
2-1Department of Computer Science and Engineering

2 Attributes of geometric primitives 

Chapter 2

Attributes of geometric primitives



2-2Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.1 Overview
In general, a parameter that affects the way a primitive is to be 
displayed is referred to as an attribute parameter. Some attribute 
parameters, such as color and size, determine the fundamental 
characteristics of a primitive.
One way to incorporate attribute options into a graphics package is to 
extend the parameter list associated with each graphics-primitive 
function to include the appropriate attribute values. A line-drawing 
function, for example, could contain additional parameters to set the 
color, width, and other properties of the line.
Another approach is to maintain a system list of current attribute 
values. Separate functions are then included in the graphics package 
for setting current values in the attribute list. To generate a primitive, 
the system checks the relevant attributes and invokes the display 
routine for that primitive using the current attribute settings.



2-3Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.1 Overview
A system that maintains a list for the current values of 
attributes and other parameters, such as OpenGL, is 
referred to as a state system or state machine. 
Attributes of output primitives and some other 
parameters, such as the current frame-buffer position or 
projection matrix, are referred to as state variables or 
state parameters. When we assign a value to one or 
more state parameters, we put the system into a 
particular state. And that state remains in effect until we 
change the value of a state parameter.



2-4Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.1 Overview
OpenGL state variables
The state parameters in OpenGL include color and other 
primitive attributes, the current matrix mode, the elements 
of the model-view matrix, the current position for the 
frame buffer, and the parameters for lighting effects in a 
scene. All OpenGL state parameters have default values, 
which remain in effect until new values are specified. At 
any time, we can query the system to determine the 
current value of a state parameter. 



2-5Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.1 Overview
OpenGL state variables (continued)
All graphics primitives in OpenGL are displayed with the 
attributes in the current state list. Changing one or more 
of the attribute settings affects only those primitives that 
are specified after the OpenGL state is changed. 
Primitives that were defined before the state change 
retain their attributes. Thus, we can display a green line, 
change the current color to red, and define another line 
segment. Both the green line and the red line will then be 
displayed. Also, some OpenGL state values can be 
specified within the glBegin/glEnd pairs, along with 
the coordinate values, so that parameter settings can 
vary from one coordinate position to another.



2-6Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
The way colors are specified, usually depends on the 
technology used. For example, for printers the CMY color 
model is suitable due to the subtractive combination of 
colors.
Raster displays are typically based on different colors 
being added together. For example, combining red, 
green, and blue results in the color white when added 
together. Hence, these types use an additive color model 
with fundamental colors being red, green, and blue. Thus, 
the RGB color model is very suitable for raster displays.



2-7Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
The RGB color space
The RGB color space can be visualized as a cube with 
the three fundamental colors in three corners, maximizing 
the distances between one another. In the remaining 
corners, we find black, white, cyan, magenta, and yellow.



2-8Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
Color lookup tables
We could also specify colors using a color lookup table. 
There, a table of colors is stored containing a subset of 
colors available in the RGB color model. Then, colors are 
specified by referencing into the lookup table. 



2-9Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
Color lookup tables
Usually, the reference to the color in the lookup table 
uses less memory compared to storing the real RGB 
value. Therefore, using a color lookup table can reduce 
the memory requirements for storing the frame buffer in 
the graphics memory. Since memory is quite affordable 
nowadays, specifying the RGB values directly is the more 
common approach now.



2-10Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color functions
In our first example, a few OpenGL color functions were 
introduced. We used one function to set the color for the 
display window, and we used another function to specify 
a color for the straight-line segments. Also, we set the 
color display mode to RGB with the statement:

glutInitDisplayMode (GLUT_SINGLE, 
GLUT_RGB);

Instead of GLUT_RGB, we could specify GLUT_RGBA to 
enable the alpha channel (transparency). This allows us 
to blend between the color of a primitive and a 
background color, for example.



2-11Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color functions (continued)
Colors are usually specified using their red, green, and 
blue components of that color. A fourth component can 
be used to specify the alpha coefficient used for color 
blending. An important application of color blending is in 
the simulation of transparency effects. For these 
calculations, the value of alpha corresponds to a 
transparency (or opacity) setting where a value of 1.0 (or 
255 when using integer) results in an opaque setting.



