2 . 1

6
X (8.13) © [ ]
6

Plugging in the definition of a Bézier segment:

4
X(t)=X(3.66)=(] X (t )
2 2 3

3 3

1 2
( J = D b B*(0) = b [ ] = 2 b B°(1.42)

2 i—0 1 i=0

4 3 1 3
{ ] = D b B°(3.66) { ] = 2 bB°(0) = b,

2) 2

i~—0
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This then results in the following system of linear
equations:

0.36 blx + 0.07 bzx = 1.38

O.41blx + O.33b2X = 3.29

0.36b” + 0.07b” = ~0.18

O.41b1y + 0_33be =1.12

2.5 6.86
with the soluton b ~ and b ~
1 —1.51 2 5.27

T 11 . : :
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Spline curves

Especially when using polynomials of higher degree for
Interpolation strong oscillating effects are the result. To
control the waviness and to minimize the oscillating

artifacts curves are often pieced together using several
segments. These segments are then described by
polynomials of lower degree (mostly three or five). The
segments are usually defined in such a way that the
transition between segment s
segments are defined so that they connect two points that
are to be interpolated to fulfill the interpolation condition

X(t) = p.
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Example:

P1 Pn
Po X(t)

T ] , . :
WRIGHT STATE Department of Computer Science and Engineering
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Definition: Ck continuity

A function f(t) is Ck continuous (kOO0 ) i f the fu
and the first k derivatives are continuous. CK[t,,t,] is the
set of Ck continuous functions on the interval [t,,t,].

Definition: Spline

Let G{t,,t;, é,} ke a monotonic vector composed of
nodes t<t,,. A function Sis called spline of degree k-1
(of order K) If:

I Sis a polynomial of degree k-1 in each of the intervals [t;,t.,,]
i Sis C*2 continuous on [t,,t ]
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Comments:

1) The spline Sis called interpolating spline if S(t)=p;
for a given set of points p;.

2) The interpolating spline is generally not uniquely
defined. There are k-2 additional degrees of
freedom, i.e. further boundary conditions are
required.

For cubic splines (k=4) often the natural boundary
conditions S 0 X Otand S 0 P X Otare chosen.

If the two nodes t, and t, are associated with the
same points, i.e. py = p,, then a closed spline is the
result (without additional boundary conditions).
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Cubic splines

Instead of requiring a certain type of interpolating
polynomials, e.g. a polynomial of a certain degree, we
can demand properties, for example, a very smooth
curve:

Therefore, we require thatj“g,’(t)“zdt is minimal

to

and use the boundary conditions
g(t)=p, (i=0,2,n), g(t)= p,,and g'(t,)= p,
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Theorem: minimum norm property

Among all functions g € c *[t_,t ] which fulfill the previous
boundary conditions, the cubic spline is the function with
the smallest value of IHg ()] dt - This is a well known

fact from calculus of Variations [de Boor, 1966].

There are different ways for using the additional degrees
of freedom. The most common ones are:
S"(to) = 0 and S"(tn) =0 — natural  spline

S(t,) = S(t. ), S(t,)=S(t) S (t,)=S'(t) — periodic spline
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In order to better understand the algorithm for spline
curves, we first start with computing the coefficients a, b,
¢, and d;. of a natural cubic spline:

S(t) = () = a+b;(t-t;)+c;(t-t;)>+d;(t-t;)°
for teft,t,,]; 1=0,...,n-1

This results in the following conditions for the polynomials
(segments) S:

S(t) =p, 1=0,...,n
St) =S4t)
St)=S,® »i=l,..,nl So o Op—1
§7(6) =S4, ot

WRIGHT STATE Department of Computer Science and Engineering 167






