
1-1Department of Computer Science and Engineering

1 Geometric Primitives

Chapter 1

Geometric Primitives

1-2Department of Computer Science and Engineering

1 Geometric Primitives

1.1 Overview
The main goal of three-dimensional computer graphics is
to generate two-dimensional images of a scene or of an
object based on a description or a model.
The internal representation of an object depends on
several implications:

– The object may be a real object or it exists only as a computer
representation

– The manufacturing of the object is bound closely to the
visualization:

• Interactive CAD systems
• Modeling and visualization as a tool during design and

manufacturing
• More than just 2-D output possible!

1-3Department of Computer Science and Engineering

1 Geometric Primitives

1.1 Overview
Implications (continued)

– The precision of the internal computer representation depends
on the application. For example, an exact description of the
geometry and shape in CAD applications vs. an approximation
sufficient for rendering of the object.

– For interactive applications, the object may be described by
several internal representations. These representations may
be generated in advance or on-the-fly.

• Level-of-detail (LOD) techniques

1-4Department of Computer Science and Engineering

1 Geometric Primitives

1.1 Overview
The modeling and representation of an object involves the following
in particular:
• Generation of 3-D geometry data

CAD interface, digitizer, laser scanner (reverse engineering), analytic
techniques (e.g. sweeping), image (2-D) and video (3-D) analysis

• Representation, efficient data access and conversion
Polygonal nets (e.g. triangulation), is the most common representation
for rendering objects. Alternatives: finite elements (FEM), constructive
solid geometry (CSG), boundary representation (B-rep), implicit surfaces
(isosurfaces), surface elements (surfels = points + normals), …

• Manipulation of objects (change shape, …)
e.g. Boolean operations, local smoothing, interpolation of features (e.g.
boundary curves), “engraving” of geometric details, …

1-5Department of Computer Science and Engineering

1 Geometric Primitives

1.1 Overview
The topics of this chapter will be:

– Video display devices
– Introduction to OpenGL
– Geometric primitives
– Rendering primitives with OpenGL
– Rendering primitives on raster displays

1-6Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices
Cathode Ray Tube (CRT)

1-7Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices
1. Electron guns
2. Electron beams
3. Focusing coils
4. Deflection coils
5. Anode connection
6. Mask for separating beams for

red, green, and blue part of
displayed image

7. Phosphor layer with red,
green, and blue zones

8. Close-up of the phosphor-
coated inner side of the
screen

1-8Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices
Thin-Film-Transistor (TFT) displays
The display consists of a raster of thin-film-transistors of
different color (red, green, and blue) for every pixel.
These do not emit light by themselves but change the
polarization of incoming light. Hence, a TFT display
deploys two polarization filters to let light from a back light
(usually fluorescent) pass or block it.
Most commonly used are twisted-nematic TFS, which are
explained on the next two slide.

1-9Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices
If there is no power connected to the TFT the molecules
are twisted (90 degree angle) which in turn rotates the
polarization of the light. Light from the back light can then
pass the second polarization filter.

1-10Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices
In the other case, the molecules are straightened and the
polarization of the light is not changed. Thus, the second
polarization filter blocks the back light.

1-11Department of Computer Science and Engineering

1 Geometric Primitives

Head Mounted Display (HMD)

A head mounted display consists of
two displays that are mounted right
in front of the users eye, usually like
a pair of glasses. Since the displays
are independent from each other a
stereoscopic effect can be achieved
by showing a scene from different
angles on each display, mimicking
the way the user would see the
objects with each eye if they were in
from of him/her.

1.2 Video display devices

1-12Department of Computer Science and Engineering

1 Geometric Primitives

VR Workbench

A workbench uses a large display screen in combination with a
projector to show images at a high frequency (100 Hz). The user
wears shutter glasses which deploy polarization filters to block the
right and left eye in an alternating fashion. This way, independent
images are visible for the left and right eye resulting in a
stereoscopic effect. In addition, tracking devices monitor the
location of the shutter glasses. By incorporating this information
into the visualization software, it is possible to achieve the effect
that the object is positioned statically in front of the user even if the
user moves her/his head.