2-12Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color functions (continued)
In the RGB (or RGBA) mode, we select the current color 
components with the function:

glColor* (colorComponents);

Suffix codes are similar to those for the glVertex
function. We use a code of either 3 or 4 to specify the 
RGB or RGBA mode along with the numerical data-type 
code and an optional vector suffix. Typical suffix codes 
for the numerical data types are b (byte), i (integer), s
(short), f (float), and d (double). Floating point values for 
the color components are in the range from 0.0 (zero 
intensity) to 1.0 (full intensity). When using integer 
numbers, the values range from 0 to 255.



2-13Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color functions (continued)
The default color is (1.0, 1.0, 1.0, 1.0), i.e. white with full 
opacity.
Examples:

glColor3f (0.0, 1.0, 1.0);

float colorArray[3] = { 0.0, 1.0, 1.0};
glColor3fv (colorArray);

glColor4i (0, 255, 255, 255);



2-14Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color blending
In many applications, it is convenient to be able to 
combine the colors of overlapping objects or to blend an 
object with the background, for example when using anti-
aliasing or using transparency.
In OpenGL, the colors of two objects can be blended by 
first loading one object into the frame buffer, then 
combining the color of the second object with the frame 
buffer color. The current frame buffer color is referred to 
as the destination color and the color of the second 
object is the source color.



2-15Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color blending (continued)
To apply color blending in an application, we first need to 
activate this OpenGL feature using the following function:

glEnable (GL_BLEND);

To turn off color blending, we can use:
glDisable (GL_BLEND);

If color blending is not activated, an object’s color simply 
replaces the frame buffer contents at the object’s 
location.



2-16Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color functions (continued)
We then need to specify how to combine the two colors using this
function:

glBlendFunc (s, d);

The parameters s and d specify how the source and destination 
colors are to be combined using the formula:

s ·src_color + d · destination_color

As factors, the following OpenGL constants can be used:
GL_ZERO, GL_ONE, GL_DST_ALPHA, GL_SRC_ALPHA, 
GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA, 

GL_DST_COLOR, GL_SRC_COLOR

The default setting is glBlendFunc (GL_ONE, GLZERO).



2-17Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color arrays
When using vertex arrays, colors can also be specified in 
an array just like the vertices. Similarly to the vertices, we 
need to activate the color-array features of OpenGL:

glEnableClientState (GL_COLOR_ARRAY);

Then, we specify the location and format of the color 
components with:

glColorPointer (nColorComponents, 
dataType, offset, 
colorArray);

Parameter nColorComponents is assigned a value of 
either 3 or 4, depending upon whether we are using alpha 
values or not.



2-18Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color arrays (continued)
The example in chapter 1 then changes to:

GLfloat vertices[] = { … };

GLfloat colors[] = { … };

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_COLOR_ARRAY);

glVertexPointer (3, GL_FLOAT, 0, vertices);

glColorPointer (3, GL_FLOAT, 0, colors);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);



2-19Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color arrays (continued)
We could even store both colors and vertices in one 
interleaved array. Each of the pointers would then 
reference the single interleaved array, with an appropriate 
offset value and slightly different start pointer to the array:

GLfloat interleaved[] = { … };

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_COLOR_ARRAY);

glVertexPointer (3, GL_FLOAT, 6 * sizeof
(GLfloat), &(interleaved[3]));

glColorPointer (3, GL_FLOAT, 6 * sizeof
(GLfloat), interleaved);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);



2-20Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.2 Color
OpenGL color arrays (continued)
To reduce the number of function calls even further, 
OpenGL provides a function in which we can specify all 
the vertex and color arrays at once. Therefore, we can 
replace the two calls referring to the arrays with this one:

glInterleavedArrays (GL_C3F_V3F, 0, 
interleaved);

The first parameter is an OpenGL constant that indicates 
three-element floating point specifications for both color 
(C) and vertex coordinates (V). And the elements of array 
interleaved are to be interleaved with the color for each 
vertex listed before the coordinates. This function also 
automatically enables both vertex and color arrays.



