
5-1Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

Chapter 5

Input Devices and Interactive Techniques

5-2Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

Overview
This chapter will provide descriptions of several different
types of input devices and how to control them, i.e. how
to handle their input.

5-3Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

Objectives
Introduce the basic input devices

Physical Devices
Logical Devices
Input Modes

Event-driven input
Introduce double buffering for smooth animations
Programming event input with GLUT

5.1 Input devices

5-4Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.1 Input devices
Project Sketchpad
Ivan Sutherland (MIT 1953) established the basic
interactive paradigm that characterizes interactive
computer graphics:

User sees an object on the display
User points to (picks) the object with an input device (light pen,
mouse, trackball)
Object changes (moves, rotates, morphs)
Repeat

5-5Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.1 Input devices
Graphical Input
Devices can be described either by

Physical properties
Mouse
Keyboard
Trackball

Logical Properties
What is returned to program via API

A position
An object identifier

Modes
How and when input is obtained

Request or event

5-6Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.1 Input devices

mouse trackball touch screen

data tablet joy stick space ball

Physical Devices

5-7Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

Incremental (Relative) Devices
Devices such as the data tablet return a position directly
to the operating system
Devices such as the mouse, trackball, and joy stick return
incremental inputs (or velocities) to the operating system

Must integrate these inputs to obtain an absolute position
Rotation of cylinders in mouse
Roll of trackball
Difficult to obtain absolute position
Can get variable sensitivity

5.2 Handling input

5-8Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Logical Devices
Consider the C and C++ code

C++: cin >> x;
C: scanf (“%d”, &x);

What is the input device?
Can’t tell from the code
Could be keyboard, file, output from another program

The code provides logical input
A number (an int) is returned to the program regardless of the
physical device

5-9Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Graphical Logical Devices
Graphical input is more varied than input to standard programs which
is usually numbers, characters, or bits
Two older APIs (GKS, PHIGS) defined six types of logical input

Locator: return a position
Pick: return ID of an object
Keyboard: return strings of characters
Stroke: return array of positions
Valuator: return floating point number
Choice: return one of n items

5-10Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
The X Window System introduced a client-server model for a
network of workstations

Client: OpenGL program
Graphics Server: bitmap display with a pointing device and a

keyboard

5-11Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Input Modes
Input devices contain a trigger which can be used to send
a signal to the operating system

Button on mouse
Pressing or releasing a key

When triggered, input devices return information (their
measure) to the system

Mouse returns position information
Keyboard returns ASCII code

5-12Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Request Mode
Input provided to program only when user triggers the
device
Typical of keyboard input

Can erase (backspace), edit, correct until enter (return) key (the
trigger) is depressed

5-13Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Event Mode
Most systems have more than one input device, each of
which can be triggered at an arbitrary time by a user
Each trigger generates an event whose measure is put in
an event queue which can be examined by the user
program

5-14Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Event Types
Window: resize, expose, iconify
Mouse: click one or more buttons
Motion: move mouse
Keyboard: press or release a key
Idle: nonevent

Define what should be done if no other event is in queue

5-15Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Callbacks
Programming interface for event-driven input
Define a callback function for each type of event the
graphics system recognizes
This user-supplied function is executed when the event
occurs
GLUT example: glutMouseFunc(mymouse)

mouse callback function

5-16Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
GLUT callbacks
GLUT recognizes a subset of the events recognized by
any particular window system (Windows, X, Macintosh)

glutDisplayFunc
glutMouseFunc
glutReshapeFunc
glutKeyboardFunc
glutIdleFunc
glutMotionFunc, glutPassiveMotionFunc

5-17Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
GLUT Event Loop
Recall that the last line in main.c for a program using GLUT must be

glutMainLoop();

which puts the program in an infinite event loop
In each pass through the event loop, GLUT

looks at the events in the queue
for each event in the queue, GLUT executes the appropriate callback
function if one is defined
if no callback is defined for the event, the event is ignored

5-18Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
The display callback
The display callback is executed whenever GLUT determines that the
window should be refreshed, for example

When the window is first opened
When the window is reshaped
When a window is exposed
When the user program decides it wants to change the display

In main.c
glutDisplayFunc(mydisplay) identifies the function to be executed
Every GLUT program must have a display callback

