8 Special Models for Animation

Chapter 8

Special Models for Animation

8 Special Models for Animation

Chapter 8

L-Systems

Plant examples

http://algorithmicbotany.org/papers/#abop

As a Formal Grammar

Related to fractals recursive branching structure often self-similar under scale Grammar parallel rewriting system context-free (in basic version)

Historical development

Aristid Lindenmayer botanist the 'L' in L-systems Przemyslaw Prusinkiewicz U. of Calgary introduced L-systems to graphics *The Algorithmic Beauty of Plants*

Chapter 8 DOL-systems

Basic version Deterministic Context-free

Chapter 8 Geometric interpretation

Geometric substitution symbol -> geometric element

Turtle graphics symbol -> drawing command

Chapter 8 **Geometric substitution**

WRIG

Turtle graphics

- F move forward w/ drawing
- f move forward w/o drawing
- + turn left
- Turn right

Chapter 8 Turtle graphics

FF-F++F--F++F-FF

reference direction:

initial state: (10,10, 0)

Initial conditions

Geometric interpretation Department of Computer Science and Engineering

Botany: terms

Stems, roots, buds, leaves, flowers Nodes, internodes Herbaceous v. woody Dichotomous, monopodial Lateral bud Leavs from buds: alternate, opposite whorled Cell influence: lineage, tropisms, obstacles

Discrete components: apices, internodes, leaves, flowers Finite number of components Components represented by symbols

Bracketed L-Systems

Also add non-determinism database amplification procedural models

WRIGHT STATE UNIVERSITY

Stochastic L-System

Add probabilities to non-deterministic L-systems

These probabilities will control how likely a production will be to form a branch at each possible branching point:

Controls average termination level

$$S_{1.0} \Rightarrow FAF$$

 $A_{0.8} \Rightarrow (+FBF)$
 $A_{0.2} \Rightarrow F$
 $B_{0.4} \Rightarrow (-FBF)$
 $B_{0.6} \Rightarrow F$

Context-sensitive

Better control of rule application

 $S \Rightarrow FAT$ $A > T \Rightarrow (+ FBF)$ $A > F \Rightarrow F$ $B \Rightarrow (-FAF)$ $T \Rightarrow F$

```
S
FAT
F(+FBF)F
F(+F(-FAF)F)F
```


Animating plant growth

Changes in topology Elongation of existing structures Changing angles, lengths

Chapter 8 Animating branches

Parametric L-systems

A parameter can be associated with the symbols:

S =>
$$A(0)$$

A(t) => $A(t + 0.01)$
A(t):t>=1.0 => F

Context-sensitive, timed w/ conditions

A(t0) < A(t1) > A(t2): t2>t1 & t1>t0 => A(t1+0.01)

Open L-systems environmental interaction

<u>Plant</u>

Reception of information from environment Transport and processing of info inside plant Response in form of growth changes

Environment

Perception of plants actions

Simulate processes of environment (e.g. light propagation) Present modified environment to plant

Chapter 8 Open L-systems environmental interaction

Add construct to L-systems

 $\underline{\mathsf{?E}(x_{\underline{1}}, \underline{x}_{\underline{2}}, \dots, \underline{x}_{\underline{m}})}$

(a bit simply) Query appears in production sends message to environment which then returns value to production

See paper by Mech and Prusinkiewicz for details

Chapter 8 Examples

8 Special Models for Animation

Implicit Surfaces

Chapter 8 Implicit Surfaces

Surface is only *implicitly* defined f(P) = 0

explicit y = f(x)

parametric
$$x = f(t)$$

 $y = g(t)$

Chapter 8 Implicit Surfaces

Basic formulation Animation Collision detection Deforming implicits Level set methods

Chapter 8 Implicit Surfaces

Usually define so: surface = 0 inside <0 outside > 0

 $f\left(P\right) > 0$

Marching cubes embed in 3D volume of cells intersect cell edges with surface define polygonal pieces from cell intercepts see examples a few slides later

Metaball - spherical, distance-based implicit

The best-known implicit primitive is often referred to as the metaball and is defined by a central point C, a radius of influence R, a density function f, and a threshold value T.

Chapter 8 Multiple Implicits

Sum overlapped implicits - with weights

Implicit Surfaces

Surface constructed when positive weights are associated with density functions Surface constructed when one positive weight and one negative weight are associated with density functions

Chapter 8 Topology smoothly changes

http://local.wasp.uwa.edu.au/~pbourke/modelling_rendering/implicitsurf/

Signed-distance-based primitives

From Point Edge Face Polyhedron $f(P) = d\left(\frac{dist(P, central - element)}{R}\right) - T = 0$

Hence, the density function describes the distance from the basic primitive instead of just a point.

