
4-1Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Chapter 4

Introduction to OpenGL Programming

4-2Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Overview
This chapter is supposed to provide a brief overview of
some of the most important features of OpenGL. It will
include details that go beyond the scope of this class.
Some of the topics addressed will be covered in
Computer Graphics II, such as lighting, depth buffer,
texture mapping, etc. Some topics will be a repeat what
was discussed before but in more detail to help you
develop 3-D applications based on OpenGL.

4-3Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Overview
The topics of this chapter are:
• General OpenGL Introduction
• Rendering Primitives
• Rendering Modes
• Lighting
• Texture Mapping
• Additional Rendering Attributes
• Imaging

4-4Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL and GLUT Overview

4-5Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL and GLUT Overview
• What is OpenGL & what can it do for me?
• OpenGL in windowing systems
• Why GLUT
• A GLUT program template

4-6Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

What Is OpenGL?
Graphics rendering API

– high-quality color images composed of geometric and image
primitives

– window system independent
– operating system independent

4-7Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL Architecture

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Frame
Buffer

Texture
Memory

CPU

Pixel
Operations

4-8Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL as a Renderer
• Geometric primitives

– points, lines and polygons

• Image Primitives
– images and bitmaps
– separate pipeline for images and geometry

• linked through texture mapping

• Rendering depends on state
– colors, materials, light sources, etc.

4-9Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Related APIs
• AGL, GLX, WGL

– glue between OpenGL and windowing systems

• GLU (OpenGL Utility Library)
– part of OpenGL
– NURBS, tessellators, quadric shapes, etc.

• GLUT (OpenGL Utility Toolkit)
– portable windowing API
– not officially part of OpenGL

4-10Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL and Related APIs

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif
widget or similar

4-11Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Preliminaries
Headers Files

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

Libraries
libGL, libGLU, libglut

Enumerated Types
OpenGL defines numerous types for compatibility

GLfloat, GLint, GLenum, etc.

4-12Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

GLUT Basics
• Application Structure

– Configure and open window
– Initialize OpenGL state
– Register input callback functions

• render
• resize
• input: keyboard, mouse, etc.

– Enter event processing loop

4-13Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Sample Program
void main(int argc, char** argv)
{
int mode = GLUT_RGB|GLUT_DOUBLE;
glutInitDisplayMode(mode);
glutCreateWindow(argv[0]);
init();
glutDisplayFunc(display);
glutReshapeFunc(resize);
glutKeyboardFunc(key);
glutIdleFunc(idle);
glutMainLoop();

}

4-14Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL Initialization
Set up whatever state you’re going to use
void init(void)
{

glClearColor(0.0, 0.0, 0.0, 1.0);
glClearDepth(1.0);

glEnable(GL_LIGHT0);
glEnable(GL_LIGHTING);
glEnable(GL_DEPTH_TEST);

}

4-15Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

GLUT Callback Functions
Routine to call when something happens

– window resize or redraw
– user input
– animation

“Register” callbacks with GLUT
• glutDisplayFunc(display);

• glutIdleFunc(idle);

• glutKeyboardFunc(keyboard);

4-16Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Callback
Do all of your drawing here

glutDisplayFunc(display);
void display(void)
{

glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_TRIANGLE_STRIP);

glVertex3fv(v[0]);
glVertex3fv(v[1]);
glVertex3fv(v[2]);
glVertex3fv(v[3]);

glEnd();
glutSwapBuffers();

}

4-17Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Idle Callbacks
Use for animation and continuous update

glutIdleFunc(idle);

void idle(void)
{

t += dt;
glutPostRedisplay();

}

4-18Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

User Input Callbacks
Process user input

glutKeyboardFunc(keyboard);
void keyboard(char key, int x, int y)
{

switch(key) {
case ‘q’ : case ‘Q’ :

exit(EXIT_SUCCESS);
break;

case ‘r’ : case ‘R’ :
rotate = GL_TRUE;
break;

}
}

4-19Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Elementary Rendering

4-20Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Elementary Rendering
• Geometric Primitives
• Managing OpenGL State
• OpenGL Buffers

4-21Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL Geometric Primitives

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_POINTSGL_POINTS

GL_LINESGL_LINES

GL_LINE_LOOPGL_LINE_LOOPGL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES

GL_QUADSGL_QUADS

All geometric primitives are specified by vertices

4-22Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Simple Example
void drawRhombus(GLfloat color[])
{

glBegin(GL_QUADS);
glColor3fv(color);
glVertex2f(0.0, 0.0);
glVertex2f(1.0, 0.0);
glVertex2f(1.4, 1.118);
glVertex2f(0.4, 1.118);
glEnd();

}

4-23Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL Command Formats

glVertex3fv(glVertex3fv(vv))

Number ofNumber of
componentscomponents

2 2 -- (x,y) (x,y)
3 3 -- (x,y,z)(x,y,z)
4 4 -- (x,y,z,w)(x,y,z,w)

Data TypeData Type
b b -- bytebyte
ub ub -- unsigned byteunsigned byte
s s -- shortshort
us us -- unsigned shortunsigned short
i i -- intint
ui ui -- unsigned intunsigned int
f f -- floatfloat
d d -- doubledouble

VectorVector

omit omit ““vv”” forfor
scalar formscalar form

glVertex2f(x, y)glVertex2f(x, y)

4-24Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Specifying Geometric Primitives
Primitives are specified using

glBegin(glBegin(primType primType););

glEnd();glEnd();

primType determines how vertices are combined

GLfloat red, greed, blue;GLfloat red, greed, blue;
Glfloat coords[3];Glfloat coords[3];
glBegin(glBegin(primType primType););
for (i = 0; i < nVerts; ++i) { for (i = 0; i < nVerts; ++i) {

glColor3f(red, green, blue);glColor3f(red, green, blue);
glVertex3fv(coords);glVertex3fv(coords);

