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1.1 Overview
The main goal of three-dimensional computer graphics is 
to generate two-dimensional images of a scene or of an 
object based on a description or a model.
The internal representation of an object depends on 
several implications:

– The object may be a real object or it exists only as a computer 
representation

– The manufacturing of the object is bound closely to the 
visualization:

• Interactive CAD systems
• Modeling and visualization as a tool during design and 

manufacturing
• More than just 2-D output possible!
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1.1 Overview
Implications (continued)

– The precision of the internal computer representation depends 
on the application. For example, an exact description of the 
geometry and shape in CAD applications vs. an approximation 
sufficient for rendering of the object.

– For interactive applications, the object may be described by 
several internal representations. These representations may 
be generated in advance or on-the-fly.

• Level-of-detail (LOD) techniques
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1.1 Overview
The modeling and representation of an object involves the following 
in particular:
• Generation of 3-D geometry data

CAD interface, digitizer, laser scanner (reverse engineering), analytic 
techniques (e.g. sweeping), image (2-D) and video (3-D) analysis

• Representation, efficient data access and conversion
Polygonal nets (e.g. triangulation), is the most common representation 
for rendering objects. Alternatives: finite elements (FEM), constructive 
solid geometry (CSG), boundary representation (B-rep), implicit surfaces 
(isosurfaces), surface elements (surfels = points + normals), …

• Manipulation of objects (change shape, …)
e.g. Boolean operations, local smoothing, interpolation of features (e.g. 
boundary curves), “engraving” of geometric details, …
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1.1 Overview
The topics of this chapter will be:

– Video display devices
– Introduction to OpenGL
– Geometric primitives
– Rendering primitives with OpenGL
– Rendering primitives on raster displays
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1.2 Video display devices
Cathode Ray Tube (CRT)
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1.2 Video display devices
1. Electron guns 
2. Electron beams 
3. Focusing coils 
4. Deflection coils 
5. Anode connection 
6. Mask for separating beams for 

red, green, and blue part of 
displayed image 

7. Phosphor layer with red, 
green, and blue zones 

8. Close-up of the phosphor-
coated inner side of the 
screen
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1.2 Video display devices
Thin-Film-Transistor (TFT) displays
The display consists of a raster of thin-film-transistors of 
different color (red, green, and blue) for every pixel. 
These do not emit light by themselves but change the 
polarization of incoming light. Hence, a TFT display 
deploys two polarization filters to let light from a back light 
(usually fluorescent) pass or block it.
Most commonly used are twisted-nematic TFS, which are 
explained on the next two slide.
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1.2 Video display devices
If there is no power connected to the TFT the molecules 
are twisted (90 degree angle) which in turn rotates the 
polarization of the light. Light from the back light can then 
pass the second polarization filter.
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1.2 Video display devices
In the other case, the molecules are straightened and the 
polarization of the light is not changed. Thus, the second 
polarization filter blocks the back light.
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Head Mounted Display (HMD)

A head mounted display consists of 
two displays that are mounted right 
in front of the users eye, usually like 
a pair of glasses. Since the displays 
are independent from each other a 
stereoscopic effect can be achieved 
by showing a scene from different 
angles on each display, mimicking 
the way the user would see the 
objects with each eye if they were in 
from of him/her.

1.2 Video display devices
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VR Workbench

A workbench uses a large display screen in combination with a 
projector to show images at a high frequency (100 Hz). The user 
wears shutter glasses which deploy polarization filters to block the 
right and left eye in an alternating fashion. This way, independent 
images are visible for the left and right eye resulting in a 
stereoscopic effect. In addition, tracking devices monitor the 
location of the shutter glasses. By incorporating this information 
into the visualization software, it is possible to achieve the effect 
that the object is positioned statically in front of the user even if the 
user moves her/his head.