5-19Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Posting redisplays
Many events may invoke the display callback function

Can lead to multiple executions of the display callback on a single pass
through the event loop

We can avoid this problem by instead using
glutPostRedisplay();

which sets a flag.
GLUT checks to see if the flag is set at the end of the event loop
If set then the display callback function is executed

5-20Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Specialized hardware often requires the use of a vendor
specific API. When using gaming devices for input,
however, most operating systems provide a standard API
than can be used. In Windows, for example, DirectInput
allows us to directly support any type of gaming device.
Linux as well provides support for a multitude of game
devices directly without the need for specific drivers.

5-21Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
What is DirectInput?
• A part of the DirectX library
• An application programming interface

(API) to handle input devices

Hardware Driver DirectInput Your
Application

User
Interface

Note: DirectInput communicates with
Windows driver directly and does not
rely on Windows message

5-22Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
What Can DirectInput Do?
Control keyboard, mouse, joystick

Any device which is not keyboard nor mouse is a
joystick

Handle force feedback
Control the amount and direct of
force generated

Action mapping
Your application receive only game
events (e.g. fire) rather than hardware
events (e.g. mouse click)

5-23Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Key Terms in DirectInput
DirectInput object

The root DirectInput interface
Device

A keyboard, mouse, joystick
DirectInputDevice object

Code representing a keyboard, mouse,
joystick

Device object
Code representing a key, button,
trigger, and so on found on a
DirectInput device object, also called
device object instance

5-24Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Create the DirectInput Object
Use the DirectInput8Create() function
Example:

DirectInput8Create(GetModuleHandle(NULL),
DIRECTINPUT_VERSION, IID_IDirectInput8,

(VOID**)&g_pDI, NULL)

Highlight:
DIRECTINPUT_VERSION is the current DirectInput version
IID_IDirectInput8 is the interface we wish to create, now it
is a DirectInput 8 interface
g_pDI is type of LPDIRECTINPUT8, similar to DIRECTINPUT8*

5-25Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Enumerate Devices
Use the EnumDevices() function from the DirectInput8
interface
Example

g_pDI->EnumDevices(
DI8DEVCLASS_GAMECTRL,
DeviceCallback, NULL,
DIEDFL_ATTACHEDONLY | DIEDFL_FORCEFEEDBACK)

Highlight:
At first, we specify the device we wish to find, which could be: DI8DEVCLASS_ALL,
DI8DEVCLASS_GAMECTRL, DI8DEVCLASS_KEYBOARD,
DI8DEVCLASS_POINTER, etc.
DeviceCallback is a user-defined callback function which will be called to create
the device
DIEDFL_ATTACHEDONLY | DIEDFL_FORCEFEEDBACK are two options which
means we only find attached and force feedback device

5-26Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Create a DirectInputDevice Object for Each Device
In the callback function, we create the device using
CreateDevice() function.
The callback function must be something like:
BOOL CALLBACK
DeviceCallback(LPCDIDEVICEINSTANCE pInst,
LPVOID pvRef);

Then we apply the create device function:
g_pDI->CreateDevice(pInst->guidInstance,
&pDevice, NULL);
where pDevice is the device pointer we want.

5-27Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Set Up the Device
• Get the device capabilities (optional)
• Enumerate the keys, buttons, and axes on the device

(optional)
• Set the cooperative level (highly recommended)
• Set the data format (required)
• Set the device properties (you must at least set the

buffer size if you intend to get buffered data)

5-28Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Set Up the Device - Device Capabilities
Use the GetCapabilities() method
from the device pointer.
Example:
pDevice
->GetCapabilities(&DICaps)
where DICaps is a structure of type
DIDEVCAPS.

Then, we can see the capabilities
in the structure such as number of
axes, buttons, POVs, etc.

5-29Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Set Up the Device – Device Object Enumeration
To find what button or axis available, use the
EnumObject method of the device pointer.
We can enumerate different device objects such as
DIDFT_AXIS, DIDFT_BUTTON, DIDFT_POV, etc.