}}
glEnd();glEnd();

4-25Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL Color Models

color index mode

Display1
2

4
8

16

Red Green Blue
0
1
2
3

24
24
26

123 219 74

RGBA mode

RGBA or Color Index

4-26Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Shapes Tutorial

http://www.xmission.com/~nate/tutors.html

4-27Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Controlling Rendering Appearance
From Wireframe to Texture Mapped

4-28Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

OpenGL’s State Machine
All rendering attributes are encapsulated in the OpenGL
State

– rendering styles
– shading
– lighting
– texture mapping

4-29Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Manipulating OpenGL State
Appearance is controlled by current state

for each (primitive to render) {
update OpenGL state if necessary
render primitive

}
Manipulating vertex attributes is most common way to
manipulate state

glColor*() / glIndex*()glColor*() / glIndex*()
glNormal*()glNormal*()
glTexCoord*()glTexCoord*()

4-30Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Controlling current state
Setting State

glPointSize(glPointSize(sizesize););

glLineStipple(glLineStipple(repeatrepeat, , pattern pattern););

glShadeModel(glShadeModel(GLGL__SMOOTHSMOOTH););

Enabling Features
glEnable(glEnable(GLGL__LIGHTING LIGHTING););

glDisable(glDisable(GL_TEXTURE_2D GL_TEXTURE_2D););

4-31Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Transformations

4-32Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Transformations in OpenGL
• Modeling
• Viewing

– orient camera
– projection

• Animation
• Map to screen

4-33Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Camera Analogy
3D is just like taking a photograph (lots of photographs!)

camera

tripod model

viewing
volume

4-34Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Camera Analogy and Transformations
• Projection transformations

– adjust the lens of the camera
• Viewing transformations

– tripod–define position and orientation of the viewing volume
in the world

• Modeling transformations
– moving the model

• Viewport transformations
– enlarge or reduce the physical photograph

4-35Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Coordinate Systems and Transformations
• Steps in Forming an Image

– specify geometry (world coordinates)
– specify camera (camera coordinates)
– project (window coordinates)
– map to viewport (screen coordinates)

• Each step uses transformations
• Every transformation is equivalent to a change in

coordinate systems (frames)

4-36Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Affine Transformations
• Want transformations which preserve geometry

– lines, polygons, quadrics

• Affine = line preserving
– Rotation, translation, scaling
– Projection
– Concatenation (composition)

4-37Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Homogeneous Coordinates
Each vertex is a column vector

w is usually 1.0
all operations are matrix multiplications
directions (directed line segments) can be represented
with w = 0.0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

w
z
y
x

vr

4-38Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

M

A vertex is transformed by 4 x 4 matrices
– all affine operations are matrix multiplications
– all matrices are stored column-major in OpenGL
– matrices are always post-multiplied
– product of matrix and vector is v

3D Transformations

vM

4-39Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Specifying Transformations
Programmer has two styles of specifying transformations

specify matrices (glLoadMatrix, glMultMatrixglLoadMatrix, glMultMatrix)
specify operation (glRotate, glOrthoglRotate, glOrtho)

Programmer does not have to remember the exact
matrices

check appendix of Red Book (Programming Guide)

4-40Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Programming Transformations
• Prior to rendering, view, locate, and orient:

– eye/camera position
– 3D geometry

• Manage the matrices
– including matrix stack

• Combine (composite) transformations

4-41Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

object eye clip normalized
device

window

other calculations here
material color
shade model (flat)
polygon rendering mode
polygon culling
clipping

Transformation Pipeline

4-42Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Matrix Operations
Specify Current Matrix Stack

glMatrixMode(glMatrixMode(GL_MODELVIEWGL_MODELVIEW or or GL_PROJECTIONGL_PROJECTION))

Other Matrix or Stack Operations
glLoadIdentity() glPushMatrix()glLoadIdentity() glPushMatrix()

glPopMatrix()glPopMatrix()

Viewport
– usually same as window size
– viewport aspect ratio should be same as projection transformation or

resulting image may be distorted
glViewport(glViewport(x, y, width, heightx, y, width, height))

4-43Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Projection Transformation
Shape of viewing frustum
Perspective projection

gluPerspective(gluPerspective(fovy, aspect, zNear, zFarfovy, aspect, zNear, zFar))

glFrustumglFrustum((left,left, right,right, bottom,bottom, top,top, zNear,zNear, zFarzFar))

Orthographic parallel projection
glOrtho(glOrtho(left,left, right,right, bottom,bottom, top,top, zNear,zNear, zFarzFar))

gluOrtho2D(gluOrtho2D(left, right, bottom, topleft, right, bottom, top))
• calls glOrtho with z values near zero

4-44Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Applying Projection Transformations
Typical use (orthographic projection)

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(left, right, bottom, top, zNear, zFar);

4-45Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Viewing Transformations
• Position the camera/eye in the scene

– place the tripod down; aim camera
• To “fly through” a scene

– change viewing transformation and
redraw scene

gluLookAt(eyex, eyey, eyez,
aimx, aimy, aimz,
upx, upy, upz)

– up vector determines unique orientation
– careful of degenerate positions

tripod

4-46Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Projection Tutorial

http://www.xmission.com/~nate/tutors.html

4-47Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Modeling Transformations

Move object
glTranslate{fd}(glTranslate{fd}(x, y, zx, y, z))

Rotate object around arbitrary axis
glRotate{fd}(glRotate{fd}(angle, x, y, zangle, x, y, z))

– angle is in degrees

Dilate (stretch or shrink) or mirror object
glScale{fd}(glScale{fd}(x, y, zx, y, z))