1.2 Video display devices
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1-14Department of Computer Science and Engineering

1 Geometric Primitives

DaytaOhio’s Ispace
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1.2 Video display devices
Raster-graphics system
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1.3 Introduction to OpenGL
Basics
Every basic OpenGL function is prefixed with gl, followed 
by a capital letter. For example:

glBegin, glClear, glCopyPixels, …

Certain functions require that one (or more) of their 
arguments be assigned a symbolic constant. All such 
constants begin with the uppercase letters GL. In addition, 
component words within a constant name are capitalized:

GL_2D, GL_RGB, GL_POLYGON, …
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1.3 Introduction to OpenGL
The OpenGL functions also expect specific data types. 
To indicate a specific data type, OpenGL uses special 
built-in data-type names, such as:

GLbyte, GLshort, GLint, GLfloat, 
GLdouble, GLboolean

Each data type name begins with the capital letters GL
and the remainder of the name is a standard data-type 
designation, written in lower-case letters.
These data types are usually mapped to the standard C 
equivalents. However, there is no guaranty. Hence, it is 
advisable to use the standard OpenGL date types.
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1.3 Introduction to OpenGL
Related libraries
In addition to the OpenGL library, there are a number of 
associated libraries for handling special operations. The 
OpenGL Utility (GLU) library provides routines for 
setting up viewing and projection matrices, describing 
complex objects with line and polygon approximations, 
displaying quadrics and B-spline using linear 
approximations, processing the surface-rendering 
operations, and other complex tasks. Every OpenGL 
implementation includes the GLU library, and all GLU 
function names start with the prefix glu.
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1.3 Introduction to OpenGL
OpenGL is platform independent. However, special 
methods are necessary for opening a window on a 
specific system. Therefore, several window system 
libraries are available that support OpenGL functions for 
a variety of machines.
The OpenGL Extension to the X Window System 
(GLX) provides a set of routines that are prefixed with the 
letters glX and used for X11/Unix systems. Apple 
systems can use the Apple GL (AGL) interface for 
window-management operations. Function names for this 
library are prefixed agl. For Microsoft Windows systems, 
the WGL routines provide a Windows-to-OpenGL
interface. These routines are prefixed with the letters 
wgl.
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1.3 Introduction to OpenGL
In addition, the OpenGL Utility Toolkit (GLUT) provides 
a library of functions for interacting with any screen-
windowing system. The GLUT library functions are 
prefixed with glut, and this library also contains methods 
for describing and rendering quadric curves and surfaces.
Since GLUT is an interface to other device-specific 
window systems, we can use GLUT so that our programs 
will be device independent.
You can find more about GLUT at the web site:
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html

A windows version of the GLUT library is available here:
http://www.xmission.com/~nate/glut.html
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1.3 Introduction to OpenGL
Header files
In all of our graphics programs, we will need to include 
the header file for the OpenGL core library. For most 
applications we will also need GLU.

#include <GL/gl.h>

#include <GL/glu.h>

However, if we use GLUT to handle the window-
managing operations, we do not need to include gl.h and 
glu.h because GLUT ensures that these will be included 
correctly. Thus we can replace the header files for 
OpenGL and GLU with

#include <GL/glut.h>
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1.3 Introduction to OpenGL
Display-Window Management using GLUT
To get started, we can consider a  simplified, minimal 
number of operations for displaying a picture. Since we 
are using the OpenGL Utility Toolkit, our first step is to 
initialize GLUT. This initialization function could also 
process any command-line arguments:

glutInit (&argc, argv);

Next, we can state that a display window is to be created 
on the screen with a given caption for the title bar:

glCreateWindow (“Title bar”);



1-23Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Then we need to specify what the display window is to 
contain. For this, we create a picture using OpenGL 
functions and pass the picture definition to the GLUT 
routine glutDisplayFunc, which assigns our picture to 
the display window:

glutDisplayFunc (display);

But the display window is not yet on the screen. We need 
one more GLUT function to complete the window-
processing operations. After execution of the following 
statement, all display windows that we created, including 
their graphic content, are now activated.

glutMainLoop ();
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1.3 Introduction to OpenGL
In addition, we can specify the window location and window size,
respectively, using:

glutInitWindowPosition (50, 100);

glutInitWindowSize (400, 300);