5-30Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Set Up the Device – Cooperative Level
The cooperative level of a device determines how the
input is shared with other applications. Two options are
foreground and background which means that the
application can get input only if in focus or not.
Exclusive / Non exclusive means that the application is
the only one to process the input device or not. Use the
SetCooperativeLevel() method of the device
pointer to adjust the settings.
Example:
pDevice->SetCooperativeLevel(hwnd,
DISCL_NONEXCLUSIVE | DISCL_FOREGROUND)

5-31Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Set Up the Device – Data Format
You could use your own data format or predefined
DirectInput data format. Use the SetDataFormat()
method in the device pointer to adjust.
Example:
pDevice->SetDataFormat(c_dfDIJoystick)

Set Up the Device – Device Properties
Set up properties such as buffer size, auto center, dead
zone, saturation, etc. using the SetProperty() method
of the device pointer with different switch.

5-32Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Acquire the device
You need to acquire a device when you wish to get data
from it. The device is automatically un-acquired when
your application loses focus.
Hence, you need to acquire many times in an application.
Use the Acquire() method of the device pointer to
acquire the device. Once acquired, you cannot change
the properties of the device pointer.

5-33Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Retrieve Data
Call the Poll() function of the device pointer to see if
there are new data.
Use the GetDeviceState() method of the device
pointer to get the current state and store it in a predefined
data structure. If you set the device format as the default
DirectX format for joy sticks as previously shown, this
looks as follows:
DIJOYSTATE state;

GetDeviceState (sizeof (DIJOYSTATE),

&state);

5-34Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Retrieve Data
The structure DIJOYSTATE then reflects the current values of the
joystick:
typedef struct DIJOYSTATE {
LONG lX;
LONG lY;
LONG lZ;
LONG lRx;
LONG lRy;
LONG lRz;
LONG rglSlider[2];
DWORD rgdwPOV[4];
BYTE rgbButtons[32]; } DIJOYSTATE, *LPDIJOYSTATE;

5-35Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Act on Data
Use your imagination

5-36Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Close DirectInput
Un-acquire all devices by calling the Unacquire ()
method of the device and the Release() method of all
device pointers, as well as the DirectInput Object.

5-37Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Force Feedback Type
Constant force

Steady force in a single direction
Ramp force

Force steadily increase or decrease
magnitude

Periodic force
Repeating a defined wave pattern

Condition force
Force react to the direction of
movement, such as fiction and
spring force

5-38Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Force Modifier

Gain
Magnify the force

Offset
Shift the magnitude of the force towards

+ve or –ve

Envelope
Shape the magnitude of the force

5-39Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Creating a Force Effect
Use the CreateEffect() method of the device pointer
You could choose to create GUID_ConstantForce,
GUID_RampForce, GUID_Square, GUID_Sine, etc.
You have to specify the size, gain, direction, start delay,
etc. in the DIEFFECT structure
Example

g_pDevice-
>CreateEffect(GUID_ConstantForce,
&effStructure, &g_pEffect, NULL)

5-40Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
To Play an Effect
• Call the Download() function of the effect pointer to

download the effect to the device
• Call the Start() function of the effect pointer to play

the effect
• Call the Unload() function of the effect pointer to

unload the effect from the device

5-41Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Enumerate Effect
• A joystick may not support all kind of force feedback

effects.
• You need to enumerate the supported effect before you

can play it.
• It is similar to enumerate the supported device in the

computer.

5-42Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
The Linux operating system provides control over games
devices through a device file, e.g. /dev/input/js0.

Hence, by opening this device file we have all we need:
fd = open("/dev/input/js0", O_RDONLY));

fcntl(fd, F_SETFL, O_NONBLOCK);

5-43Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
To get information about the game device, we can use
the system call ioctl:

unsigned char axes;

unsigned char buttons;

ioctl(fd, JSIOCGAXES, &axes);

ioctl(fd, JSIOCGBUTTONS, &buttons);

This gives us the number of axes and buttons available
on the game device.

5-44Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
Whenever a status of the game device changes, we can
retrieve information about this change in an event:
struct js_event {
__u32 time; /* event timestamp in

milliseconds */

__s15 value;/* value */

__u8 type; /* event type */

__u8 number; /* axis/button number */

};

5-45Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
Similar to windows, you need to poll the game device
using the read system call:

struct js_event e;

read (fd, &e, sizeof(struct js_event));

If the poll was successful read will return the size of the
data structure js_event, i.e. when the poll resulted in a
joystick event.