()zyx

4-48Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Transformation Tutorial

http://www.xmission.com/~nate/tutors.html

4-49Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Connection: Viewing and Modeling
• Moving camera is equivalent to moving every object in

the world towards a stationary camera
• Viewing transformations are equivalent to several

modeling transformations
– gluLookAt() has its own command

– can make your own polar view or pilot view

4-50Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Projection is left handed
• Projection transformations (gluPerspective, glOrtho)

are left handed
– think of zNear and zFar as distance from view point

• Everything else is right handed, including the vertexes
to be rendered

x

y z+

left handed
x

y

z+

right handed

4-51Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Common Transformation Usage
• 3 examples of resize() routine

– restate projection & viewing transformations

• Usually called when window resized
• Registered as callback for glutReshapeFunc()

4-52Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

resize(): Perspective & LookAt
void resize(int w, int h)
{

glViewport(0, 0, (GLsizei) w,
(GLsizei) h);

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(64.0, (GLfloat) w / h,

1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 4.0,

0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

}

4-53Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

resize(): Perspective & Translate
Same effect as previous LookAt
void resize(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(64.0, (GLfloat) w/h,

1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -4.0);

}

4-54Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

resize(): Ortho (part 1)
void resize(int width, int height)
{

GLdouble aspect =
(GLdouble) width / height;

GLdouble left = -2.4, right = 2.4;
GLdouble bottom = -2.4, top = 2.4;
glViewport(0, 0, (GLsizei) w,

(GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

… continued …

4-55Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

resize(): Ortho (part 2)
if (aspect < 1.0) {

left /= aspect;
right /= aspect;

} else {
bottom *= aspect;
top *= aspect;

}
glOrtho(left, right,

bottom, top,
near, far);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

4-56Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Compositing Modeling Transformations
• Problem 1: hierarchical objects

– one position depends upon a previous position
– robot arm or hand; sub-assemblies

• Solution 1: moving local coordinate system
– modeling transformations move coordinate system
– post-multiply column-major matrices
– OpenGL post-multiplies matrices

4-57Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Compositing Modeling Transformations
• Problem 2: objects move relative to absolute world origin

– my object rotates around the wrong origin
• make it spin around its center or something else

• Solution 2: fixed coordinate system
– modeling transformations move objects around fixed coordinate

system
– pre-multiply column-major matrices
– OpenGL post-multiplies matrices
– must reverse order of operations to achieve desired effect

4-58Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Additional Clipping Planes
• At least 6 more clipping planes available
• Good for cross-sections
• Modelview matrix moves clipping plane
• clipped
glEnable(GL_CLIP_PLANEi)

glClipPlane(GL_CLIP_PLANEi, GLdouble* coeff)

0<+++ DCzByAx

4-59Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Reversing Coordinate Projection

Screen space back to world space
glGetIntegerv(GL_VIEWPORT, GLint viewport[4])

glGetDoublev(GL_MODELVIEW_MATRIX, GLdouble mvmatrix[16])

glGetDoublev(GL_PROJECTION_MATRIX,
GLdouble projmatrix[16])

gluUnProject(GLdouble winx, winy, winz,
mvmatrix[16], projmatrix[16],
GLint viewport[4],
GLdouble *objx, *objy, *objz)

gluProject goes from world to screen space

4-60Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Animation and Depth Buffering

4-61Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Animation and Depth Buffering
• Discuss double buffering and animation
• Discuss hidden surface removal using the depth buffer

4-62Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Double Buffering

1
2

4
8

16

1
2

4
8

16
Front
Buffer

Back
Buffer

Display

4-63Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Animation Using Double Buffering
Request a double buffered color buffer

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

Clear color buffer
glClear(GL_COLOR_BUFFER_BIT);

Render scene
Request swap of front and back buffers

glutSwapBuffers();

• Repeat steps 2 - 4 for animation

4-64Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Depth Buffering and Hidden Surface Removal

1
2

4
8

16

1
2

4
8

16
Color
Buffer

Depth
Buffer

Display

4-65Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Depth Buffering Using OpenGL
Request a depth buffer

glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE |
GLUT_DEPTH);

Enable depth buffering
glEnable(GL_DEPTH_TEST);

Clear color and depth buffers
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

Render scene
Swap color buffers

4-66Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

An Updated Program Template
void main(int argc, char** argv)
{

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB |

GLUT_DOUBLE | GLUT_DEPTH);
glutCreateWindow(“Tetrahedron”);
init();
glutIdleFunc(idle);
glutDisplayFunc(display);
glutMainLoop();

}

4-67Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

An Updated Program Template (cont.)

void init(void)
{

glClearColor(0.0, 0.0, 1.0, 1.0);
}

void idle(void)
{

glutPostRedisplay();
}

4-68Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

An Updated Program Template (cont.)
void drawScene(void)
{

GLfloat vertices[] = { … };
GLfloat colors[] = { … };
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
glBegin(GL_TRIANGLE_STRIP);

/* calls to glColor*() and glVertex*() */
glEnd();
glutSwapBuffers();

}

4-69Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Lighting

4-70Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Lighting Principles
Lighting simulates how objects reflect light

– material composition of object
– light’s color and position
– global lighting parameters

• ambient light
• two sided lighting

– available in both color index
and RGBA mode

4-71Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

How OpenGL Simulates Lights
• Phong lighting model

– Computed at vertices

• Lighting contributors
– Surface material properties
– Light properties
– Lighting model properties

4-72Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Surface Normals
Normals define how a surface reflects light

glNormal3f(x, y, z)

– Current normal is used to compute vertex’s color
– Use unit normals for proper lighting

• scaling affects a normal’s length
glEnable(GL_NORMALIZE)

or
glEnable(GL_RESCALE_NORMAL)

4-73Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Material Properties
Define the surface properties of a primitive

glMaterialfv(face, property, value);

separate materials for front and back

GL_DIFFUSE Base color

GL_SPECULAR Highlight Color

GL_AMBIENT Low-light Color

GL_EMISSION Glow Color

GL_SHININESS Surface Smoothness

4-74Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Light Properties
glLightfv(light, property, value);