1.2 Video display devices

1-13Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices

1-14Department of Computer Science and Engineering

1 Geometric Primitives

DaytaOhio’s Ispace

1-15Department of Computer Science and Engineering

1 Geometric Primitives

1.2 Video display devices
Raster-graphics system

1-16Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Basics
Every basic OpenGL function is prefixed with gl, followed
by a capital letter. For example:

glBegin, glClear, glCopyPixels, …

Certain functions require that one (or more) of their
arguments be assigned a symbolic constant. All such
constants begin with the uppercase letters GL. In addition,
component words within a constant name are capitalized:

GL_2D, GL_RGB, GL_POLYGON, …

1-17Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
The OpenGL functions also expect specific data types.
To indicate a specific data type, OpenGL uses special
built-in data-type names, such as:

GLbyte, GLshort, GLint, GLfloat,
GLdouble, GLboolean

Each data type name begins with the capital letters GL
and the remainder of the name is a standard data-type
designation, written in lower-case letters.
These data types are usually mapped to the standard C
equivalents. However, there is no guaranty. Hence, it is
advisable to use the standard OpenGL date types.

1-18Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Related libraries
In addition to the OpenGL library, there are a number of
associated libraries for handling special operations. The
OpenGL Utility (GLU) library provides routines for
setting up viewing and projection matrices, describing
complex objects with line and polygon approximations,
displaying quadrics and B-spline using linear
approximations, processing the surface-rendering
operations, and other complex tasks. Every OpenGL
implementation includes the GLU library, and all GLU
function names start with the prefix glu.

1-19Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
OpenGL is platform independent. However, special
methods are necessary for opening a window on a
specific system. Therefore, several window system
libraries are available that support OpenGL functions for
a variety of machines.
The OpenGL Extension to the X Window System
(GLX) provides a set of routines that are prefixed with the
letters glX and used for X11/Unix systems. Apple
systems can use the Apple GL (AGL) interface for
window-management operations. Function names for this
library are prefixed agl. For Microsoft Windows systems,
the WGL routines provide a Windows-to-OpenGL
interface. These routines are prefixed with the letters
wgl.

1-20Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
In addition, the OpenGL Utility Toolkit (GLUT) provides
a library of functions for interacting with any screen-
windowing system. The GLUT library functions are
prefixed with glut, and this library also contains methods
for describing and rendering quadric curves and surfaces.
Since GLUT is an interface to other device-specific
window systems, we can use GLUT so that our programs
will be device independent.
You can find more about GLUT at the web site:
http://www.opengl.org/documentation/specs/glut/spec3/spec3.html

A windows version of the GLUT library is available here:
http://www.xmission.com/~nate/glut.html

1-21Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Header files
In all of our graphics programs, we will need to include
the header file for the OpenGL core library. For most
applications we will also need GLU.

#include <GL/gl.h>

#include <GL/glu.h>

However, if we use GLUT to handle the window-
managing operations, we do not need to include gl.h and
glu.h because GLUT ensures that these will be included
correctly. Thus we can replace the header files for
OpenGL and GLU with

#include <GL/glut.h>

1-22Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Display-Window Management using GLUT
To get started, we can consider a simplified, minimal
number of operations for displaying a picture. Since we
are using the OpenGL Utility Toolkit, our first step is to
initialize GLUT. This initialization function could also
process any command-line arguments:

glutInit (&argc, argv);

Next, we can state that a display window is to be created
on the screen with a given caption for the title bar:

glCreateWindow (“Title bar”);

1-23Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Then we need to specify what the display window is to
contain. For this, we create a picture using OpenGL
functions and pass the picture definition to the GLUT
routine glutDisplayFunc, which assigns our picture to
the display window:

glutDisplayFunc (display);

But the display window is not yet on the screen. We need
one more GLUT function to complete the window-
processing operations. After execution of the following
statement, all display windows that we created, including
their graphic content, are now activated.

glutMainLoop ();

1-24Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
In addition, we can specify the window location and window size,
respectively, using:

glutInitWindowPosition (50, 100);

glutInitWindowSize (400, 300);