5-46Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
Linux also supports force feedback on several game
devices. As usual in Linux, this again is achieved by
using a device file, e.g. /dev/input/event0.
Using ioctl, we can check what kind of force feedback
is available:

unsigned long features[size];

ioctl(fd, EVIOCGBIT(EV_FF, size),
features);

To determine the size of the list of features use:
ioctl(fd, EVIOCGEFFECTS, &size);

5-47Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
The list of features is a bitfield and can contain one or more of the following:
• FF_X has an X axis (usually joysticks)

• FF_Y has an Y axis (usually joysticks)

• FF_WHEEL has a wheel (usually steering wheels)

• FF_CONSTANT can render constant force effects

• FF_PERIODIC can render periodic effects (sine, triangle,
square...)

• FF_RAMP can render ramp effects

• FF_SPRING can simulate the presence of a spring

• FF_FRICTION can simulate friction

• FF_DAMPER can simulate damper effects

• FF_RUMBLE rumble effects (normally the only effect
supported by rumble pads)

• FF_INERTIA can simulate inertia

5-48Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
The include file linux/input.h contains the structure
effect. This data structure is used to define the force
feedback effect, i.e. if it resembles a constant force, a
ramp force, a periodic force, or a rumble effect. If
provided by the device, a direction for the force feedback
can be specified (up, down, left, or right). By combining
force feedback effects for x- and y-axis individually, an
arbitrary force direction can be achieved.

5-49Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
To upload a force feedback effect into the device’s
memory:

struct ff_effect effect;
int fd;
ioctl(fd, EVIOCSFF, &effect);

The structure effect contains an entry id This field has
to be set to -1 and will be adjusted by the driver once the
effect is uploaded.

5-50Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
To remove a force feedback effect from the device’s
memory:

struct ff_effect effect;
int fd;
ioctl(fd, EVIOCRMFF, effect.id);

5-51Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
To play a force feedback effect something like this could
be used:

struct input_event play;
struct ff_effect effect;
int fd;
fd = open("/dev/input/event0", O_RDWR);
/* Play three times */
play.type = EV_FF;
play.code = effect.id;
play.value = 3;
write(fd, (const void*) &play, sizeof(play));

5-52Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
Game devices in Linux
The previous sequence of commands plays the force
feedback effect three times. To stop it before it finishes,
use:

struct input_event stop;
struct ff_effect effect;
stop.type = EV_FF;
stop.code = effect.id;
stop.value = 0;
write(fd, (const void*) &play, sizeof(stop));

5-53Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
3-D input devices
Phantom Omni (Sensable)

5-54Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
3-D input devices
CyberGrasp / CyberForce

5-55Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
3-D input devices
Immersive Workbench (Fakesapce)

5-56Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.2 Handling input
3-D input devices
Most of these specialized 3-D input devices come with
their own drivers and API. There is no common interface.
Often times, only a limited choice of operating systems is
supported (mostly Windows).

5-57Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
To achieve a 3-D viewing effect,
shutter-glasses can be used to
show different images to the left
and right eye. The shutter-
glasses use filters that can block
or let pass incoming light. This
property can be changed
electrically. By showing
alternating images for the left and
right eye and letting the light pass
only for the corresponding eye, 3-
dimensional viewing is possible.

5-58Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
How can we achieve, that OpenGL shows different
images for the left and right eye?
We saw earlier how to enable double buffering using the
GLUT library:

glutInitDisplayMode(GLUT_DOUBLE |
GLUT_RGB | GLUT_DEPTH);

Similarly, we can enable the stereo mode, i.e. show
different images for the left and right eye:

glutInitDisplayMode(GLUT_DOUBLE |
GLUT_RGB | GLUT_DEPTH | GLUT_STEREO);

5-59Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
Now we need to draw separate images for the left and
right eye. OpenGL therefore provides two sets of buffers
(similar to double buffering), one for the left and one for
the right eye. Hence, we just need to enable one of the
sets of buffers and draw the scene, switch to the other set
and draw again:
glDrawBuffer(GL_BACK_LEFT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// draw the scene

glDrawBuffer(GL_BACK_RIGHT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// draw the same scene again