– light specifies which light
• multiple lights, starting with GL_LIGHT0

glGetIntegerv(GL_MAX_LIGHTS, &n);

– properties
• colors
• position and type
• attenuation

4-75Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Light Sources (cont.)
Light color properties

– GL_AMBIENT

– GL_DIFFUSE

– GL_SPECULAR

4-76Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Types of Lights
OpenGL supports two types of Lights

– Local (Point) light sources
– Infinite (Directional) light sources

Type of light controlled by w coordinate

()
()w

z
w

y
w

xw
zyxw

 at positioned Light Local
 along directed LightInfinite

0
0

≠
=

4-77Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Turning on the Lights
Flip each light’s switch

glEnable(GL_LIGHTn);

Turn on the power
glEnable(GL_LIGHTING);

4-78Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Light Material Tutorial

http://www.xmission.com/~nate/tutors.html

4-79Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Controlling a Light’s Position
Modelview matrix affects a light’s position

– Different effects based on when position is specified
• eye coordinates
• world coordinates
• model coordinates

– Push and pop matrices to uniquely control a light’s position

4-80Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Light Position Tutorial

http://www.xmission.com/~nate/tutors.html

4-81Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Advanced Lighting Features
Spotlights

– localize lighting affects
• GL_SPOT_DIRECTION

• GL_SPOT_CUTOFF

• GL_SPOT_EXPONENT

4-82Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Advanced Lighting Features
Light attenuation

– decrease light intensity with distance
• GL_CONSTANT_ATTENUATION

• GL_LINEAR_ATTENUATION

• GL_QUADRATIC_ATTENUATION

2

1
dkdkk

f
qlc

i ++
=

4-83Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Light Model Properties
glLightModelfv(property, value);

Enabling two sided lighting
GL_LIGHT_MODEL_TWO_SIDE

Global ambient color
GL_LIGHT_MODEL_AMBIENT

Local viewer mode
GL_LIGHT_MODEL_LOCAL_VIEWER

Separate specular color
GL_LIGHT_MODEL_COLOR_CONTROL

4-84Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Tips for Better Lighting
• Recall lighting computed only at vertices

– model tessellation heavily affects lighting results
• better results but more geometry to process

• Use a single infinite light for fastest lighting
– minimal computation per vertex

4-85Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Imaging and Raster Primitives

4-86Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Imaging and Raster Primitives
• Describe OpenGL’s raster primitives: bitmaps and

image rectangles
• Demonstrate how to get OpenGL to read and render

pixel rectangles

4-87Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Pixel-based primitives
• Bitmaps

– 2D array of bit masks for pixels
• update pixel color based on current color

• Images
– 2D array of pixel color information

• complete color information for each pixel

• OpenGL doesn’t understand image formats

4-88Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Frame
Buffer

Rasterization
(including

Pixel Zoom)

Per Fragment
Operations

Texture
Memory

Pixel-Transfer
Operations

(and Pixel Map)
CPU

Pixel
Storage
Modes

glBitmap(), glDrawPixels()

glReadPixels(), glCopyPixels()

glCopyTex*Image();

Pixel Pipeline
Programmable pixel storage and transfer operations

4-89Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Positioning Image Primitives
glRasterPos3f(x, y, z)

– raster position transformed like geometry
– discarded if raster position is

outside of viewport
• may need to fine tune

viewport for desired results

Raster Position

4-90Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Bitmaps
glBitmap(width, height,

xorig, yorig,

xmove, ymove,

bitmap)

–render bitmap in current color
at

–advance raster position by
after rendering

⎣ ⎦ ⎣ ⎦()yorigyxorigx −−

()ymovexmove
width

he
ig

ht

xorig

yorig

xmove

4-91Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
OpenGL uses bitmaps for font rendering

– each character is stored in a display list containing a bitmap
– window system specific routines to access system fonts

glXUseXFont()

wglUseFontBitmaps()

4-92Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT
The GLUT library provides some functionality for simple
font rendering in OpenGL. These fonts can be either
drawn as bitmaps or as line segments:

– glutBitmapCharacter

– glutStrokeCharacter

4-93Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutBitmapCharacter
The function glutBitmapCharacter renders fonts using bitmaps. The
syntax is:

glutBitmapCharacter (void *font, GLint c);

The following font constants are available:
– GLUT_BITMAP_8_BY_13

– GLUT_BITMAP_9_BY_14

– GLUT_BITMAP_TIMES_ROMAN_10

– GLUT_BITMAP_TIMES_ROMAN_24

– GLUT_BITMAP_HELVETICA_10

– GLUT_BITMAP_HELVETICA_12

– GLUT_BITMAP_HELVETICA_18

4-94Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutBitmapCharacter
Note: the function glutBitmapCharacter does not
provide any means to specify the location of where the
text is to be put. Instead, the current raster position is
used. Hence, you can specify the location using the
function glRasterPos.

If you need to determine the length (in pixels) that a given
text would need using a specific font (for example, for
centering text), you can use:

glutBitmapLength (void *font,

GLuchar *text);

4-95Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutBitmapCharacter
The function glutBitmapCharacter only renders a
single character at a time, however, it advances the
current raster location so that – after rendering a
character – the current raster location will be exactly at
the right end of the bitmap used for rendering the
character. This way, text strings can be rendered by
consecutively calling glutBitmapCharacter :
void bitmap_output (GLfloat x, GLfloat y,

char *string, void *font)
{
int len, i;
glRasterPos2f(x, y);
len = (int) strlen(string);
for (i = 0; i < len; i++) {
glutBitmapCharacter(font, string[i]);

}
}

4-96Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutStrokeCharacter
Another font rendering method provided by GLUT is
glutStrokeCharacter:

glutStrokeCharacter (void *font, Glint c);
Since glutStrokeCharacter uses regular lines for
rendering the character, you need to use glTranslate
to specify the location. Similar to
glutBitmapCharacter, glutStrokeCharacter
automatically advances to the end of the character using
glTranslate.