Even after the window is displayed, these methods can be used to
resize or reposition it.
There are also a number of parameters that can be specified to what
kind of display window is desired. These parameters are specified as
symbolic GLUT constants. For example, the following command
specifies that a single refresh buffer is to be used for the display
window and that the RGB (red, green, blue) color mode is to be used
for selecting color values:

glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);

1-25Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
At this point, we did not draw anything yet. Hence, the
display routine that we specified before needs to be
implemented.
First, we need to set a background color. Using RGB
color values, we set the background color for the display
window to be white with the OpenGL function

glClearColor (1.0, 1.0, 1.0, 0.0);

The first three parameters specify the color values for
red, green, and blue, respectively, on a scale between 0.0
and 1.0. The last parameter determines the alpha value,
i.e. how transparent the background is going to be.

1-26Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
This, however, does not actually clear the window.
Therefore, we need to issue the following command:

glClear (GL_COLOR_BUFFER_BIT);

The argument GL_COLOR_BUFFER_BIT is an OpenGL
symbolic constant specifying that it is the bit values in the
color buffer (refresh buffer, frame buffer) that are to be set
to the values indicated in the glClearColor function.
There are other arguments that are often used (which are
combined using a logical or). But for now, clearing the
color buffer will suffice.

1-27Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
In addition to setting the background color for the display
window, we can choose a variety of color schemes for the
objects we want to display in a scene. For our initial
programming example, we will simply set object color to
be red and defer further discussion of the various color
options until later:

glColor3f (1.0, 0.0, 0.0);

The suffix 3f on the glColor function indicates that we
are specifying the three RGB color components using
floating-point (f) values. These values must be in the
range from 0.0, to 1.0, and we have set red=1.0 and green
= blue = 0.0.

1-28Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
For our first, program we simply display a two-
dimensional line segment. To do this, we need to tell
OpenGL how we want to “project” our picture onto the
display window, because generating a two-dimensional
picture is treated by OpenGL as a special case of three-
dimensional viewing:

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

This specifies that an orthogonal projection is to be used
to map the contents of a two-dimensional rectangular
area of world coordinates to the screen, and that the x-
coordinate values within this rectangle range from 0.0 to
200.0 with y-coordinate values ranging from 0.0 to 150.0.

1-29Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Finally, we need to call the appropriate OpenGL routines
to create our line segment. The following code defines a
two-dimensional, straight-line segment with integer,
Cartesian endpoint coordinates (180, 15) and (10, 145):

glBegin (GL_LINES);

glVertex2i (180, 15);

glVertex2i (10, 145);

glEnd ();

Now, we can put everything together to create our first
OpenGL program.

1-30Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
#include <GL/glut.h>

void init () {

glClearColor (1.0, 1.0, 1.0, 0.0);

glMatrixMode (GL_PROJECTION);
gluOrtho2D (0.0, 200.0, 0.0, 150.0);

}

1-31Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
void display () {

glClear (GL_COLOR_BUFFER_BIT);

glColor3f (1.0, 0.0, 0.0);

glBegin (GL_LINES);

glVertex2i (180, 15);

glVertex2i (10, 145);

glEnd ();

glFlush ();
}

1-32Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
void main (int argc, char **argv) {

glutInit (&argc, argv);

glutInitDisplayMode (GLUT_SINGLE |
GLUT_RGB);

glutInitWindowPosition (50, 100);

glutInitWindowSize (400, 300);

glutCreateWindow (“title bar”);

init ();

glutDisplayFunc (display);

glutMainLoop ();
}

1-33Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Resulting output:

1-34Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
OpenGL supports several graphical primitives:

GL_POINTS GL_POLYGON

GL_LINES GL_TRIANGLES

GL_LINE_STRIP GL_TRIANGLE_STRIP

GL_LINE_LOOP GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

Convenience functions exist for certain objects:
glutSolidTetrahedron glutWiredTetrahedron

glutSolidCube glutWireCube

…

1-35Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL

1-36Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Beware:
OpenGL will ignore invalid polygons, e.g. self
intersecting, non-convex, or non-planar polygons

1-37Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
There are basically four different ways to render
geometric objects with OpenGL:
• Direct rendering
• Display lists
• Vertex arrays
• (Vertex buffer objects)

1-38Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Direct rendering

glBegin (GL_TRIANGLES);

glVertex3f (…);

…

glVertex3f (…);

glEnd ();

In case of polygons with a fixed number of vertices, i.e.
triangles, quads, etc., you can generate several such
polygons using one glBegin/glEnd block.