Even after the window is displayed, these methods can be used to
resize or reposition it.
There are also a number of parameters that can be specified to what 
kind of display window is desired. These parameters are specified as 
symbolic GLUT constants. For example, the following command 
specifies that a single refresh buffer is to be used for the display 
window and that the RGB (red, green, blue) color mode is to be used 
for selecting color values:

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
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1.3 Introduction to OpenGL
At this point, we did not draw anything yet. Hence, the 
display routine that we specified before needs to be 
implemented.
First, we need to set a background color. Using RGB 
color values, we set the background color for the display 
window to be white with the OpenGL function

glClearColor (1.0, 1.0, 1.0, 0.0);

The first three parameters specify the color values for 
red, green, and blue, respectively, on a scale between 0.0
and 1.0. The last parameter determines the alpha value, 
i.e. how transparent the background is going to be.
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1.3 Introduction to OpenGL
This, however, does not actually clear the window. 
Therefore, we need to issue the following command:

glClear (GL_COLOR_BUFFER_BIT);

The argument GL_COLOR_BUFFER_BIT is an OpenGL 
symbolic constant specifying that it is the bit values in the 
color buffer (refresh buffer, frame buffer) that are to be set 
to the values indicated in the glClearColor function.
There are other arguments that are often used (which are 
combined using a logical or). But for now, clearing the 
color buffer will suffice.
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1.3 Introduction to OpenGL
In addition to setting the background color for the display 
window, we can choose a variety of color schemes for the 
objects we want to display in a scene. For our initial 
programming example, we will simply set object color to 
be red and defer further discussion of the various color 
options until later:

glColor3f (1.0, 0.0, 0.0);

The suffix 3f on the glColor function indicates that we 
are specifying the three RGB color components using 
floating-point (f) values. These values must be in the 
range from 0.0, to 1.0, and we have set red=1.0 and green 
= blue = 0.0.
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1.3 Introduction to OpenGL
For our first, program we simply display a two-
dimensional line segment. To do this, we need to tell 
OpenGL how we want to “project” our picture onto the 
display window, because generating a two-dimensional 
picture is treated by OpenGL as a special case of three-
dimensional viewing:

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

This specifies that an orthogonal projection is to be used 
to map the contents of a two-dimensional rectangular 
area of world coordinates to the screen, and that the x-
coordinate values within this rectangle range from 0.0 to 
200.0 with y-coordinate values ranging from 0.0 to 150.0.
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1.3 Introduction to OpenGL
Finally, we need to call the appropriate OpenGL routines 
to create our line segment. The following code defines a 
two-dimensional, straight-line segment with integer, 
Cartesian endpoint coordinates (180, 15) and (10, 145):

glBegin (GL_LINES);

glVertex2i (180, 15);

glVertex2i (10, 145);

glEnd ();

Now, we can put everything together to create our first 
OpenGL program.
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1.3 Introduction to OpenGL
#include <GL/glut.h>

void init () {

glClearColor (1.0, 1.0, 1.0, 0.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}
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1.3 Introduction to OpenGL
void display () {

glClear (GL_COLOR_BUFFER_BIT);

glColor3f (1.0, 0.0, 0.0);

glBegin (GL_LINES);

glVertex2i (180, 15);

glVertex2i (10, 145);

glEnd ();

glFlush ();
}
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1.3 Introduction to OpenGL
void main (int argc, char **argv) {

glutInit (&argc, argv);

glutInitDisplayMode (GLUT_SINGLE | 
GLUT_RGB);

glutInitWindowPosition (50, 100);

glutInitWindowSize (400, 300);

glutCreateWindow (“title bar”);

init ();

glutDisplayFunc (display);

glutMainLoop ();
}
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1.3 Introduction to OpenGL
Resulting output:
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1.3 Introduction to OpenGL
OpenGL supports several graphical primitives:

GL_POINTS GL_POLYGON

GL_LINES GL_TRIANGLES

GL_LINE_STRIP GL_TRIANGLE_STRIP

GL_LINE_LOOP GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

Convenience functions exist for certain objects:
glutSolidTetrahedron glutWiredTetrahedron

glutSolidCube glutWireCube

…
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1.3 Introduction to OpenGL
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1.3 Introduction to OpenGL
Beware: 
OpenGL will ignore invalid polygons, e.g. self 
intersecting, non-convex, or non-planar polygons
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1.3 Introduction to OpenGL
There are basically four different ways to render 
geometric objects with OpenGL:
• Direct rendering
• Display lists
• Vertex arrays
• (Vertex buffer objects)
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1.3 Introduction to OpenGL
Direct rendering

glBegin (GL_TRIANGLES);

glVertex3f ( … );

…

glVertex3f ( … );

glEnd ();

In case of polygons with a fixed number of vertices, i.e. 
triangles, quads, etc., you can generate several such 
polygons using one glBegin/glEnd block.
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1.3 Introduction to OpenGL
Display lists
Stores OpenGL API commands in graphics memory for faster 
access.

static GLuint index = 0;

if (index == 0) {

index = glGenLists (1)

glNewList (index, GL_COMPILE);

… // draw something

glEndList ();

}

glCallList (index);

Using GL_COMPILE_AND_EXECUTE instead of GL_COMPILE makes 
the glCallList unnecessary when rendering the first time.
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1.3 Introduction to OpenGL
Vertex arrays
Store vertices in bulk arrays to reduce number of 
OpenGL function calls.

GLfloat vertices[] = { … };

GLfloat normals[] = {… };

glEnableClientState (GL_VERTEX_ARRAY);

glVertexPointer (3, GL_FLOAT, 0, vertices);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);

This constructs a triangle strips using the first ten 
elements. The 0 as argument for the array is the stride 
parameter allowing you to skip elements within the 
arrays.
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1.3 Introduction to OpenGL
OpenGL rendering pipeline
Both, vertex and fragment shader are programmable
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1.4 Rendering primitives on raster displays
The raster display technology requires to brake down 
graphic primitives into pixels within the raster. This 
process is called rastering. This is usually done by the 
graphics hardware. It is, however, useful to understand 
how this process works in order to be able to achieve 
good graphics performance.
In this subsection, we will discuss

– Rastering of straight lines, circles, ellipses, and 
polygons

– Antialiasing of lines and polygons
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1.4 Rendering primitives on raster displays
Problem:
Display a line on a raster display requires the 
determination of points on the grid that best fit to the line.

P1=(x1,y1)

P2=(x2,y2)

Possible candidates for pixels representing the line
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1.4 Rendering primitives on raster displays
Desired properties:

– Line should appear straight
– Line should appear with the same brightness everywhere
– Algorithm should be fast
– Algorithm should be portable to graphics hardware
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1.4 Rendering primitives on raster displays
DDA algorithm
The digital differential analyzer (DDA) is a scan-
conversion line algorithm based on calculating 
differences based on the slope of the line.
A line can be described by the equation

y = m • x + b
Without loss of generality, we can assume 0 < m < 1. 
Otherwise we can mirror or interchange the coordinates 
as needed.
Now, we need to compute the series of points (xk, yk), 
k=0,…,n that best describes the line.
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1.4 Rendering primitives on raster displays
Since 0 < m < 1 we can advance the to the next column 
be increasing the x-coordinate by 1 and then calculate the 
y-coordinate accordingly.
Since the slope for a straight line is the same throughout 
the entire line the following equation holds:

This, then, allows us to compute the y-coordinate; by 
rounding the result to the closest integer value we get the 
next point (xk, yk).
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1.4 Rendering primitives on raster displays
For m > 1 swap the coordinates axes:
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1.4 Rendering primitives on raster displays
The DDA algorithm easily can be extended to other 
graphics primitives, such as circles, ellipses, etc.
The DDA line algorithm computes the coordinates for the 
next y-coordinate using floating-point numbers. Floating-
point computations tend to be slower then integer 
computations. Hence, it is desirable to have an algorithm 
that is just based on integer coordinates, especially since 
the resulting pixel coordinates are represented as integer 
coordinates anyway.
The Bresenham algorithm allows us to do just that.
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1.4 Rendering primitives on raster displays
Bresenham algorithm
Again, we assume without loss of 
generality that the slope is 0 < m < 
1; hence, the line is located in the 
first octant.