4-97Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutStrokeCharacter
Two fonts are available for glutStrokeCharacter :

– GLUT_STROKE_ROMAN

– GLUT_STROKE_MONO_ROMAN

To determine the length that a rendered text requires, this
function can be used:

float glutStrokeLengthf (void *font,

const unsigned char *string);

4-98Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutStrokeCharacter
Thus, rendering text using this function could look like this:

void stroke_output(GLfloat x, GLfloat y, GLfloat z,
char *string, GLfloat scale)

{
int len, i;
glPushMatrix();
glTranslatef(x, y, z);
glScalef(scale, scale, scale);
len = (int) strlen(string);
for (i = 0; i < len; i++)

glutStrokeCharacter(GLUT_STROKE_ROMAN,
string[i]);

glPopMatrix();
}

4-99Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Fonts using Bitmaps
Rendering fonts using GLUT – glutStrokeCharacter
Since regular lines (GL_LINES) are used for rendering
the characters, we can use the usual functions to change
the attributes:
Antialiasing:

glBlendFunc (GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA);

glEnable (GL_BLEND);

glEnable (GL_LINE_SMOOTH);

Line width:
glLineWidth (2.0);

4-100Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Rendering Images
glDrawPixels(width, height, format, type, pixels)

– render pixels with lower left of
image at current raster position

– numerous formats and data types
for specifying storage in memory

• best performance by using format and type that matches
hardware

4-101Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Reading Pixels
glReadPixels(x, y, width, height, format, type, pixels)

– read pixels form specified (x,y) position in framebuffer
– pixels automatically converted from framebuffer format into

requested format and type

Framebuffer pixel copy (copies pixels within framebuffer)
glCopyPixels(x, y, width, height, type)

4-102Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Raster
Position

glPixelZoom(1.0, -1.0);

Pixel Zoom
glPixelZoom(x, y)

– expand, shrink or reflect pixels
around current raster position

– fractional zoom supported

4-103Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Storage and Transfer Modes
Storage modes control accessing memory

– byte alignment in host memory
– extracting a subimage

Transfer modes allow modify pixel values
– scale and bias pixel component values
– replace colors using pixel maps

4-104Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Mapping

4-105Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Mapping
Apply a 1D, 2D, or 3D image to geometric

primitives
Uses of Texturing

– simulating materials
– reducing geometric complexity
– image warping
– reflections

4-106Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Mapping

s

t

x

y

z

image

geometry screen

4-107Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Mapping and the OpenGL Pipeline

geometry pipelinevertices

pixel pipelineimage
rasterizer

Images and geometry flow through separate pipelines
that join at the rasterizer

“complex” textures do not affect geometric complexity

4-108Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Example
The texture (below) is a
246 x 246 image that has been
mapped to a rectangular
polygon which is viewed in
perspective

4-109Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Applying Textures I
Three steps:

specify texture
• read or generate image
• assign to texture

assign texture coordinates to vertices
specify texture parameters
• wrapping, filtering

4-110Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Applying Textures II
– specify textures in texture objects
– set texture filter
– set texture function
– set texture wrap mode
– set optional perspective correction hint
– bind texture object
– enable texturing
– supply texture coordinates for vertex

• coordinates can also be generated

4-111Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Objects
• Like display lists for texture images

– one image per texture object

– may be shared by several graphics contexts

• Generate texture names
glGenTextures(n, *texIds);

4-112Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Objects (cont.)
Create texture objects with texture data and state

glBindTexture(target, id);

Bind textures before using
glBindTexture(target, id);

4-113Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

• Define a texture image from an array of
texels in CPU memory

glTexImage2D(target, level, components,
w, h, border, format, type, *texels);

– dimensions of image must be powers of 2

• Texel colors are processed by pixel pipeline
– pixel scales, biases and lookups can be

done

Specify Texture Image

4-114Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Converting A Texture Image

If dimensions of image are not power of 2
gluScaleImage(format, w_in, h_in,

type_in, *data_in, w_out, h_out,
type_out, *data_out);

– *_in is for source image
– *_out is for destination image

Image interpolated and filtered during scaling

4-115Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Specifying a Texture: Other Methods
Use frame buffer as source of texture image

uses current buffer as source image

glCopyTexImage2D(...)glCopyTexImage2D(...)

glCopyTexImage1D(...)glCopyTexImage1D(...)

Modify part of a defined texture
glTexSubImage2D(...)glTexSubImage2D(...)

glTexSubImage1D(...)glTexSubImage1D(...)

Do both with glCopyTexSubImage2D(...), etc.

4-116Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Based on parametric texture coordinates
glTexCoord*() specified at each vertex

s

t 1, 1
0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a Texture

4-117Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Generating Texture Coordinates
Automatically generate texture coords

glTexGen{ifd}[v]()

specify a plane
– generate texture coordinates based upon distance from

plane

generation modes
GL_OBJECT_LINEAR (mapping w.r.t. object)
GL_EYE_LINEAR (mapping w.r.t. eye location)
GL_SPHERE_MAP (environment mapping)

0=+++ DCzByAx

4-118Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Tutorial: Texture

http://www.xmission.com/~nate/tutors.html

4-119Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

• Filter Modes
– minification or magnification
– special mipmap minification filters

• Wrap Modes
– clamping or repeating

• Texture Functions
– how to mix primitive’s color with texture’s color

• blend, modulate or replace texels

Texture Application Methods

4-120Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Filter Modes

Texture Polygon
Magnification Minification

PolygonTexture

Example:
glTexParameteri(glTexParameteri(target, type, modetarget, type, mode););