Implicit Surfaces

primitive based on single polygon

a) distance-based implicit b) distance-based implicit primitive based on a a single polygon

c) distance-based implicit primitive based on a single polygon

d) Compound implicitly defined object

Testing - good for collision detection

Implicitly defined objects lend themselves to collision detection. Sample points on the surface of one object can be tested for penetration with an implicit object by merely evaluating the implicit function at those points. Numerical subdivision can yield a more accurate location of the intersection.

Polyhedra embedded in implicits

Using implicit surfaces for detecting collision between polyhedral objects

Deforming as a Result of Collision

Marie-Paul Cani has developed a technique to compute the deformation of colliding implicit surfaces. This technique first detects the collision of two implicit surfaces by testing sample points on the surface of one object against the other. The overlap of the areas of influence of the two implicit objects is called the **penetration region**. An additional region just outside the penetration region is called the **propagation region**.

Implicit Surfaces

Deforming as a Result of Collision (continued)

The density function of each object is modified by the overlapping density function of the other object so as to deform the implicitly defined surface of both objects so that they coincide in the region of overlap, thus creating a contact surface. A deformation term is added to F_i as a function of $Object_i$'s overlap with $Object_i$, G_{ii} , to form the contact surface. Similarly, a deformation term is added to F_j as a function of $Object_i$'s overlap with $Object_j$, G_{ji} . The deformation functions are defined so that the isosurface of the modified density functions, $F_i(p)+G_{ii}(p)=0$ and $F_i(p)+G_{ii}(p)=0$, coincide with the surface defined by $F_i(p) = F_i(p)$.

Colliding Implicit Surfaces

Chapter 8 Colliding Implicit Surfaces

8 Special Models for Animation

Level Sets

Level Set Methods

Adds dynamics to implicit surfaces

Usually operate on signed distance function

Isosurface updated according to velocity field defined over interface

Tracing particles on curve is problematic

Fundamental Idea

Instead of evolving curve C(t) = 0Evolve surface, U, that curve is a level set of

Common surface used is signed distance function U(x,y) = distance to nearest point in C

If U evolves according to U_t, C will evolve by C_t

Level Set - Fundamental idea

Front Propogation

Isosurface advects

Normally in direction of gradient

$$_{n} = \frac{\nabla \phi}{\left| \nabla \phi \right|}$$

Can have constant magnitude

$$\nabla \phi = \left(\frac{\partial \phi}{\partial_x}, \frac{\partial \phi}{\partial_y}\right)$$

Or use magnitude of curvature

 $\frac{d^{2}\phi}{dt^{2}}$

Level Set Methods

Front Propagation

More generally

$$\frac{d\,\varphi}{dt} = F\left(L,G,I\right)$$

Velocity can depend on:

Local properties (e.g. curvature)

- 6

- Global properties (e.g. position of front)
- Properties Independent of shape (e.g. transport function)

Level Set Equation

V - velocity field

Convection equation

ction equation
$$\frac{\partial \phi}{\partial_t} + V \cdot \nabla \phi = 0$$
$$V \cdot \nabla \phi = V \cdot \frac{\nabla \phi}{|\nabla \phi|} |\nabla \phi| = V \cdot n |\nabla \phi|$$

$$\frac{\partial \phi}{\partial_t} + F \left| \nabla \phi \right| = 0$$

 $V \cdot n = F$

Level Set Equation

F can be: Constant Function of gradient Function of curvature

$$\kappa = div \left(\frac{\nabla \phi}{\left|\nabla \phi\right|}\right) = F\left(\nabla \phi\right)$$

Implementation

Use grid to hold distance function

http://www.cs.cornell.edu/Courses/cs664/2005fa/Lectures/lecture24.pdf

Narrow band

8 Special Models for Animation

Subdivision surfaces

Subdivision surfaces

Use coarse polyhedron as general shape Refine to generate smooth surface

Gives high-level shape control

By its nature is a level-of-detail representation

Does it shrink or expand the object?

Issue: what is the limit surface?

Simple Subdivision

Cut off each corner of polyhedron and replace with face

a) original vertex of object to be subdivided b) A face replaces the vertex by using new vertices defined on connecting edges

Subdivision surfaces

Redefine faces

a) Original face of object to be subdivided

Subdivision surfaces

But doesn't smooth large flat areas

Various Subdivision schemes

Doo-Sabin Catmull-Clark Loop Butterfly (not shown below)

Following images are from: http://www.holmes3d.net/graphics/subdivision/

Doo-Sabin Subdivision

Face point - for each face, average of vertices

Edge point - average of 2 edge vertices and 2 new face points

Vertex point - for each face, average the vertex, the face point and two edge points

Chapter 8 Doo-Sabin Subdivision

Chapter 8 Catmull-Clark Subdivision

Face point - for each face, average of vertices

Edge point - average of 2 edge vertices and 2 new face points

Vertex point - (n-3/n)*vertex + 1/n average of face points + 2/n midpoints of edges

8 Special Models for Animation

Chapter 8 Catmull-Clark Subdivision

Chapter 8 Loop Subdivision

WRIGHT STATE UNIVERSITY