3.

4.

5.

6. 7.

8.

1. octant
P2

x

y

P1

2.

Idea: no matter what the slope is, we increase one 
coordinate by one (x-coordinate) similar to the DDA 
algorithm. The other coordinate (y-coordinate) is either 
increased by one as well or left unchanged, depending 
on the distance to the next grid point.
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1.4 Rendering primitives on raster displays

In order to decide which point to pick, we introduce an 
error E which is proportional to the difference between 
the exact point on the straight line and the center 
between the two possible grid points on the raster. The 
sign of E can then be used as a criterion for the decision.

Line to be drawn

1

2 yi+1=yi

yi+1=yi+1 Either point 1 or point 2 
is drawn, depending on 
which on is closer to the 
straight line.
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1.4 Rendering primitives on raster displays
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1.4 Rendering primitives on raster displays
If we scale this distance using 2Δx, we can calculate E 
recursively:
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Then, the Bresenham algorithm for the first octant can look like this:
// (x1, y1), (x2, y2) inter point coordinates, x1 < x2

x = x1; y = y1;

dx = x2-x1; dy = y2-y1;

e = 2*dy-dx; // initialising E

for(i=1; i<=dx; i++) { // loop for x

setPixel(x, y);

if(e >= 0) { // draw upper point, i.e. increase y

y = y+1;

e = e-2*dx;

}

x = x+1;
e = e+2*dy;

}

setPixel(x, y);

Note: only integer operations are used
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1.4 Rendering primitives on raster displays
Example:
P1=(0, 0), P2=(5, 4)

(5,4)
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1.4 Rendering primitives on raster displays
Rastering circles
To scan-convert circles based on a mathematical 
description can be quite expensive as we will see on the 
next slide.
However, the basic principal of the Bresenham algorithm 
can be applied to other graphics primitives as well.
For example, circles can be scan-converted for a raster 
display in a similar fashion. Of course, the error has to be 
computed differently as illustrated on the next slides.
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1.4 Rendering primitives on raster displays
Representation of a circle with center (xM, yM) and radius r:

1. Implicit: f(x,y) = (x-xM)2 + (y-yM)2 – r2 = 0
2. Parameterized: x(Θ) = xM + r cos(Θ), y(Θ) = yM + r sin(Θ), Θ∈[0, 

2π[

Disadvantage: both methods are computationally 
expensive and require floating-point arithmetic
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1.4 Rendering primitives on raster displays
Note:
• When computing a single point on the 

circle, seven other points can be easily 
calculated due to symmetry.

• For a uniform brightness, the pixels 
along the circle need to be distributed 
evenly.

• The interpretation of the approximation 
of a circle is subjective. Often 
minimizing the residuum |xi

2+yi
2-r2| is 

used as a criterion.

1
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1.4 Rendering primitives on raster displays
Besenham algorithm for circles
Best approximation based on the 
decision metric di using the 
residuum.
Assumptions:

– (xM, yM) = (0, 0)
– Start point is on raster
– r is integer
– 2. octant

D(Si) = | (xi-1+1)2 + yi-1
2 - r2 |

D(Ti) = | (xi-1+1)2 + (yi-1-1)2 - r2 |
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1.4 Rendering primitives on raster displays
The decision metric di = D(Si) – D(Ti) measures the 
distance between the upper and lower raster point.
For di > 0:

pick Pi = Ti as the next point, thus xi = xi-1+1, yi = yi-1-1
For di < 0:

pick Pi = Si as the next point, thus xi = xi-1+1, yi = yi-1

Within the 2. octant the circle is monotonically 
decreasing, the slope is between 0 and -1. Therefore:
(xi-1+1)2 + yi-1