4-121Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Mipmapped Textures
• Mipmap allows for prefiltered texture maps of decreasing

resolutions
• Lessens interpolation errors for smaller textured objects
• Declare mipmap level during texture definition

glTexImage*D(glTexImage*D(GL_TEXTURE_*D, level, GL_TEXTURE_*D, level, ……))

• GLU mipmap builder routines
gluBuild*DMipmaps(gluBuild*DMipmaps(……))

• OpenGL 1.2 introduces advanced LOD controls

4-122Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Wrapping Mode
Example:

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_S, GL_CLAMP)

glTexParameteri(GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, GL_REPEAT)

texture GL_REPEAT
wrapping

GL_CLAMP
wrapping

s

t

4-123Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Functions
Controls how texture is applied

glTexEnv{fi}[v](GL_TEXTURE_ENV, prop, param)

GL_TEXTURE_ENV_MODE modes
GL_MODULATE

GL_BLEND

GL_REPLACE

Set blend color with GL_TEXTURE_ENV_COLOR
(This can be useful for incorporating lighting and
textures; otherwise lighting is overwritten by texture)

4-124Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Perspective Correction Hint
• Texture coordinate and color interpolation

– either linearly in screen space
– or using depth/perspective values (slower)

• Noticeable for polygons “on edge”
glHint(GL_PERSPECTIVE_CORRECTION_HINT, hint)

– where hint is one of
GL_DONT_CARE

GL_NICEST

GL_FASTEST

4-125Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Is There Room for a Texture?
• Query largest dimension of texture image

– typically largest square texture
– doesn’t consider internal format size
glGetIntegerv(GL_MAX_TEXTURE_SIZE, &size)

• Texture proxy
– will memory accommodate requested texture size?
– no image specified; placeholder
– if texture won’t fit, texture state variables set to 0

• doesn’t know about other textures
• only considers whether this one texture will fit all of memory

4-126Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Texture Residency
• Working set of textures

– high-performance, usually hardware accelerated
– textures must be in texture objects
– a texture in the working set is resident
– for residency of current texture, check GL_TEXTURE_RESIDENT

state

• If too many textures, not all are resident
– can set priority to have some kicked out first
– establish 0.0 to 1.0 priorities for texture objects

4-127Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Advanced OpenGL Topics

4-128Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Advanced OpenGL Topics
• Display Lists and Vertex Arrays
• Alpha Blending and Antialiasing
• Using the Accumulation Buffer
• Fog
• Feedback & Selection
• Fragment Tests and Operations
• Using the Stencil Buffer

4-129Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Immediate Mode versus Display Listed Rendering

• Immediate Mode Graphics
– Primitives are sent to pipeline and display right away
– No memory of graphical entities

• Display Listed Graphics
– Primitives placed in display lists
– Display lists kept on graphics server
– Can be redisplayed with different state
– Can be shared among OpenGL graphics contexts

4-130Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Immediate Mode versus Display Lists
Immediate Mode

Display Listed

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

4-131Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Display Lists
Creating a display list

GLuint id;
void init(void)
{

id = glGenLists(1);
glNewList(id, GL_COMPILE);
/* other OpenGL routines */
glEndList();

}

Call a created list
void display(void)
{

glCallList(id);
}

4-132Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Display Lists
• Not all OpenGL routines can be stored in display lists
• State changes persist, even after a display list is finished
• Display lists can call other display lists
• Display lists are not editable, but you can fake it

– make a list (A) which calls other lists (B, C, and D)
– delete and replace B, C, and D, as needed

4-133Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Display Lists and Hierarchy
Consider model of a car

– Create display list for chassis
– Create display list for wheel

glNewList(CAR, GL_COMPILE);
glCallList(CHASSIS);
glTranslatef(…);
glCallList(WHEEL);
glTranslatef(…);
glCallList(WHEEL);

…
glEndList();

4-134Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Advanced Primitives
• Vertex Arrays
• Bernstein Polynomial Evaluators

– basis for GLU NURBS
• NURBS (Non-Uniform Rational B-Splines)

• GLU Quadric Objects
– sphere
– cylinder (or cone)
– disk (circle)

4-135Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Vertex Arrays

Color
data

Vertex
data

Pass arrays of vertices, colors, etc. to OpenGL in
a large chunk

glVertexPointer(3, GL_FLOAT, 0, coords)

glColorPointer(4, GL_FLOAT, 0, colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)

glDrawArrays(GL_TRIANGLE_STRIP, 0,
numVerts);

All active arrays are used in rendering

4-136Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Why use Display Lists or Vertex Arrays?
• May provide better performance than immediate mode

rendering
• Display lists can be shared between multiple OpenGL

context
– reduce memory usage for multi-context applications

• Vertex arrays may format data for better memory
access

4-137Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Alpha: the 4th Color Component
• Measure of Opacity

– simulate translucent objects
• glass, water, etc.

– composite images
– antialiasing
– ignored if blending is not enabled

glEnable(GL_BLEND)

4-138Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Blending
Combine pixels with what’s in already

in the framebuffer
glBlendFunc(src, dst)

FramebufferFramebuffer
PixelPixel
((dstdst))

Blending
Equation

Blending
Equation

FragmentFragment
((srcsrc))

BlendedBlended
PixelPixel

pfr CdstCsrcC
vvv

+=

4-139Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Multi-pass Rendering
Blending allows results from multiple drawing passes to
be combined together

– enables more complex rendering algorithms

Example of bump-mapping
done with a multi-pass

OpenGL algorithm

4-140Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Antialiasing
Removing the Jaggies

glEnable(mode)
• GL_POINT_SMOOTH

• GL_LINE_SMOOTH

• GL_POLYGON_SMOOTH

– alpha value computed by computing
sub-pixel coverage

– available in both RGBA and colormap modes

4-141Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Accumulation Buffer
Problems of compositing into color buffers

