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Three-Dimensional Object Representations 
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1 Three-Dimensional Object Representations 

1.1 Overview 

The main goal of three-dimensional computer graphics is 
to generate two-dimensional images of a scene or of an 
object based on a a description or a model. 

The internal representation of an object depends on 
several implications: 

ïThe object may be a real object or it exists only as a computer 
representation 

ïThe manufacturing of the object is bound closely to the 
visualization: 

ÅInteractive CAD systems 

ÅModeling and visualization as a tool during design and 
manufacturing 

ÅMore than just 2-D output possible! 
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1.1 Overview 

Implications (continued) 

ïThe precision of the internal computer representation depends 

on the application. For example, an exact description of the 

geometry and shape in CAD applications vs. an approximation 

sufficient for rendering of the object. 

ïFor interactive applications, the object may be described by 

several internal representations. These representations may 

be generated in advance or on-the-fly. 

ÅLevel-of-detail (LOD) techniques 
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1.1 Overview 
The modeling and representation of an object involves the following 

in particular: 

Å Generation of 3-D geometry data 

CAD interface, digitizer, laser scanner (reverse engineering), analytic 

techniques (e.g. sweeping), image (2-D) and video (3-D) analysis 

Å Representation, efficient data access and conversion 

Polygonal nets (e.g. triangulation), is the most common representation 

for rendering objects. Alternatives: finite elements (FEM), constructive 

solid geometry (CSG), boundary representation (B-rep), implicit surfaces 

(isosurfaces), surface elements (surfels = points + normals), é 

Å Manipulation of objects (change shape, é) 

e.g. Boolean operations, local smoothing, interpolation of features (e.g. 

boundary curves), ñengravingò of geometric details, é 
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1.1 Overview 

The topics of this chapter will be: 

ïPolygonal representations 

ïRendering Polygons with OpenGL 

ïQuadric surfaces 

ïBlobby Objects 

ïSpline representations 

ÅCubic splines 

ÅBézier splines 

ÅB-Splines 

ÅRational splines 

ïOctree, BSP tree 



1-6 Department of Computer Science and Engineering 

1 Three-Dimensional Object Representations 

1.2 Polygonal Representation 

Properties/Characteristics: 

ÅThe precision of the approximation (number and size of 

polygons) can be chosen depending on the application, 

but several questions arise, e.g.: 

ïWhat polygonal resolution is required for a precise 

representation? 

ïWhat polygonal resolution is required for the renderer to make 

the piecewise approximation appear smooth? 

ïWhat is the correlation between number of polygons and the 

size of the final display of the object? 

Ê Often the following rule of thumb is used: Choose the 

polygonal resolution based on the curvature of the object 
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1.2 Polygonal Representation 

Properties/Characteristics: 

ÅClassic representations of three-dimensional objects in 

computer graphics 

ÅObject is represented by a net of polygonal surfaces 

(usually triangles) Ê piecewise linear interpolation 

ÅThe polygonal surfaces are usually an approximation of 

the curved surface, representing the objectôs boundary. 
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1.2 Polygonal Representation 

Hierarchy of the representation: 

Concept: The object constitutes of several surface 

elements. Each surface element is represented 

by several polygons. Every polygon has 

vertices and edges. 
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1.2 Polygonal Representation 

Hierarchy of the representation (continued): 

Topology: 
object 

surfaces 

polygons 

edges 

vertices 
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1.2 Polygonal Representation 

Hierarchy of the representation (continued): 

Data structure: 

 

Vertices 

are stored 

only once 
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1.2 Polygonal Representation 

Comment on data structures: 

Data structures can contain ï besides geometry 
information ï special attributes required for the 
application or for the rendering: 

ïSurface attributes: 

Representation (triangle, polygon, free-form surface), coefficients, 
normal vector, properties (plane, convex, holes, é), reference to 
vertices (and edges, if necessary) 

ïEdge attributes: 

Length, type (round edge, feature line, virtual edge, reference to 
vertices and/or polygon 

ïVertex attributes: 

Normal vector, color, texture coordinates, reference to polygon 
and/or edge 
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1.2 Polygonal Representation 

Comment on edges: 

Obviously, there are two different kinds of 

edges involved in the approximate 

representation: 

ïSharp edges (feature lines) 