1-39Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Display lists
Stores OpenGL API commands in graphics memory for faster
access.

static GLuint index = 0;

if (index == 0) {

index = glGenLists (1)

glNewList (index, GL_COMPILE);

… // draw something

glEndList ();

}

glCallList (index);

Using GL_COMPILE_AND_EXECUTE instead of GL_COMPILE makes
the glCallList unnecessary when rendering the first time.

1-40Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
Vertex arrays
Store vertices in bulk arrays to reduce number of
OpenGL function calls.

GLfloat vertices[] = { … };

GLfloat normals[] = {… };

glEnableClientState (GL_VERTEX_ARRAY);

glVertexPointer (3, GL_FLOAT, 0, vertices);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);

This constructs a triangle strips using the first ten
elements. The 0 as argument for the array is the stride
parameter allowing you to skip elements within the
arrays.

1-41Department of Computer Science and Engineering

1 Geometric Primitives

1.3 Introduction to OpenGL
OpenGL rendering pipeline
Both, vertex and fragment shader are programmable

1-42Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
The raster display technology requires to brake down
graphic primitives into pixels within the raster. This
process is called rastering. This is usually done by the
graphics hardware. It is, however, useful to understand
how this process works in order to be able to achieve
good graphics performance.
In this subsection, we will discuss

– Rastering of straight lines, circles, ellipses, and
polygons

– Antialiasing of lines and polygons

1-43Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Problem:
Display a line on a raster display requires the
determination of points on the grid that best fit to the line.

P1=(x1,y1)

P2=(x2,y2)

Possible candidates for pixels representing the line

1-44Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Desired properties:

– Line should appear straight
– Line should appear with the same brightness everywhere
– Algorithm should be fast
– Algorithm should be portable to graphics hardware

1-45Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
DDA algorithm
The digital differential analyzer (DDA) is a scan-
conversion line algorithm based on calculating
differences based on the slope of the line.
A line can be described by the equation

y = m • x + b
Without loss of generality, we can assume 0 < m < 1.
Otherwise we can mirror or interchange the coordinates
as needed.
Now, we need to compute the series of points (xk, yk),
k=0,…,n that best describes the line.

1-46Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Since 0 < m < 1 we can advance the to the next column
be increasing the x-coordinate by 1 and then calculate the
y-coordinate accordingly.
Since the slope for a straight line is the same throughout
the entire line the following equation holds:

This, then, allows us to compute the y-coordinate; by
rounding the result to the closest integer value we get the
next point (xk, yk).

myyyymxx
xx
yym

kkkkkk

kk

kk

+=⇒−=⇒=−
−
−

=

+++

+

+

111

1

1

1

1-47Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
For m > 1 swap the coordinates axes:

1-48Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
The DDA algorithm easily can be extended to other
graphics primitives, such as circles, ellipses, etc.
The DDA line algorithm computes the coordinates for the
next y-coordinate using floating-point numbers. Floating-
point computations tend to be slower then integer
computations. Hence, it is desirable to have an algorithm
that is just based on integer coordinates, especially since
the resulting pixel coordinates are represented as integer
coordinates anyway.
The Bresenham algorithm allows us to do just that.

1-49Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Bresenham algorithm
Again, we assume without loss of
generality that the slope is 0 < m <
1; hence, the line is located in the
first octant.

3.

4.

5.

6. 7.

8.

1. octant
P2

x

y

P1

2.

Idea: no matter what the slope is, we increase one
coordinate by one (x-coordinate) similar to the DDA
algorithm. The other coordinate (y-coordinate) is either
increased by one as well or left unchanged, depending
on the distance to the next grid point.