– limited color resolution
• clamping
• loss of accuracy

– Accumulation buffer acts as a “floating point” color buffer
• accumulate into accumulation buffer
• transfer results to frame buffer

4-142Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Accessing Accumulation Buffer
glAccum(op, value)

– operations
• within the accumulation buffer: GL_ADD, GL_MULT
• from read buffer: GL_ACCUM, GL_LOAD
• transfer back to write buffer: GL_RETURN

– glAccum(GL_ACCUM, 0.4) multiplies each value in write
buffer by 0.4 and adds to accumulation buffer

4-143Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Accumulation Buffer Applications
• Compositing
• Full Scene Antialiasing
• Depth of Field
• Filtering
• Motion Blur

4-144Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Full Scene Antialiasing : Jittering the view
Each time we move the viewer, the image shifts

– Different aliasing artifacts in each image
– Averaging images using accumulation

buffer averages out
these artifacts

4-145Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Depth of Focus : Keeping a Plane in Focus
Jitter the viewer to keep one plane unchanged

Front Plane

Back Plane

Focal Plane

eye pos1 eye pos2

4-146Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Fog
glFog(property, value)

• Depth Cueing
Specify a range for a linear fog ramp

GL_FOG_LINEAR

• Environmental effects
– Simulate more realistic fog

GL_FOG_EXP

GL_FOG_EXP2

4-147Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Fog Tutorial

http://www.xmission.com/~nate/tutors.html

4-148Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Feedback Mode
• Transformed vertex data is returned to the application,

not rendered
– useful to determine which primitives will make it to the screen

• Need to specify a feedback buffer
glFeedbackBuffer(size, type, buffer)

• Select feedback mode for rendering
glRenderMode(GL_FEEDBACK)

4-149Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Selection Mode
• Method to determine which primitives are inside the

viewing volume
• Need to set up a buffer to have results returned to you

glSelectBuffer(glSelectBuffer(size, buffersize, buffer))

• Select selection mode for rendering
glRenderMode(GL_SELECT)

4-150Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Selection Mode (cont.)
• To identify a primitive, give it a name

– “names” are just integer values, not strings

• Names are stack based
– allows for hierarchies of primitives

• Selection Name Routines
glLoadName(name) glPushName(name)

glInitNames()

4-151Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Picking
• Picking is a special case of selection
• Programming steps

– restrict “drawing” to small region near pointer
• use gluPickMatrix() on projection matrix

– enter selection mode; re-render scene
– primitives drawn near cursor cause hits
– exit selection; analyze hit records

4-152Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Picking Template
glutMouseFunc(pickMe);

void pickMe(int button, int state, int x,
int y)
{

GLuint nameBuffer[246];
GLint hits;
GLint myViewport[4];
if (button != GLUT_LEFT_BUTTON ||

state != GLUT_DOWN) return;
glGetIntegerv(GL_VIEWPORT, myViewport);
glSelectBuffer(246, nameBuffer);
(void) glRenderMode(GL_SELECT);
glInitNames();

4-153Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Picking Template (cont.)
glMatrixMode(GL_PROJECTION);
glPushMatrix();
glLoadIdentity();
gluPickMatrix((GLdouble) x, (GLdouble)

(myViewport[3]-y), 4.0, 4.0,
myViewport);

/* gluPerspective or glOrtho or other
projection */
glPushName(1);

/* draw something */
glLoadName(2);

/* draw something else … continue … */

4-154Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

glMatrixMode(GL_PROJECTION);
glPopMatrix();
hits = glRenderMode(GL_RENDER);

/* process nameBuffer */
}

Picking Template (cont.)

4-155Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Picking Ideas
• For OpenGL Picking Mechanism

– only render what is pickable (e.g., don’t clear screen!)
– use an “invisible” filled rectangle, instead of text
– if several primitives drawn in picking region, hard to use z

values to distinguish which primitive is “on top”
• Alternatives to Standard Mechanism

– color or stencil tricks (for example, use glReadPixels() to
obtain pixel value from back buffer)

4-156Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Getting to the Framebuffer

BlendingBlendingDepth
Test

Depth
Test DitheringDithering Logical

Operations
Logical

Operations

Scissor
Test

Scissor
Test

Stencil
Test

Stencil
Test

Alpha
Test

Alpha
Test

Fr
ag

m
en

t

Fr
am

eb
uf

fe
r

4-157Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Scissor Box
• Additional Clipping Test

glScissor(x, y, w, h)
– any fragments outside of box are clipped
– useful for updating a small section of a viewport

• affects glClear() operations

4-158Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Alpha Test
Reject pixels based on their alpha value

glAlphaFunc(func, value)

glEnable(GL_ALPHA_TEST)
use alpha as a mask in textures

4-159Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Stencil Buffer
• Used to control drawing based on values in the stencil

buffer
– Fragments that fail the stencil test are not drawn
– Example: create a mask in stencil buffer and draw only objects

not in mask area

4-160Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Controlling Stencil Buffer
glStencilFunc(func, ref, mask)

– compare value in buffer with ref using func
– only applied for bits in mask which are 1
– func is one of standard comparison functions

glStencilOp(fail, zfail, zpass)
– Allows changes in stencil buffer based on passing or failing

stencil and depth tests: GL_KEEP, GL_INCR

4-161Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Creating a Mask
glInitDisplayMode(…|GLUT_STENCIL|…);

glEnable(GL_STENCIL_TEST);

glClearStencil(0x1);

glStencilFunc(GL_ALWAYS, 0x1, 0x1);

glStencilOp(GL_REPLACE, GL_REPLACE,
GL_REPLACE);

• draw mask

4-162Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Using Stencil Mask
glStencilFunc(GL_EQUAL, 0x1, 0x1)