ÅThis type of edge should be visible 

ïVirtual edges (ñinsideò a smooth surface) 

ÅThese should be invisible after rendering 

ÅInterpolative shading algorithms 

 Ê flat, Gouraud, Phong shading (now implemented in hardware) 

Which kind of edge is to be used can be enforced by the 
data structure by storing edges multiple times (see image). 
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1.3 Polygon Rendering with OpenGL 

OpenGL rendering pipeline: 

Both, vertex and fragment shader are programmable 
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1.3 Polygon Rendering with OpenGL 

OpenGL supports several types of polygons: 

GL_POLYGON 

GL_TRIANGLES 

GL_TRIANGLE_STRIP 

GL_TRIANGLE_FAN 

GL_QUADS 

GL_QUAD_STRIP 

Convenience functions exist for certain objects: 

glutSolidTetrahedron  glutWiredTetrahedron  

glutSolidCube    glutWireCube  

é 
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1.3 Polygon Rendering with OpenGL 
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1.3 Polygon Rendering with OpenGL 

Beware:  

OpenGL will ignore invalid polygons, e.g. self 

intersecting, non-convex, or non-planar polygons 
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1.3 Polygon Rendering with OpenGL 

There are basically four different ways to render 

geometric objects with OpenGL: 

Å Direct rendering 

Å Display lists 

Å Vertex arrays 

Å Vertex buffer objects 
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1.3 Polygon Rendering with OpenGL 

Direct rendering: 

glBegin (GL_TRIANGLES);  

glNormal3f ( é ); 

glVertex3f ( é ); 

é 

glNormal3f ( é ); 

glVertex3f ( é ); 

glEnd ();  

In case of polygons with a fixed number of vertices, i.e. 

triangles, quads, etc., you can generate several such 

polygons using one glBegin /glEnd  block. 
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1.3 Polygon Rendering with OpenGL 

Display lists: 

Stores OpenGL API commands in graphics memory for 
faster access. 

GLuint index = glGenLists (1);  

if (index != 0) {  

 glNewList (index, GL_COMPILE);  

  é // draw something 

 glEndList ();  

}  

glCallList (index);  

Using GL_COMPILE_AND_EXECUTE instead of 
GL_COMPILE makes the glCallList  unnecessary. 
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1.3 Polygon Rendering with OpenGL 

Vertex arrays: 

Store vertices in bulk arrays to reduce number of OpenGL function 

calls. 

GLfloat vertices[] = { é }; 

GLfloat normals[] = {é }; 

glEnableClientState (GL_VERTEX_ARRAY);  

glEnableClientState (GL_NORMAL_ARRAY);  

glNormalPointer (GL_FLOAT, 0, normals);  

glVertexPointer (3, GL_FLOAT, 0, vertices);  

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);  

This constructs a triangle strips using the first ten elements. The 0 as 

argument for the arrays is the stride parameter allowing you to skip 

elements within the arrays. 



1-21 Department of Computer Science and Engineering 

1 Three-Dimensional Object Representations 

1.3 Polygon Rendering with OpenGL 
Vertex buffer objects (VBO): 

Vertex buffer objects are like vertex arrays, but stored in graphics 
memory for faster access. 

Fill the VBO with data; use indices to remember them: 

GLuint vbovertices, vbonormals;  

GLfloat vertices[] = { é }, normals[] = {é }; 

glGenBuffers (1, vbovertices);  

glGenBuffers (1, vbonormals);  

glBindBuffer (GL_ARRAY_BUFFER vbovertices);  

glBufferData (GL_ARRAY_BUFFER, datasize,  

      vertices, GL_STREAM_DRAW);  

glBindBuffer (GL_ARRAY_BUFFER, vbonormals);  

glBufferData (GL_ARRAY_BUFFER, datasize,  

      normals, GL_STREAM_DRAW);  
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1.3 Polygon Rendering with OpenGL 

Vertex buffer objects (continued): 

Now, draw the previously generated VBOs: 

glBindBuffer (GL_ARRAY_BUFFER vbovertices);  

glVertexPointer (3, GL_FLOAT, 0, (GLvoid *)0);  

glBindBuffer (GL_ARRAY_BUFFER, vbonormals);  

glNormalPointer (GL_FLOAT, 0, (GLvoid *)0);  

glDrawArrays (GL_TRIANGLE_STRIP, 0, count);  

Notes: 

ïThere is no actual data pointer required for the 
glVertexPointer  and glNormalPointer  calls since the 
VBOs are used as data repository. 