1-50Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays

In order to decide which point to pick, we introduce an
error E which is proportional to the difference between
the exact point on the straight line and the center
between the two possible grid points on the raster. The
sign of E can then be used as a criterion for the decision.

Line to be drawn

1

2 yi+1=yi

yi+1=yi+1 Either point 1 or point 2
is drawn, depending on
which on is closer to the
straight line.

1-51Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays

1-52Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
If we scale this distance using 2Δx, we can calculate E
recursively:

 22
22

)1(2:1
 2:

 2
)5.0(2

11

11

1

xyE
xxmE

mxEEyy
xmEEyy
xy

mxE

i

i

iikk

iikk

Δ−Δ+=
Δ−Δ+=

−Δ+=+=
Δ+==
Δ−Δ=
−⋅Δ=

++

++

1-53Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Then, the Bresenham algorithm for the first octant can look like this:
// (x1, y1), (x2, y2) inter point coordinates, x1 < x2

x = x1; y = y1;

dx = x2-x1; dy = y2-y1;

e = 2*dy-dx; // initialising E

for(i=1; i<=dx; i++) { // loop for x

setPixel(x, y);

if(e >= 0) { // draw upper point, i.e. increase y

y = y+1;

e = e-2*dx;

}

x = x+1;
e = e+2*dy;

}

setPixel(x, y);

Note: only integer operations are used

1-54Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Example:
P1=(0, 0), P2=(5, 4)

(5,4)

635

(4,3)

(3,2)

(2,2)

(1,1)

(0,0)

plot

-54

554

-33

473

3-12

-92

211

-71

130045

ieyxdydx

0 1 2 3 4 5 6

1

2

3

4

5

1-55Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Rastering circles
To scan-convert circles based on a mathematical
description can be quite expensive as we will see on the
next slide.
However, the basic principal of the Bresenham algorithm
can be applied to other graphics primitives as well.
For example, circles can be scan-converted for a raster
display in a similar fashion. Of course, the error has to be
computed differently as illustrated on the next slides.

1-56Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Representation of a circle with center (xM, yM) and radius r:

1. Implicit: f(x,y) = (x-xM)2 + (y-yM)2 – r2 = 0
2. Parameterized: x(Θ) = xM + r cos(Θ), y(Θ) = yM + r sin(Θ), Θ∈[0,

2π[

Disadvantage: both methods are computationally
expensive and require floating-point arithmetic

1-57Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Note:
• When computing a single point on the

circle, seven other points can be easily
calculated due to symmetry.

• For a uniform brightness, the pixels
along the circle need to be distributed
evenly.

• The interpretation of the approximation
of a circle is subjective. Often
minimizing the residuum |xi

2+yi
2-r2| is

used as a criterion.

1

23

4

5
6 7

8

(x,y)

(y,x)(-y,x)

(-x,y)

(-x,-y)

(-y,-x) (y,-x)

(x,-y)

Only two
corners of
each grid
point
should be
used

1-58Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Besenham algorithm for circles
Best approximation based on the
decision metric di using the
residuum.
Assumptions:

– (xM, yM) = (0, 0)
– Start point is on raster
– r is integer
– 2. octant

D(Si) = | (xi-1+1)2 + yi-1
2 - r2 |

D(Ti) = | (xi-1+1)2 + (yi-1-1)2 - r2 |

1-59Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
The decision metric di = D(Si) – D(Ti) measures the
distance between the upper and lower raster point.
For di > 0:

pick Pi = Ti as the next point, thus xi = xi-1+1, yi = yi-1-1
For di < 0:

pick Pi = Si as the next point, thus xi = xi-1+1, yi = yi-1

Within the 2. octant the circle is monotonically
decreasing, the slope is between 0 and -1. Therefore:
(xi-1+1)2 + yi-1

2 - r2>0 and (xi-1+1)2 + (yi-1-1)2 - r2 < 0
Thus: di = (xi-1+1)2 + yi-1

2 - r2 + (xi-1+1)2 + (yi-1-1)2 - r2

1-60Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
di = (xi-1+1)2 + yi-1

2 - r2 + (xi-1+1)2 + (yi-1-1)2 - r2

We, then, can compute di recursively:
di+1 = di + 4 (xi-1 - yi-1) + 10 for di > 0
di+1 = di + 4 xi + 2 for di ≤ 0
with a start value of d1 = 3-2r (x0=0, y0=r)

1-61Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Example: r = 8

65

7

74

-11

73

3

82

-7

81

-13

80

yxd

0 1 2 3 4 5 6

1

2

3

4

5

6

7

8

87

1-62Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Filling polygons
Goal: fill or colorize a bounded area using a color or

pattern
Examples: bar chart, surfaces, solid objects, etc.