2 - r2>0 and (xi-1+1)2 + (yi-1-1)2 - r2 < 0
Thus: di = (xi-1+1)2 + yi-1

2 - r2 + (xi-1+1)2 + (yi-1-1)2 - r2
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1.4 Rendering primitives on raster displays
di = (xi-1+1)2 + yi-1

2 - r2 + (xi-1+1)2 + (yi-1-1)2 - r2

We, then, can compute di recursively:
di+1 = di + 4 (xi-1 - yi-1) + 10 for di > 0
di+1 = di + 4 xi + 2 for di ≤ 0
with a start value of d1 = 3-2r (x0=0, y0=r)
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1.4 Rendering primitives on raster displays
Example: r = 8

65

7

74

-11

73

3

82

-7

81

-13

80

yxd

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

87



1-62Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Filling polygons
Goal: fill or colorize a bounded area using a color or 

pattern
Examples: bar chart, surfaces, solid objects, etc.

The description of the area to be filled is given 
geometrically, e.g. by edges, lines, polygons circles, etc., 
or by a set of pixels defining a boundary.
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Connectedness of areas
We distinguish between different types of connectedness:
4-times connected: connected horizontally or vertically
8-times connected: additionally diagonally connected

8-times connected4-times connected
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Comments
Filling algorithms designed for 8-times connected areas 
can also fill 4-times connected areas.
Problem: 4-times connected areas with adjacent corners
Filling algorithms for 4-times connected areas cannot fill 
all 8-times connected areas.
Techniques for rastering a polygon or an area:

– Scan-line methods
– Seed fill methods
– Hybrid methods
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Scan-line methods

– Also called scan conversion
– Works row by row from top to bottom
– A pixel inside the current scan line is only drawn if it is located 

inside the polygon
// simplest/greedy approach

for (y=ymin; y<=ymax; y++) // row

for (x=xmin; x<=xmax; x++) // column

if (Inside (polygon, x, y)

SetPixel(x,y);

– Works for geometrically as well as pixel-wise defined areas
– Greedy approach very slow
→ Improvements possible by exploiting coherence
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Scan-line methods (continued)
The approach is based on scan-line coherence:
Neighboring pixels are very likely to get the same 
intensity/color values assigned.
→ The pixel characteristics, i.e. color/intensity values, 

only changes where an edge of the polygon intersects 
the scan line, i.e. the part of the scan-line between two 
intersection points is either completely inside or 
completely outside of the polygon
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Scan-line methods (continued)
Example:

Scan line y=2: intersection with polygon at x = 1,8
Scan line y=4: intersection with polygon at x = 1,4,6,8
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Scan-line methods (continued)

Scan line y=2: we can subdivide the scan line into three 
sections: x < 1: outside the polygon

1 ≤ x ≤ 8: inside the polygon
x > 8: outside the polygon
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Scan-line methods (continued)
Scan line y=4: we can subdivide the scan line into 5 sections:

x < 1: outside the polygon
1 ≤ x ≤ 4: inside the polygon
4 < x < 6: outside the polygon
6 ≤ x ≤ 8: inside the polygon
x > 8: outside the polygon
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Scan-line methods (continued)
Choose scan lines wisely:
Scan lines cross pixels at their 
centers, and a pixel is 
considered as being inside a 
polygon if the pixel’s center is 
located right to the intersection 
with the polygon’s edge.

1 2 3 4 5 6

1

2

3

4

5

Note: in this image, the 
grid resembles the 
boundaries of the pixels, 
not the grid
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Scan-line methods (continued)
Problematic are singularities, i.e. locations where the scan 
line intersects with a vertex of the polygon.
⇒ Consider local extremes
Local extremes: those y-values of the corner of the polygon 
where these values are greater or smaller than both vertices 
(with respect to the y-value) at the opposite side of the edge.
Distinguish two cases:
1. If the vertex a local extreme, the intersection counts twice
2. If the vertex is no local extreme, the intersection counts 

once only
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Scan-line methods (continued)
The simple ordered edge list algorithm
Method: pre-processing + scan conversion
a) Preprocessing