5-60Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
Note, that some graphic cards are optimized to clear both
buffers (left and right) at the same time. Thus, it might be
significantly faster to clear them at the same time:
glDrawBuffer(GL_BACK);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glDrawBuffer(GL_BACK_LEFT);

// draw the scene

glDrawBuffer(GL_BACK_RIGHT);

// draw the same scene again

5-61Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
Now that we know how to generate two different views
onto our scene in an alternating fashion: how do we
achieve 3-D effect?
Mimic the way we would see the scene with our own eyes
while standing in front of it. This means that we need to
place two cameras pointing towards the scene. The
distance between these cameras should be in
accordance to the human eye distance.

5-62Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
The common approach is the so-called toe-in where the
camera for the left and right eye is pointed towards a
single focal point and gluPerspective() is used.

5-63Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
In OpenGL this might look like this:
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

gluPerspective(camera.aperture,

screenwidth/(double)screenheight,

0.1,10000.0);

CROSSPROD(camera.vd,camera.vu,right);

Normalise(&right);

right.x *= camera.eyesep / 2.0;

right.y *= camera.eyesep / 2.0;

right.z *= camera.eyesep / 2.0;

glMatrixMode(GL_MODELVIEW);

glDrawBuffer(GL_BACK);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

5-64Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
glDrawBuffer(GL_BACK_RIGHT);

glLoadIdentity();

gluLookAt(camera.vp.x + right.x, camera.vp.y +
right.y, camera.vp.z + right.z,
focus.x,focus.y,focus.z,
camera.vu.x,camera.vu.y,camera.vu.z);

// draw the scene

glDrawBuffer(GL_BACK_LEFT);

glLoadIdentity();

gluLookAt(camera.vp.x - right.x, camera.vp.y -
right.y, camera.vp.z - right.z,
focus.x,focus.y,focus.z,
camera.vu.x,camera.vu.y,camera.vu.z);

// draw the scene

5-65Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
The toe-in method while giving workable stereo pairs is not correct, it
also introduces vertical parallax which is most noticeable for objects
in the outer field of view. The correct method is to use what is
sometimes known as the parallel axis asymmetric frustum
perspective projection. In this case the view vectors for each
camera remain parallel and a glFrustum() is used to describe the
perspective projection.

5-66Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
In OpenGL this can be done using something like this:
ratio = camera.screenwidth /

(double)camera.screenheight;

/* convert degree to radians */

radians = DTOR * camera.aperture / 2;

wd2 = near * tan(radians);

ndfl = near / camera.focallength;

/* Derive the two eye positions */

CROSSPROD(camera.vd,camera.vu,r);

Normalise(&r);

r.x *= camera.eyesep / 2.0;

r.y *= camera.eyesep / 2.0;

r.z *= camera.eyesep / 2.0;

5-67Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

left = - ratio * wd2 - 0.5 * camera.eyesep * ndfl;

right = ratio * wd2 - 0.5 * camera.eyesep * ndfl;

top = wd2;

bottom = - wd2;

glFrustum(left,right,bottom,top,near,far);

glMatrixMode(GL_MODELVIEW);

glDrawBuffer(GL_BACK_RIGHT)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

gluLookAt(camera.vp.x + r.x,camera.vp.y + r.y,camera.vp.z +
r.z, camera.vp.x + r.x + camera.vd.x, camera.vp.y + r.y
+ camera.vd.y, camera.vp.z + r.z + camera.vd.z,

camera.vu.x,camera.vu.y,camera.vu.z);
// draw the scene

5-68Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
glMatrixMode(GL_PROJECTION);

glLoadIdentity();

left = - ratio * wd2 + 0.5 * camera.eyesep * ndfl;

right = ratio * wd2 + 0.5 * camera.eyesep * ndfl;

top = wd2; bottom = - wd2;

glFrustum(left,right,bottom,top,near,far);

glMatrixMode(GL_MODELVIEW);

glDrawBuffer(GL_BACK_LEFT);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glLoadIdentity();

gluLookAt(camera.vp.x - r.x,camera.vp.y - r.y,camera.vp.z
- r.z, camera.vp.x - r.x + camera.vd.x,
camera.vp.y - r.y + camera.vd.y, camera.vp.z -
r.z + camera.vd.z,
camera.vu.x,camera.vu.y,camera.vu.z);