The description of the area to be filled is given
geometrically, e.g. by edges, lines, polygons circles, etc.,
or by a set of pixels defining a boundary.

1-63Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Connectedness of areas
We distinguish between different types of connectedness:
4-times connected: connected horizontally or vertically
8-times connected: additionally diagonally connected

8-times connected4-times connected

1-64Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Comments
Filling algorithms designed for 8-times connected areas
can also fill 4-times connected areas.
Problem: 4-times connected areas with adjacent corners
Filling algorithms for 4-times connected areas cannot fill
all 8-times connected areas.
Techniques for rastering a polygon or an area:

– Scan-line methods
– Seed fill methods
– Hybrid methods

1-65Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods

– Also called scan conversion
– Works row by row from top to bottom
– A pixel inside the current scan line is only drawn if it is located

inside the polygon
// simplest/greedy approach

for (y=ymin; y<=ymax; y++) // row

for (x=xmin; x<=xmax; x++) // column

if (Inside (polygon, x, y)

SetPixel(x,y);

– Works for geometrically as well as pixel-wise defined areas
– Greedy approach very slow
→ Improvements possible by exploiting coherence

1-66Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
The approach is based on scan-line coherence:
Neighboring pixels are very likely to get the same
intensity/color values assigned.
→ The pixel characteristics, i.e. color/intensity values,

only changes where an edge of the polygon intersects
the scan line, i.e. the part of the scan-line between two
intersection points is either completely inside or
completely outside of the polygon

1-67Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
Example:

Scan line y=2: intersection with polygon at x = 1,8
Scan line y=4: intersection with polygon at x = 1,4,6,8

1-68Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)

Scan line y=2: we can subdivide the scan line into three
sections: x < 1: outside the polygon

1 ≤ x ≤ 8: inside the polygon
x > 8: outside the polygon

1-69Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
Scan line y=4: we can subdivide the scan line into 5 sections:

x < 1: outside the polygon
1 ≤ x ≤ 4: inside the polygon
4 < x < 6: outside the polygon
6 ≤ x ≤ 8: inside the polygon
x > 8: outside the polygon

1-70Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
Choose scan lines wisely:
Scan lines cross pixels at their
centers, and a pixel is
considered as being inside a
polygon if the pixel’s center is
located right to the intersection
with the polygon’s edge.

1 2 3 4 5 6

1

2

3

4

5

Note: in this image, the
grid resembles the
boundaries of the pixels,
not the grid

1-71Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
Problematic are singularities, i.e. locations where the scan
line intersects with a vertex of the polygon.
⇒ Consider local extremes
Local extremes: those y-values of the corner of the polygon
where these values are greater or smaller than both vertices
(with respect to the y-value) at the opposite side of the edge.
Distinguish two cases:
1. If the vertex a local extreme, the intersection counts twice
2. If the vertex is no local extreme, the intersection counts

once only

1-72Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
The simple ordered edge list algorithm
Method: pre-processing + scan conversion
a) Preprocessing

Determine for every edge of the polygon the
intersections with the scan lines at the pixel centers
(e.g. using the Bresenham or other DDA algorithm);
ignore horizontal edges.
Store every intersection (x,y) in a list.
Sort list from top to bottom, left to right.

1-73Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
b) Scan conversion:

Consider pairs of subsequent intersections (x1,y1) and
(x2,y2) in the list, i.e. list element 1 and 2, list element 3
and 4, …)
Due to the preprocessing step, we know that for every
scan line y:
y = y1 = y2 and x1 ≤ x2

Draw all pixels along the scan line y for which:
x1 ≤ x < x2 for every integer number x.