Determine for every edge of the polygon the 
intersections with the scan lines at the pixel centers 
(e.g. using the Bresenham or other DDA algorithm); 
ignore horizontal edges.
Store every intersection (x,y) in a list.
Sort list from top to bottom, left to right.
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Scan-line methods (continued)
b) Scan conversion:

Consider pairs of subsequent intersections (x1,y1) and 
(x2,y2) in the list, i.e. list element 1 and 2, list element 3 
and 4, …)
Due to the preprocessing step, we know that for every 
scan line y:
y = y1 = y2 and x1 ≤ x2

Draw all pixels along the scan line y for which:
x1 ≤ x < x2  for every integer number x.
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Scan-line methods (continued)
Example:
a) (1,7), (1,7)

(1,6), (2,6), (8,6), (8,6)

(1,5), (3,5), (7,5), (8,5)

(1,4), (4,4), (6,4), (8,4)

(1,3), (5,3), (5,3), (8,3)

(1,2), (8,2)

(1,1), (8,1)

(1,7),(1,7),(1,6),(2,6),(8,6),(8,6),(1,5),(3,5),(7,5),(8,5),(1,4),(4,4),(6,4),(8,4),
(1,3),(5,3),(5,3),(8,3),(1,2),(8,2),(1,1),(8,1)
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Scan-line methods (continued)
b)

(1,7),(1,7)

(1,6),(2,6); (8,6),(8,6)

(1,5),(3,5); (7,5),(8,5)

(1,4),(4,4); (6,4),(8,4)

(1,3),(5,3); (5,3),(8,3)

(1,2),(8,2)

(1,1),(8,1)

Note: this is in accordance with slide 1-68; an adjacent polygon to the right would 
fill the pixels in column 8.



1-76Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Seed fill method
Seed fill methods fill the area bounded by the polygon 
starting from an initial pixel (seed) and are suitable for 
pixel-wise defined areas, hence also for raster displays.
Usually, we differentiate between two differently defined 
areas:
(i)  Boundary fill algorithms

Input: initial pixel (seed), color of the boundary, fill 
color or pattern
Algorithm: starting at the seed, neighboring pixels 
are colored until the boundary is reached (or an 
already colored pixel is encountered).
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Seed fill method (continued)
(ii) Flood/interior fill algorithm

Input: initial pixel (seed), color of the pixels that are to 
be changed, fill color or pattern
Algorithm: starting at the seed, neighboring pixels 
are colored using the fill color as long as the color is 
identical to the input color.
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Seed fill method (continued)
Simple seed fill algorithm
(four directions of movement, are defined by boundary, FILO/LIFO)
Empty(stack);
Push(stack, seed-pixel);

while(stack not empty)
{ 
pixel = Pop(stack);
setColor(pixel, FillColor);
for each of the 4-connected pixels pi
{ 
if(! ((pi == boundary_pixel) ||

(colorOf(pi) == FillColor)))
Push(stack, pi);

}
}

1

2

3
4

e.g.

Note: some pixels may be stored in the stack (and also colored) multiple times
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Seed fill method (continued)
Example: (numbers indicate location of pixels within the 
stack)

1

2

3

4

5

6

7

1 2 3 4 5 6 87 9

1,19

2,15,17

3,14,15

4

67

5,7,15

13,15

12,161212

11 11,13

10 110,14

8,9,159

9 8

16

6,21

4,20

17

16,18,25

17,24

25

19,23

20,22

21 21,24

22,24

23,24

24
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Seed fill method (continued)
Example: area with hole