// draw the scene

5-69Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.3 3-D Rendering in OpenGL
Obviously, this method is more complicated to implement
but yields better (more accurate) results since it better
resembles reality.
More information and downloadable source code can be
found on Paul Bourke’s web page:
http://local.wasp.uwa.edu.au/~pbourke/stereographics/stereogl/

http://local.wasp.uwa.edu.au/~pbourke/stereographics/stereogl/

5-70Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Now that we know how to get data from a series of input
devices, we can use it to interact with our OpenGL
software. For example, we could use the mouse input to
change the view onto the objects within our scene.
Typical operations are zooming, panning, and rotating.

5-71Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming
Zooming allows us to enlarge the objects our make them
appear smaller on the display. This effect could be
achieved in several ways.
We need to, however, differentiate between parallel and
perspective projection.

5-72Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming for perspective projections
Following the camera analogy, a zoom effect can be
achieved for a perspective projection by moving the
camera closer to the objects or placing it farther away
from them.

camera

object

camera

object

5-73Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming for perspective projections
Similarly, changing the field of view can, for example,
make the view volume smaller so that the objects take up
more room within the view volume and hence appear
larger. A zoom out effect, i.e. making the objects appear
smaller can be achieved by using a larger field of view
value.

camera

object

camera

object

5-74Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming for perspective projections
The third option for zooming, i. e. making the objects
appear at a different size, is by scaling the entire scene.
Using, for example, glScale to enlarge the entire scene
results in a zoom-in effect. Scaling down all the objects
appears like a zoom-out effect.

camera

object

camera

object

5-75Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming for parallel projections
When using parallel perspective, the options for achieving
a zoom effect are limited. For example, positioning the
camera closer to the objects does not change the size
with which they appear on the display at all.

camera camera

object objectview frustum view frustum

5-76Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming for parallel projections
Since there is no function available that allows us to
specify a field of view value (it would not make sense for
a parallel projection anyway), the only option for
achieving zoom is to scale the objects.

camera camera

object objectview frustum view frustum

5-77Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming using mouse input
We could now use mouse input for zooming. One option
would be to implement a slider to determine the zoom
factor. Another way would be to allow the user to click in
the display window and – based on the distance between
the picked location and the current position of the mouse
cursor – a zoom factor is determined. For example,
moving the cursor up would zoom in, while moving the
mouse cursor down results in a zoom-out effect.

5-78Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Zooming in OpenGL
We then can modify the OpenGL source code in such a
way, that a glScale function call is added after setting
up the view matrix (for example by using gluLookAt).
As parameters we could use a global variable for all three
entries to achieve an isotropic zooming, i.e. the same
change in size for all three coordinates.
This parameter is initially set to 1.0, and then potentially
changed according to the mouse input.

5-79Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Rubber band zoom
As another option for zoom-in, a rubber-band zoom could
be used. The user selects a rectangular area of interest
and the software zooms in in such a way that only this
selected area is visible. To select the desired area the
user can click onto the display to mark the first corner of
the rectangular area. By keeping the mouse button
pressed and dragging the mouse cursor along, the
current location of the mouse cursor can be used as the
second corner of the rectangle. Usually, a rectangle is
drawn on top of the scene and constantly updated to
visualize the selection.

5-80Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Rubber band zoom (continued)
On release of the mouse button, the application zooms in
based on the current rectangular area. To preserve the
aspect ratio, the rectangle may be adapted accordingly.
The zoom factor can be computed as the ratio between
the height of the display windows over the height of the
rectangular area (in display coordinates). Alternatively,
we could use the width values of the display window and
the rectangle (we should use either one only to preserve
the aspect ratio; the decision could be based on which
value is larger: the width or height of the rectangle).