1-74Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
Example:
a) (1,7), (1,7)

(1,6), (2,6), (8,6), (8,6)

(1,5), (3,5), (7,5), (8,5)

(1,4), (4,4), (6,4), (8,4)

(1,3), (5,3), (5,3), (8,3)

(1,2), (8,2)

(1,1), (8,1)

(1,7),(1,7),(1,6),(2,6),(8,6),(8,6),(1,5),(3,5),(7,5),(8,5),(1,4),(4,4),(6,4),(8,4),
(1,3),(5,3),(5,3),(8,3),(1,2),(8,2),(1,1),(8,1)

1-75Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Scan-line methods (continued)
b)

(1,7),(1,7)

(1,6),(2,6); (8,6),(8,6)

(1,5),(3,5); (7,5),(8,5)

(1,4),(4,4); (6,4),(8,4)

(1,3),(5,3); (5,3),(8,3)

(1,2),(8,2)

(1,1),(8,1)

Note: this is in accordance with slide 1-68; an adjacent polygon to the right would
fill the pixels in column 8.

1-76Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Seed fill method
Seed fill methods fill the area bounded by the polygon
starting from an initial pixel (seed) and are suitable for
pixel-wise defined areas, hence also for raster displays.
Usually, we differentiate between two differently defined
areas:
(i) Boundary fill algorithms

Input: initial pixel (seed), color of the boundary, fill
color or pattern
Algorithm: starting at the seed, neighboring pixels
are colored until the boundary is reached (or an
already colored pixel is encountered).

1-77Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Seed fill method (continued)
(ii) Flood/interior fill algorithm

Input: initial pixel (seed), color of the pixels that are to
be changed, fill color or pattern
Algorithm: starting at the seed, neighboring pixels
are colored using the fill color as long as the color is
identical to the input color.

1-78Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Seed fill method (continued)
Simple seed fill algorithm
(four directions of movement, are defined by boundary, FILO/LIFO)
Empty(stack);
Push(stack, seed-pixel);

while(stack not empty)
{
pixel = Pop(stack);
setColor(pixel, FillColor);
for each of the 4-connected pixels pi
{
if(! ((pi == boundary_pixel) ||

(colorOf(pi) == FillColor)))
Push(stack, pi);

}
}

1

2

3
4

e.g.

Note: some pixels may be stored in the stack (and also colored) multiple times

1-79Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Seed fill method (continued)
Example: (numbers indicate location of pixels within the
stack)

1

2

3

4

5

6

7

1 2 3 4 5 6 87 9

1,19

2,15,17

3,14,15

4

67

5,7,15

13,15

12,161212

11 11,13

10 110,14

8,9,159

9 8

16

6,21

4,20

17

16,18,25

17,24

25

19,23

20,22

21 21,24

22,24

23,24

24

1-80Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Seed fill method (continued)
Example: area with hole

1

2

3

4

5

6

7

1 2 3 4 5 6 87 9

1

158,15

3

3,94,99

5,9 4

6,9 6

77,9

9 8

2,9

15

1,10

9

10

9,11

12

13

14 14

13,14

12,14

10,14

1-81Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Hybrid methods
Hybrid methods follow the main principles of both scan
line and seed fill methods
⇒ Scan line seed fill algorithm

1-82Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (term from signal theory)
Generally, aliasing effects are erroneous reconstruction
of a (continuous) signal due sampling rate with a too low
frequency (see also Nyquist theorem).
The term aliasing in the area of computer graphics is
used, besides visual effects resulting from the above (e.g.
aliasing when rendering a checker board), to describe
visual artifacts resulting from the process of scan
conversion. (e.g. stair casing when drawing diagonal
lines).
We distinguish between local and temporal aliasing (e.g.
a wheel that appears to rotate backwards).

1-83Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)
Anti-aliasing methods are techniques (e.g. over-sampling,
filtering) that try to minimize the aliasing effect.
Eliminating the aliasing effect is often not possible
(already from a theoretical point of view).
For aliasing effects resulting from scan conversion
algorithms, the anti-aliasing method is also called “edge
smoothing”.