• draw objects where stencil = 1
glStencilFunc(GL_NOT_EQUAL, 0x1, 0x1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

• draw objects where stencil != 1

4-163Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Dithering
glEnable(GL_DITHER)

• Dither colors for better looking results
– Used to simulate more available colors

4-164Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Logical Operations on Pixels
Combine pixels using bitwise logical operations

glLogicOp(mode)

– Common modes
• GL_XOR

• GL_AND

4-165Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Advanced Imaging
Imaging Subset

– Only available if GL_ARB_imaging defined
• Color matrix
• Convolutions
• Color tables
• Histogram
• MinMax
• Advanced Blending

4-166Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

On-Line Resources
http://www.opengl.org

start here; up to date specification and lots of sample code

news:comp.graphics.api.opengl

http://www.sgi.com/software/opengl

http://www.mesa3d.org/

Brian Paul’s Mesa 3D

http://www.xmission.com/~nate/tutors.html

very special thanks to Nate Robins for the OpenGL Tutors
source code for tutors available here!

4-167Department of Computer Science and Engineering

4 Introduction to OpenGL Programming

Books
OpenGL Programming Guide, 3rd Edition
OpenGL Reference Manual, 3rd Edition
OpenGL Programming for the X Window System

includes many GLUT examples

Interactive Computer Graphics: A top-down approach
with OpenGL, 2nd Edition
http://www.cs.unm.edu/~angel/BOOK/

	Chapter 4
	Overview
	Overview
	OpenGL and GLUT Overview
	OpenGL and GLUT Overview
	What Is OpenGL?
	OpenGL Architecture
	OpenGL as a Renderer
	Related APIs
	OpenGL and Related APIs
	Preliminaries
	GLUT Basics
	Sample Program
	OpenGL Initialization
	GLUT Callback Functions
	Rendering Callback
	Idle Callbacks
	User Input Callbacks
	Elementary Rendering
	Elementary Rendering
	OpenGL Geometric Primitives
	Simple Example
	OpenGL Command Formats
	Specifying Geometric Primitives
	OpenGL Color Models
	Shapes Tutorial
	Controlling Rendering Appearance
	OpenGL’s State Machine
	Manipulating OpenGL State
	Controlling current state
	Transformations
	Transformations in OpenGL
	Camera Analogy
	Camera Analogy and Transformations
	Coordinate Systems and Transformations
	Affine Transformations
	Homogeneous Coordinates
	3D Transformations
	Specifying Transformations
	Programming Transformations
	Transformation Pipeline
	Matrix Operations
	Projection Transformation
	Applying Projection Transformations
	Viewing Transformations
	Projection Tutorial
	Modeling Transformations
	Transformation Tutorial
	Connection: Viewing and Modeling
	Projection is left handed
	Common Transformation Usage
	resize(): Perspective & LookAt
	resize(): Perspective & Translate
	resize(): Ortho (part 1)
	resize(): Ortho (part 2)
	Compositing Modeling Transformations
	Compositing Modeling Transformations
	Additional Clipping Planes
	Reversing Coordinate Projection
	Animation and Depth Buffering
	Animation and Depth Buffering
	Double Buffering
	Animation Using Double Buffering
	Depth Buffering and Hidden Surface Removal
	Depth Buffering Using OpenGL
	An Updated Program Template
	An Updated Program Template (cont.)
	An Updated Program Template (cont.)
	Lighting
	Lighting Principles
	How OpenGL Simulates Lights
	Surface Normals
	Material Properties
	Light Properties
	Light Sources (cont.)
	Types of Lights
	Turning on the Lights
	Light Material Tutorial
	Controlling a Light’s Position
	Light Position Tutorial
	Advanced Lighting Features
	Advanced Lighting Features	
	Light Model Properties
	Tips for Better Lighting
	Imaging and Raster Primitives
	Imaging and Raster Primitives
	Pixel-based primitives
	Pixel Pipeline
	Positioning Image Primitives
	Rendering Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Fonts using Bitmaps
	Rendering Images
	Reading Pixels
	Pixel Zoom
	Storage and Transfer Modes
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping and the OpenGL Pipeline
	Texture Example
	Applying Textures I
	Applying Textures II
	Texture Objects
	Texture Objects (cont.)
	Specify Texture Image
	Converting A Texture Image
	Specifying a Texture: Other Methods
	Mapping a Texture
	Generating Texture Coordinates
	Tutorial: Texture
	Texture Application Methods
	Filter Modes
	Mipmapped Textures
	Wrapping Mode
	Texture Functions
	Perspective Correction Hint
	Is There Room for a Texture?
	Texture Residency
	Advanced OpenGL Topics
	Advanced OpenGL Topics
	Immediate Mode versus Display Listed Rendering
	Immediate Mode versus Display Lists
	Display Lists
	Display Lists
	Display Lists and Hierarchy
	Advanced Primitives
	Vertex Arrays
	Why use Display Lists or Vertex Arrays?
	Alpha: the 4th Color Component
	Blending
	Multi-pass Rendering
	Antialiasing
	Accumulation Buffer
	Accessing Accumulation Buffer
	Accumulation Buffer Applications
	Full Scene Antialiasing : Jittering the view
	Depth of Focus : Keeping a Plane in Focus
	Fog
	Fog Tutorial
	Feedback Mode
	Selection Mode
	Selection Mode (cont.)
	Picking
	Picking Template
	Picking Template (cont.)
	Picking Template (cont.)
	Picking Ideas
	Getting to the Framebuffer
	Scissor Box
	Alpha Test
	Stencil Buffer
	Controlling Stencil Buffer
	Creating a Mask
	Using Stencil Mask
	Dithering
	Logical Operations on Pixels
	Advanced Imaging
	On-Line Resources
	Books