5-81Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Rubber band zoom (continued)
Example.

selected
area

5-82Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Panning
To move the objects parallel to the viewing plane, i.e. up,
down, left, or right, a panning feature can be
implemented. Similar to zooming, the click/drag technique
can be applied. The user clicks on the display and keeps
the mouse button pressed. By moving the mouse cursor
around, the objects are translated accordingly, using the
vector from the original click position to the current cursor
location as the displacement vector. The translation
should be scaled appropriately, so that, for example,
moving the mouse cursor by ten pixels results in a
displacement of the objects by ten pixels in the display
coordinate system.

5-83Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Rotating
Achieving a good technique for rotating our scene is a
little more tricky. First, we need to look at the theory a
little.
How many degrees of freedom are there for 3-D
orientations?
3 degrees of freedom:

– direction of rotation and angle
– or 3 Euler Angles

5-84Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Euler Angles
An Euler angle is a rotation about
a single axis.
Any orientation can be described
by composing three rotations, one
around each coordinate axis.
Roll, pitch, and yaw
(perfect for flight simulation)

http://www.fho-emden.de/~hoffmann/gimbal09082002.pdf

5-85Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Roll, pitch, and yaw
The orientation of, for example, a space shuttle in space is defined as
its attitude. Orbiter attitudes are specified using values for pitch,
yaw, and roll. These represent a relative rotation of the shuttle about
the Y, Z, and X axes, respectively, to the desired orientation.
However, the shuttle doesn't actually perform each rotation
separately. It calculates one axis, called the eigen axis, to rotate
about to get to the correct orientation.

http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

5-86Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Gimbal Lock
Two or more axis align resulting in a loss of rotation
degrees of freedom.

5-87Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Euler Angles in the Real World
Apollo inertial measurement unit: to “prevent” lock, they
added a fourth Gimbal!

http://www.hq.nasa.gov/office/pao/History/alsj/gimbals.html

5-88Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques

Astronauts, like
animators, try to
avoid gimbal lock.
Shown here is the
Apollo 15 control
panel with the “eight
ball” indicating the
gimbal-lock danger
zone with red.

Euler Angles in the Real World

5-89Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Quaternions
Invented in 1843 by Hamilton as an extension to the
complex numbers
Used by computer graphics since 1985
Quaternions:

– Provide an alternative method to specify rotation
– Can avoid the gimbal lock problem
– Allow unique, smooth and continuous rotation interpolations

5-90Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Mathematical Background
A quaternion is a 4-tuple of real number, which can be seen as a
vector and a scalar

Q = [qx, qy, qz, qw] = qv + qw, where
qw is the real part and
qv = iqx + jqy + kqz = (qx, qy, qz) is the
imaginary part

i*i = j*j = k*k = -1;
j*k= -j*k= i; k*i=-i*k=j; i*j=-j*i= k;
All the regular vector operations (dot product, cross product, scalar
product, addition, etc) applied to the imagineary part qv

5-91Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Basic Operations
Multiplication: QR = (qv x rv + rwqv + qwrv,

qwrw - qv.rv)
Addition: Q+R = (qv+rv, qw+rw)
Conjugate: Q* = (-qv, qw)
Norm (magnitude) = QQ* = Q*Q = qx*qx+qy*qy+qz*qz+qw*qw

Identity i = (0,1)
Inverse Q-1 = (1/ Norm(Q)) Q*

real

Imaginary

5-92Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Polar Representation
Remember a 2D unit complex number

cosθ + i sinθ = e
A unit quaternion Q may be written as:

Q = (sinφ uq , cosφ) = cosφ + sinφ uq, where uq is a unit
3-tuple vector

We can also write this unit quaternion as:
Q = e

iθ

φuq

5-93Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Quaternion Rotation
A rotation can be represented by a unit quarternion Q =
(sinφuq, cosφ)

Given a point p = (x,y,z) -> we first convert it to a quaternion p’ =
ix+jy+kz+ 0 = (pv, 0)

Then, Qp’Q is in fact a rotation of p around uq by an angle 2θ !!
-1

5-94Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
How can we achieve a rotation now?
For example, a joystick could be used to determine pitch
and roll (like in a flight simulator, rolling a plane results in
a sideways movement).
What about the mouse?
The mouse is a 2-D input device. Thus, we can control
two different degrees of freedom directly, for example roll
and pitch. Similar to panning, the relative movement in x-
and y-direction is converted into a rotation using an
appropriate scaling factor.