1-84Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)
Aliasing artifacts in computer graphics
• Texture artifacts (e.g. checker board)
• Stair casing artifacts when rastering curves ⇒ jagged

lines
• Disappearance of objects which are smaller than a

pixel
• Disappearance of small, skinny objects
• Loss of detail in complex images
• “Flipping” small objects during motion/animation

1-85Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)

Usually, visual artifacts occur if the periodicity (here the
checker board pattern) in the texture reaches the size of
a pixel.
Left: at the top, the squares are getting smaller and then
increase again, resulting in visual irritation. This is due to
the sampling rate being to course.

1-86Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)

Right: using two-times over-sampling, (sampling at a
doubled rate, i.e. four times the computation effort), the
artifacts can be reduced but still occur (at higher
frequencies).
Hence, aliasing in computer graphics images can only be
reduced but not eliminated.

1-87Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)
Example: stair casing artifacts, jagged edges

The previously discussed techniques for rastering straight
lines and curves result in stair casing artifacts (left) since
it is only possible to draw points at fixed raster locations.
These locations are generally not identical to the
real/ideal locations of these points.

1-88Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)
Example: stair casing artifacts, jagged edges

In order to reduce this kind of aliasing, several intensity
values are used to visually increase the resolution.
For example, a variant of the Bresenham algorithm for
straight lines (for the first octant) draws both possible
pixels but uses different intensities (gray levels) based on
the distance between pixel and straight line (right).

1-89Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)
Example: aliasing for
rendering of polygons

1-90Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)
A simple, global anti-aliasing can be achieved by applying
the over-sampling, also known as super-sampling, to the
entire image.
Every pixel is computed at a higher sampling rate
compared to the image resolution. The gray value or
color value for that pixel is then determined as the
weighted average of all its sub-pixel values.
This approach is equivalent to a filtering (see digital
signal processing for the theoretical basis).
The following filter kernels are commonly used:

1-91Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing (continued)

121

242

121

3

6

9

6

3

2

4

6

4

2

363

242

121

242

121

4

8

12

16

12

8

4

3

6

9

12

9

6

3

36963

481284

3

6

9

6

3

2

4

6

4

2

363

242

121

242

121

3 x 3 5 x 5 7 x 7

pixel

sub-pixel

sampling point

1 1 1

1

1 1 1

1
1

2

2 2 2

2

2

2

2 2

2

2

2

4 4

4 4

1-92Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing in OpenGL
In order to use antialiasing when rendering points or lines
you have to enable this feature in OpenGL first:

glEnable (GL_POINT_SMOOTH);

glEnable (GL_LINE_SMOOTH);

To disable antialiasing use the corresponding function
call:

glDisable (GL_POINT_SMOOTH);

glDisable (GL_LINE_SMOOTH);

1-93Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing in OpenGL (continued)
To choose between quality or performance you can give
OpenGL a hint accordingly:

glHint (GLenum target, GLenum hint);

where the following target parameters are available:
GL_POINT_SMOOTH_HINT

GL_LINE_SMOOTH_HINT

GL_POLYGON_SMOOTH_HINT

and the following hints:
GL_FASTEST, GL_NICEST, GL_DONT_CARE

1-94Department of Computer Science and Engineering

1 Geometric Primitives

1.4 Rendering primitives on raster displays
Antialiasing in OpenGL (continued)
When using the RGBA mode (specified when initializing
the display using glutInitDisplayMode) you need to
specify the blending function as well. Most likely, you
want to use the parameters GL_SRC_ALPHA and
GL_ONE_MINUS_SRC_ALPHA to specify the blending
function:

glEnable (GL_BLEND);

glBlendFunc (GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

	Chapter 1
	1.1 Overview
	1.1 Overview
	1.1 Overview
	1.1 Overview
	1.2 Video display devices
	1.2 Video display devices
	1.2 Video display devices
	1.2 Video display devices
	1.2 Video display devices
	DaytaOhio’s Ispace
	1.2 Video display devices
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.3 Introduction to OpenGL
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays
	1.4 Rendering primitives on raster displays