ïThe client states need to be set just like with vertex arrays 
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1.6 Spline Representations 

Motivation: 

Free-form-curves and ïsurfaces became very popular 

during the last decade, particularly due to their application 

in several engineering disciplines. Free-form-curves are 

nowadays a fundamental design method in CAD/CAM 

software. This section will introduce basic concepts. 

 

Specifically, we will cover: 

ï Interpolation using polynomials and splines 

ïBézier curves, B-splines 

ïRational B-splines 
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1.6 Spline Representations 

Surface consisting of several segments (patches) 
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1.6 Spline Representations 

interpolation 
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1.6 Spline Representations 

interpolation 
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1.6 Spline Representations 

Piecewise smooth surface reconstruction 

based on a network of curves 
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1.6 Spline Representations 

Usually, more than one possible solution exist to the interpolation problem 
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1.6 Spline Representations 

Interpolation problem: 

Let 

be a set of pairs of real numbers with pairwise unequal 

nodes  , 

 

A polynomial p of degree less than n+1, 

 

with real coefficients cj is called interpolation problem of 
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1.6 Spline Representations 

Questions: 

Å Does a unique solution to this problem exist? 

Å Is there an algorithmic method to solve the problem? Is 

 it efficient enough? 

Å Is the quality good enough for the application? 

 

Theorem 1: There exist a unique solution to the    

  interpolation problem. 
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1.6 Spline Representations 
Proof: 

Plugging in the definition of the polynomial into the interpolation 
problem results in a system of linear equations: 
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1.6 Spline Representations 

Note: Let       be a set of n+1 points at 
different nodes ti. 

Then, an interpolation 3-D curve p with 

can be determined in an analog fashion by solving the 
linear equation system: 

Here, the coefficients are vectors, i.e. 

 

 

 

For each coordinate, we get a linear system with an 
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1.6 Spline Representations 

Lagrange interpolation 

The solution of the linear equation system of the 

interpolation problem usually has complexity O(n3). 

However, we would prefer a set of basis functions with 

the property: 

       such that 

 

Using these so called blending functions simplifies the 

matrix of the linear equation system to the identity matrix, 

i.e.       and the resulting polynomial can 

be written as 
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1.6 Spline Representations 

Theorem 2: The Lagrange polynomials 
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1.6 Spline Representations 

Proof: 

 Plug in ti 
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1.6 Spline Representations 

Lagrange polynomials 

t 
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1.6 Spline Representations 

Example: 

1. n=1, i.e. linear interpolation 

Interpolate the points (x0,y0) and (x1, y1) (use x0,x1 as nodes) 
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1.6 Spline Representations 
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1.6 Spline Representations 

Example:  

cubic Lagrange polynomials with uniform nodes 
3

i
t
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1.6 Spline Representations 
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1.6 Spline Representations 

Newton interpolation 

The Newton scheme has the advantage of being a 

dynamic scheme, i.e. additional nodes can be added 

without having to re-compute all basis functions. 

For this scheme, the following basis functions are used: 
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1.6 Spline Representations 

The coefficients ai for the solution 

 

 

Are computed recursively using the k-th divided 

differences 
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1.6 Spline Representations 
This results in the following scheme: 
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1.6 Spline Representations 

Note: the coefficients ai can also be determined using a 

linear equation system. Since the matrix of the resulting 

linear system is a triangular matrix, solving this system 

would be equivalent to the scheme using the divided 

differences. 

Example: t
i
, f

i
0 ,1 ; 2 ,3 ; 4 ,5

5 4 

1 

0=a2 3 2 

1=a1 

1=a0 0 

ti fi 

p(x) = a0+a1(x-t0)+a2(x-t0)(x-t1) 

   = 1 + x 
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1.6 Spline Representations 

Beware: the interpolating polynomial interpolating n+1  

 nodes is not necessarily of degree n, but at most 

 of degree n. 