1

2

3

4

5

6

7

1 2 3 4 5 6 87 9

1

158,15

3

3,94,99

5,9 4

6,9 6

77,9

9 8

2,9

15

1,10

9

10

9,11

12

13

14 14

13,14

12,14

10,14
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Hybrid methods
Hybrid methods follow the main principles of both scan 
line and seed fill methods
⇒ Scan line seed fill algorithm
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Antialiasing (term from signal theory)
Generally, aliasing effects are erroneous reconstruction 
of a (continuous) signal due sampling rate with a too low 
frequency (see also Nyquist theorem).
The term aliasing in the area of computer graphics is 
used, besides visual effects resulting from the above (e.g. 
aliasing when rendering a checker board), to describe 
visual artifacts resulting from the process of scan 
conversion. (e.g. stair casing when drawing diagonal 
lines).
We distinguish between local and temporal aliasing (e.g. 
a wheel that appears to rotate backwards).
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Antialiasing (continued)
Anti-aliasing methods are techniques (e.g. over-sampling, 
filtering) that try to minimize the aliasing effect.
Eliminating the aliasing effect is often not possible 
(already from a theoretical point of view).
For aliasing effects resulting from scan conversion 
algorithms, the anti-aliasing method is also called “edge 
smoothing”.
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Antialiasing (continued)
Aliasing artifacts in computer graphics
• Texture artifacts (e.g. checker board)
• Stair casing artifacts when rastering curves ⇒ jagged 

lines
• Disappearance of objects which are smaller than a 

pixel
• Disappearance of small, skinny objects
• Loss of detail in complex images
• “Flipping” small objects during motion/animation
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Antialiasing (continued)

Usually, visual artifacts occur if the periodicity (here the 
checker board pattern) in the texture reaches the size of 
a pixel.
Left: at the top, the squares are getting smaller and then 
increase again, resulting in visual irritation. This is due to 
the sampling rate being to course.
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Antialiasing (continued)

Right: using two-times over-sampling, (sampling at a 
doubled rate, i.e. four times the computation effort), the 
artifacts can be reduced but still occur (at higher 
frequencies).
Hence, aliasing in computer graphics images can only be 
reduced but not eliminated.
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Antialiasing (continued)
Example: stair casing artifacts, jagged edges

The previously discussed techniques for rastering straight 
lines and curves result in stair casing artifacts (left) since 
it is only possible to draw points at fixed raster locations. 
These locations are generally not identical to the 
real/ideal locations of these points.
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Antialiasing (continued)
Example: stair casing artifacts, jagged edges

In order to reduce this kind of aliasing, several intensity 
values are used to visually increase the resolution.
For example, a variant of the Bresenham algorithm for 
straight lines (for the first octant) draws both possible 
pixels but uses different intensities (gray levels) based on 
the distance between pixel and straight line (right).
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Antialiasing (continued)
Example: aliasing for 
rendering of polygons
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Antialiasing (continued)
A simple, global anti-aliasing can be achieved by applying 
the over-sampling, also known as super-sampling, to the 
entire image.
Every pixel is computed at a higher sampling rate 
compared to the image resolution. The gray value or 
color value for that pixel is then determined as the 
weighted average of all its sub-pixel values.
This approach is equivalent to a filtering (see digital 
signal processing for the theoretical basis).
The following filter kernels are commonly used:
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Antialiasing (continued)
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Antialiasing in OpenGL
In order to use antialiasing when rendering points or lines 
you have to enable this feature in OpenGL first:

glEnable (GL_POINT_SMOOTH);

glEnable (GL_LINE_SMOOTH);

To disable antialiasing use the corresponding function 
call:

glDisable (GL_POINT_SMOOTH);

glDisable (GL_LINE_SMOOTH);
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Antialiasing in OpenGL (continued)
To choose between quality or performance you can give 
OpenGL a hint accordingly:

glHint (GLenum target, GLenum hint);

where the following target parameters are available:
GL_POINT_SMOOTH_HINT

GL_LINE_SMOOTH_HINT

GL_POLYGON_SMOOTH_HINT

and the following hints:
GL_FASTEST, GL_NICEST, GL_DONT_CARE
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Antialiasing in OpenGL (continued)
When using the RGBA mode (specified when initializing 
the display using glutInitDisplayMode) you need to 
specify the blending function as well. Most likely, you 
want to use the parameters GL_SRC_ALPHA and 
GL_ONE_MINUS_SRC_ALPHA to specify the blending 
function:

glEnable (GL_BLEND);

glBlendFunc (GL_SRC_ALPHA, 
GL_ONE_MINUS_SRC_ALPHA);
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