2-21Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.3 Attributes
OpenGL point attributes
Besides changing the color of a point, we can also 
specify the point size. We set the size for an OpenGL 
point with:

glPointSize (size);

Parameter size is assigned a positive floating point 
value, which is rounded to an integer (unless the point is 
to be anti-aliased). A point size of 1.0 (the default value) 
displays a single pixel, and a point size of 2.0 displays a 2 
by 2 pixel array.



2-22Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.3 Attributes
OpenGL line attributes
Similar to the point size, the line width can be changed 
using the following OpenGL function:

glLineWidth (width);

We assign a floating-point value to parameter width, 
and this value is rounded to the nearest nonnegative 
integer. If the input value rounds to 0.0, the line is 
displayed with the standard (default) width of 1.0. When 
using anti-aliasing, fractional widths are possible as well.



2-23Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.3 Attributes
OpenGL line attributes (continued)
By default, a straight-line segment is displayed as a solid 
line. But we can also display dashed lines, dotted lines, or 
a line with a combination of dashed and dots. We set a 
current display style for lines with this OpenGL function:

glLineStipple (repeatFactor, pattern);

Parameter pattern is used to reference a 16-bit integer 
that describes how the line should be displayed. A 1 in 
the bit-pattern denotes an “on” pixel position. The pattern 
is applied to the pixels along the line path starting with the 
low-order bits in the pattern. The default pattern is 
0xFFFF which produces a solid line.



2-24Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.3 Attributes
OpenGL line attributes (continued)
As an example of specifying a line style, the following 
function call results in dashed lines:

glLineStipple (1, 0x00FF);

The first half of this pattern (eight pixels) switches those 
pixels off, while the second half results in visible pixels. 
Also, since low-order bits are applied first, a line begins 
with an eight-pixel dash starting at the first endpoint. This 
dash is followed by an eight-pixel space, then another 
eight-pixel dash, and so forth, until the second endpoint 
position is reached.



2-25Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.3 Attributes
OpenGL line attributes (continued)
Integer parameter repeatFactor specifies how many 
times each bit in the pattern is to be repeated before the 
next bit in the pattern is applied. The default repeat value 
is 1.
With a polyline, a specified line-style pattern is not 
restarted at the beginning of each segment. It is applied 
continuously across all the segments, starting at the first 
endpoint of the polyline and ending at the final endpoint 
for the last segment in the series.



2-26Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.3 Attributes
OpenGL line attributes (continued)
Before a line can be displayed in the current line-stule
pattern, we must activate the line-style feature of 
OpenGL. We accomplish this with the following function:

glEnable (GL_LINE_STIPPLE);

Without enabling this feature, lines would still appear as 
solid lines, even though a pattern was provided.
To disable the use of a pattern we can issue the following 
function call:

glDisable (GL_LINE_STIPPLE);



2-27Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.4 Fill attributes
OpenGL fill attributes
By default, a polygon is displayed as a solid-color region, 
using the current color setting. To fill the polygon with a 
pattern in OpenGL, a 32-bit by 32-bit bit mask has to be 
specified similar to defining a line-style:

GLubyte pattern []

= { 0xff, 0x00, 0xff, 0x00, …};

Once we have set the mask, we can establish it as the 
current fill pattern:

glPolygonStipple (pattern);



2-28Department of Computer Science and Engineering

2 Attributes of geometric primitives 

2.4 Fill attributes
OpenGL fill attributes (continued)
Since OpenGL is a state machine, we need to enable the 
fill routines before we specify the vertices for the 
polygons that are to be filled with the current pattern. We 
do this with the statement

glEnable (GL_POLYGON_STIPPLE);

Similarly, we turn off the pattern filling with
glDisable (GL_POLYGON_STIPPLE);

Then, we can specify the polygons by using one of 
OpenGL’s drawing methods.


	Chapter 2
	2.1 Overview
	2.1 Overview
	2.1 Overview
	2.1 Overview
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.2 Color
	2.3 Attributes
	2.3 Attributes
	2.3 Attributes
	2.3 Attributes
	2.3 Attributes
	2.3 Attributes
	2.4 Fill attributes
	2.4 Fill attributes