Note: 

ïThe order of the nodes does not change the result when using 

Newtonôs scheme 

ï Interpolating a continuous function f on the interval [a,b]  using 

n points does not necessarily ensure that the series of 

interpolating polynomials fn converges to f. 

Conclusion: Using more points does not    

  necessarily improve the quality of  

  the resulting interpolating polynomial! 
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1.6 Spline Representations 

Disadvantages of polynomial interpolation 

(particularly with respect to CAD/CAM): 

ïInterpolating polynomials of degree larger than 5 

often are quite ñwavyò 

Remedy: introduce additional conditions, such as  

 minimization of folding energy 

  (Ÿ splines) 

ïEach point that is to be interpolated influences the 

resulting curve globally 

Remedy: Use basis functions with local influence 
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1.6 Spline Representations 

The higher the degree of a polynomial, the more wavy its 

shape, especially at the end points of the interval. The 

parameterization (choice of nodes) influences the quality 

of the resulting curve. 
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1.6 Spline Representations 

Interpolating derivatives 

Let ti (i=0,é,n) be different nodes and for each i the 

values of the first ni-1 derivatives are known: 

 fi, fi
(1), é, fi

(n-1) (i=0,é,n) 

 

We are looking for a polynomial of degree 

 

 

such that p(j)(ti) = fi
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1.6 Spline Representations 

Plugging in the desired conditions into the polynomial 

equation ï similar to the previous interpolation problem ï 

results in a linear system of equations. 

Theorem 3: There is a unique solution to this linear 

 system of equations 

Proof: Overall, there are m+1 conditional equations with 

m+1 coefficients. The system is regular if the 

homogenous problem (fi
(j)=0) only allows the trivial 

solution. This is exactly the case: since p has exactly m+1 

zeros (including multiplicities) and p is of degree Òm, the 

polynomial p has to be zero. 
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1.6 Spline Representations 

Example: We are looking for the cubic polynomial which 
interpolates f(0), fô(0), f(1), and fô(1). A cubic polynomial 
can be described as: 

     p(t) = c3t
3 + c2t

2 + c1t + c0 

And the derivative: 

     pô(t) = 3c3t
2 + 2c2t + c1 

This gives us: 

     f(0) = c0 

     fô(0) = c1 

     f(1) = c3 + c2 + c1 + c0 

     fô(1) = 3c3 + 2c2 + c1 
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Or in matrix form: 
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1.6 Spline Representations 

Hermite interpolation: 

In analogy to the Lagrange interpolation, we can find 

basis polynomials that are optimal for interpolating 

derivatives. These are called Hermite polynomials. 

Example: we are looking for cubic Hermite polynomials 

for the system resulting from the previous example. The 

coefficients can be determined by inverting the matrix: 
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Then, the resulting Hermite polynomials are: 

 

 

 

 

 

The Hermite polynomials have the following properties: 
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1.6 Spline Representations 

Bézier segments: 

Modeling of individual curve segments is easier and more 
intuitive if there is a correlation between the coefficients 
(design parameters) and the geometry of the curve. 
Interpolated points are not very suitable for this matter 
because the waviness cannot be controlled by the 
interpolated points. Bézier segments are polynomial 
curves, which are defined through a control polygon. 
This control polygon is approximated by the resulting 
curve, but only interpolates at the end points. The 
vertices of the control polygon (control points, here: 
Bézier points) constitute the coefficients of the 
representation using Bernstein polynomials (new basis). 
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1.6 Spline Representations 

Bézier segments: 

By changing the geometric layout of the control polygon, 
the curve can be easily modified. One of the properties of 
Bézier segments is that the number of inflection points of 
the curve is less or equal to the number of inflection 
points of the control polygon. This variation diminishing 
property allows for good control of the waviness of the 
curve. 

