Chapter 11

Behavioural Animation

Knowing the environment

Aggregate behavior

Primitive behavior

Intelligent behavior

Crowd management

Knowing the environment

Vision – what do you know about the present

Memory – what is recorded about the environment

More about AI than graphics

Vision

Geometric issue – what's in sight? OR Can I see X?

Computation v. accuracy

Perceptual issue – what do you see?

Cognitive modeling – necessary? At what level?

<u>Omniscience</u>

Everything in database is 'known'

Use surrogate bounding volumes, or sample points

Occluded Vision

Target-testing vision

Object Recognition

Cognitive modeling How much and what part is needed?

Application need? Not yet addressed in literature More AI than graphics

Other senses?

Hearing? Smell?

Model sensors & signal propagation

Spatial occupancy approach?

Applications?

Memory

What is recorded about the environment Spatial occupancy

Transience of objects: time-stamps

hierarchy: short-term, long-term

Aggregate Behavior: E pluribus unum Emergent Behavior

Typical qualities

Туре	Elements	Physics	Intelligence
		Env/Others	
Particles	10 ² -10 ⁴	Much/none	None
Flocking	10 ¹ -10 ³	Some/some	Limited
Crowds	10 ¹ -10 ²	Little/much	Little-much

<u> Primitive Behavior – Flocking</u>

Local control – for realism, the flock member only reacts to locally accessible information

Perception – FOV vision – angle can change with speed

Interacting with other members – stay with friends, avoid bumping into each other

Interacting with the environment – collision avoidance is primary

Primitive Behavior - Flocking Original work by Craig Reynolds

Global control – need control of flock script flock leader global migratory urge

Negotiating the motion

Collision avoidance – steer to avoid

Splitting and rejoining – difficult to tune parameters

Modeling flight – e.g., banking into turns

Negotiating the Motion

Navigating Obstacles

Attempt at parallel movement

Problems with repulsive forces

Attempt to fly directly toward a surface

Attempt at finding a passageway

Navigating using bounding sphere

Navigating Testing for being on a collision path with (bounding) sphere

Given: P, V, C, r

t < r

Department of Computer Science and Engineering

WRIGHT STATE

Navigating – finding a pass

To avoid collision: find closest point on edge to pass object Vision Options:

Render in z-buffer

Sample environments with rays

Modeling Flight -common in flocking

Modeling Flight

Modeling Flight

Modeling Flight

<u>Primitive Behavior – Prey-Predator</u>

unbalanced abilities vision - distance, movement, fov maximum velocity maximum acceleration maximum angular velocity maximum angular acceleration

<u>Prey-Predator - vision</u>

<u>Prey-Predator</u> agility: speed and turning

<u>Prey-Predator - hidden by forces</u>

Using pure forces May not prevent object penetration Prey can be 'hidden' by environmental repulsive forces

Intelligent Behavior

Autonomous behavior 'Self-animated' characters Perception & reasoning about environment Personality, emotions, dispositions

Manifestations of Individuality Body Expressions and Gestures Facial expressions Speech

Internal State

Models what the agent needs to do

Suggested precedence classes of internal state variables Imperatives Desires Suggestions

Expressions and Gestures

ToBI – Tones and Break Indices LMA – Laban Movement Analysis

BEAT EMOTE RUTH Greta

EMOTE

N. Badler at U.Penn

Expressive MOTion Engine (EMOTE)

Speech driven movement and gestures Torso & arms Laban Movement Analysis Effort Shape

BEAT

J. Cassell at M.I.T.

Input text – marked up

Generate non-verbal behavior in sync with speech

Facial expressions, head & body motions gestures

ruth

Doug DeCalro at Rutgers

http://www.cs.rutgers.edu/~village/ruth/

Facial Expression

http://expression.sourceforge.net/

Facial Expression

Ken Perlin: <u>http://mrl.nyu.edu/~perlin/</u>

SmartBody

https://www.youtube.com/watch?v=sD7Q777wIaQ

More videos: https://smartbody.ict.usc.edu/video

Modeling Personality

Personality – long term qualities

Emotions – short term

Mood – third level

Basic emotions: happy, sad, fear, disgust, surprise, anger

Personality Models

Biology/evolutionary approaches brain & anatomy biochemistry & personality genetics & personality **Psychoanalytic approach** psychometrics Freud, Adler, Jung **Adaptation Theory:** traits: passive, aggressive, withdrawn **Need theory: Freud + experiential learning Arousal Theory: absorb & discharge energy**

Type & Trait Theory

Type: individuals slotted into a type e.g. introvert v. extrovert

Trait: lie on gradation combination defines behavior in situation e.g.,

Internal states: how perceptions dictate emotional experience

Trait Theory

OCEAN: openness, conscientiousness, extroversion, agreeableness, neuroticism

PEN: extraversion, neuroticism, psychoticism

OCC: how perceptions dictate emotional experience

Modeling Individuality

Improv AlphaWolf

Dominant personality

11 Behavioural Animation

AlphaWolf: <u>http://alumni.media.mit.edu/~badger/alphaWolf.html</u> Simulation of a pack of wolves and their behavior

<u>Crowd Management</u>

Emergent behavior Statistical behavior v. believable individual behaviors Homogeneous activity v. Internal structure

> For evaluation Pedestrian traffic simulation Traffic flow Emergency response modeling For entertainment Background crowds

Crowds

Emergent behavior: similar to flocking collision avoidance 'intelligent' paths From a distance: statistical behavior nonsensical detailed motion reasonable visual effect **Internal structure** limited interaction among members group formation

Crowd Applications

For evaluation

Building evacuation, e.g. virtual fire drill Architecture evaluation, e.g. signage

For training Military scenarios, e.g. sniper training Emergency response, e.g. disaster response

For entertainment: e.g., background crowds

games films, e.g., Titanic, Saving Private Ryan, Lord of the Rings

Qualities of crowd

Emergent behavior - similar to flocking, flocking system Uniform – sameness of members Quantity & density - average distance between members Viewing distance – aggregate behavior, inspect individuals Function – simple traversal, background activity, main actions

Individual processing – amount of computation per member Physics – simulated reaction to environment Intelligence - reasoning capability - agents

<u>Uniformity, granularity</u>

Background noise: Activity without intention

Statistical behavior: On average, intentional activity

Individuality: Believable activity at level of individual

Execution environment

Real-time v. Off-line computation

simple computations

avoid n-squared algorithms

size limited

Spatial organization

Cellular decomposition: Regular 2D grid Adjacency accessible Density limited Cells define obstructions

Continuous space: Step in any direction Need to decipher obstructions Perception needed

Perception Modeling

Vision

Memory

Knowledge of environment

Navigation

Fluid flow: density fields, potential functions

Particle systems: Individual navigation

Flocking systems: individual perception, navigation

Rule-based

Cognitive modeling

Cellular automata

Panic & Congestion handling

Personal space

Packing people during evacuation

Stairwell traversal

Exit awareness

Motion & Navigation

Path planning

Roadmaps

Passing on pathways

Potential fields

Forming & maintaining subgroups

Structure in crowds

Homogenous – no individuality

Subgroups Group by belief systems

A collection of Individuals – personality modeling

Penn Station

Other topics

Heterogeneous – pedestrians and cars

Data driven crowds – image processing

Comparison to real-world situations

Massive

http://www.massivesoftware.com/ Commercial de facto standard

Examples

Examples

Examples