Bézier segments have many applications and are often 
used for modeling of composite curves and surfaces 
(Bézier splines). The Bézier technique is further 
explained in the following. 
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1.6 Spline Representations 

Bézier segments: the de Casteljau algorithm 

The de Casteljau algorithm [Cast.59][Böhm84] 

generalizes linear interpolation of polynomial curves. Let 

b0 and b1 be two points and t a parameter between 0 and 

1. Then t uniquely defines a point on the linear segment 

connecting b0 and b1: 

 

  X(t) = (1 - t) b0 + t b1 

 X(t)  b0 

 b1 
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de Casteljau algorithm 

 X(t) 

 b0 

 b1 

 b0 

 b0 

 b1  b2 

 b3 

 b1 

 b2 

 X(t) 

 X(t) 

linear 

cubic 

quadratic 
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1.6 Spline Representations 

de Casteljau algorithm 

Let bi (i=0,é,n) be n+1 Bézier points. Then, the de 

Casteljau algorithm for evaluating a Bézier segment is 

based on the following recursion: 

n
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Example: n=3 
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de Casteljau algorithm 

 

 

 

 

Scheme of the de Casteljau algorithm 

Every point bi
j is a convex combination of its 

predecessors bi
j-1 and bi+1

i-1, weighted using (1-t) and t, 

respectively. 

bi
j(t) is a polynomial of degree j (or less). 
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Properties of Bézier segments 

1) Convex hull: the curve X(t), t  [0,1] is located within 
the convex hull of the control polygon, i.e. there are 
weights   with 

 

 

 

2) Variation diminishing: an arbitrary straight line 
intersects the curves as often or less than the control 
polygon (within the plane). 

3) End point interpolation: X(0) = b0, X(1) = bn. 
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4) Affine invariance: let ű be an affine mapping            

ű(p) = Ap+v. Then, ű(X(t)) = Y(t), with the curve Y 

being defined by the transformed Bézier points ű(bi). 

 

 

 

5) Bernstein basis: the de Casteljau algorithm results in 

a curve of (maximal) degree n. As basis the so called 

Bernstein polynomials are used: 
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6) Properties of the Bernstein polynomials: the 

Bernstein polynomials are symmetric, not negative 

between [0,1] , and the sum of all polynomials is one: 
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7) Symmetry: inverting the sequence of the control 
points bi of X(t) results in a Bézier segment Y(t) with 
inverted parameterization: Y(t) = X(1-t). 

8) Pseudo-local control: the Bernstein polynomials 
influence the curve globally, however, their maxima 
are located in the proximity of the control points: 
max(Bi

n) = Bi
n(i/n). 

 Moving a control point bi results in a limited change of 
the curve. The change is maximal at t=i/n . 
(Interpolated polynomials do not allow for pseudo-
local control). However, small changes to the control 
points can change the curve significantly. 
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9) Degree increase: a Bézier segment of degree n can 

be represented as a Bézier segment of degree n+1 (of 

course, the actual degree will be the same but the 

representation will use the higher degree Bernstein 

polynomials): 
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10)Subdivision: a Bézier segment can be separated at a 

location t into two Bézier segments using the de 

Casteljau algorithm. The new control points are b0
i 

and bi
n-i (i=0,é,n). 
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11)Derivative: the derivative of a Bézier segment of 

degree n can be represented as a Bézier segment of 

degree n-1 using the control points 

  biô = n(bi+1 ï bi)  (i=0,é,n). 

 

 

 

 

 This can be concluded from the following equation 
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Derivatives 

For higher derivatives you can use the following recursive 

formula: 

 

 

 

The derivatives can also be determined using the 

derivatives of the Bernstein polynomials: 
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Derivatives at end points 

At the end points the p-th derivative only depend on p+1 

control points: 
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Derivatives 

The derivatives of a Bézier segment can also be 

calculated using the de Casteljau algorithm: 
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Comments: 

1) Due to the convex hull property the bounding box of 

the control points encloses the Bézier segment. By 

splitting the segment recursively into sub-segments 

this enclosure can be refined. 

2) The variation diminishing property means that the 

approximation using the Bernstein polynomials is at 

least as smooth as the control polygon itself. Hence, 

the waviness of the resulting curve can controlled by 

the control polygon. 
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Example (n=3): basis transformation (to monomials) 
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Example (n=3): Equivalence of Bernstein basis and de 

Casteljau 
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Example (de Casteljau algorithm) 

The control polygon has the vertices (0,0), (2,4.5), 

(8.5,6.5), and (11,2). Compute X(0.6) of the cubic Bézier 

segment: 0

0

2 1 .2
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Example (continued) 

Compute the first derivative Xô(0.6) and second derivative 

Xôô(0.6): 

2 2

3 2

8 .36 4 .02 13 .02
0 .6 3 3

4 .56 4 .50 0 .18
X ( ) b b

1 1 1

3 2 1

10 .00 5 .9 1 .2 3 .6
0 .6 6 2 6 2

3 .80 5 .7 2 .7 29 .4
X ( ) b b b
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Generalization 

Often, a series of Bézier segments compose a spline 

curve. Therefore, the individual segments might be 

parameterized differently (e.g. on the interval [a,b]  

instead of [0,1] ) so that a more general Bézier segment 

can be defined as: 

 

 

Caution: changing the parameterization also changes the 

derivative so that the p-th derivative gets scaled by 
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Integrating a Bézier segment 

Let        a Bézier segment defined on 

the interval [a,b]. The integral can then be computed by: 
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Interpolating with Bézier segments 

Interpolating with Bézier segments can be achieved using 

a system of linear equations, which is derived directly 

from the interpolating condition: 

 

 

There is a unique solution to this system of linear 

equations. This is obviously the case since the solution 

could be computed using the Lagrange basis as well. 
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Interpolating with Bézier segments 

The system for interpolating the Points P0,é,Pr using a 

Bézier segment is given by: 

 

 

Example: 

 

Chordal parameterization (i.e. choosing the parameter 

intervals based on the Euclidean distance between the 

points): [a,b]=[0,8.13]; t 0=0; t1=1.42; t2=3.66; t3=8.13 
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Interpolating condition 

 

 

 

 

Plugging in the definition of a Bézier segment: 
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This then results in the following system of linear 

equations: 

27.5
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Spline curves 

Especially when using polynomials of higher degree for 

interpolation strong oscillating effects are the result. To 

control the waviness and to minimize the oscillating 

artifacts curves are often pieced together using several 

segments. These segments are then described by 

polynomials of lower degree (mostly three or five). The 

segments are usually defined in such a way that the 

transition between segments is ñsmoothò. Often, the 

segments are defined so that they connect two points that 

are to be interpolated to fulfill the interpolation condition 

X(t) = pi. 
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Example: 
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Definition: Ck continuity 

A function f(t) is Ck continuous (kÓ0) if the function itself 

and the first k derivatives are continuous. Ck[t0,tn] is the 

set of Ck continuous functions on the interval [t0,tn]. 

 

Definition: Spline 

Let Ű={t 0,t1,é,tn} be a monotonic vector composed of 

nodes ti<t i+1. A function S is called spline of degree k-1 

(of order k) if: 

ïS is a polynomial of degree k-1 in each of the intervals [t i,ti+1]  

ïS is Ck-2 continuous on [t0,tn]  
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Comments: 

1) The spline S is called interpolating spline if S(ti)=pi 
for a given set of points pi. 

2) The interpolating spline is generally not uniquely 
defined. There are k-2 additional degrees of 
freedom, i.e. further boundary conditions are 
required. 

 For cubic splines (k=4) often the natural boundary 
conditions Sôô(t0) = 0 and Sôô(tn) = 0 are chosen. 

 If the two nodes t0 and tn are associated with the 
same points, i.e. p0 = pn, then a closed spline is the 
result (without additional boundary conditions). 
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Cubic splines 

Instead of requiring a certain type of interpolating 

polynomials, e.g. a polynomial of a certain degree, we 

can demand properties, for example, a very smooth 

curve: 

Therefore, we require that 

 

and use the boundary conditions 
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Theorem: minimum norm property 

Among all functions     which fulfill the previous 

boundary conditions, the cubic spline is the function with 

the smallest value of     . This is a well known 

fact from calculus of variations [de Boor, 1966]. 

There are different ways for using the additional degrees 

of freedom. The most common ones are: 
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In order to better understand the algorithm for spline 
curves, we first start with computing the coefficients ai, bi, 
ci, and di of a natural cubic spline: 

 S(t) = Si(t) = ai+bi(t-ti)+ci(t-ti)
2+di(t-ti)

3 

 for t [t i,ti+1]; i=0,...,n-1 

This results in the following conditions for the polynomials 
(segments) Si: 

 Si(t) = pi   i=0,...,n 

 Si(ti) = Si-1(ti) 

 Si´(ti) = Si-1´(ti)   i=1,...,n-1 

 Si´´(ti) = Si-1´´(ti) 

 