5-95Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Rotational center
Using a fixed rotational center often results in undesirable
rotations and confuses the user. Better results can be
achieved by computing the rotational center as the center
of the current view frustum or the center of the bounding
box of all currently visible objects.

5-96Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
What are we missing?
Since we can only cover two degrees of freedom (DOF),
we obviously lack something.

5-97Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Virtual trackball
Better results for rotating the camera can be achieved by using a
virtual trackball. The idea is to project mouse movement on an
hypothetical sphere filling the 3D window and to apply the rotation
resulting from the sphere being manipulated when the mouse button
is pressed to the object.

Rotate
around z-
axis (yaw)

Rotate in x-
and y-
direction
(roll and
pitch)

5-98Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Virtual Trackball (continued)
•Superimpose a hemi-sphere
onto the viewport
•This hemi-sphere is projected
to a circle inscribed to the
viewport
•The mouse position is
projected orthographically to
this hemi-sphere

z

y

(x,y,0)

x

5-99Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Virtual Trackball (continued)
•Keep track of the previous mouse
position and the current position
•Calculate their projection positions p1
and p2 to the virtual hemi-sphere
•We then rotate the sphere from p1 to p2
by finding the proper rotation axis and
angle
•This rotation (in world coordinate space!)
is then applied to the object (call the
rotation before you define the camera
with gluLookAt())
•You should also remember to
accumulate the current rotation to the
previous modelview matrix

x

y

z

5-100Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Virtual Trackball (continued)
The axis of rotation is given by the normal to the plane
determined by the origin, p1 , and p2

The angle between p1

and p2 is given by

x

y

z

n = p1 × p1

| sin θ| =
||||

||

21 pp
n

5-101Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Virtual Trackball (continued)
• How to calculate p1 and p2?
• Assuming the mouse position is (x,y), then the sphere point P also

has x and y coordinates equal to x and y
• Assume the radius of the hemi-sphere is 1. So the z coordinate of

P is

• Note: normalize viewport y extend
to -1 to 1

• If a point is outside the circle, project
it to the nearest point on the circle
(set z to 0 and renormalize (x,y))

22 yx1 −−
z

y

(x,y,0)

x

5-102Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Virtual Trackball (continued)
Visualization of the algorithm

5-103Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Example
Example from Ed Angel’s OpenGL Primer
In this example, the virtual trackball is used to rotate a
color cube
The code for the colorcube function is omitted
I will not cover the following code, but I am sure you will
find it useful
http://www.cs.unm.edu/~angel/BOOK/PRIMER/SECOND
_EDITION/PROGRAMS/

http://www.cs.unm.edu/~angel/BOOK/PRIMER/SECOND_EDITION/PROGRAMS/
http://www.cs.unm.edu/~angel/BOOK/PRIMER/SECOND_EDITION/PROGRAMS/

5-104Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Initialization
#define bool int /* if system does not support

bool type */
#define false 0
#define true 1
#define M_PI 3.14159 /* if not in math.h */

int winWidth, winHeight;

float angle = 0.0, axis[3], trans[3];

bool trackingMouse = false;
bool redrawContinue = false;
bool trackballMove = false;

float lastPos[3] = {0.0, 0.0, 0.0};
int curx, cury;
int startX, startY;

5-105Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
The Projection Step
void trackball_ptov(int x, int y, int width,

int height, float v[3])
{

float d, a;
/* project x,y onto a hemisphere centered

within width, height , note z is up here*/
v[0] = (2.0*x - width) / width;
v[1] = (height - 2.0F*y) / height;
d = sqrt(v[0]*v[0] + v[1]*v[1]);
v[2] = cos((M_PI/2.0) * ((d < 1.0) ? d : 1.0));
a = 1.0 / sqrt(v[0]*v[0] + v[1]*v[1] +

v[2]*v[2]);
v[0] *= a; v[1] *= a; v[2] *= a;

}

5-106Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
glutMotionFunc (1)
void mouseMotion(int x, int y)
{

float curPos[3],
dx, dy, dz;
/* compute position on hemisphere */
trackball_ptov(x, y, winWidth, winHeight,

curPos);
if(trackingMouse)

{
/* compute the change in position

on the hemisphere */
dx = curPos[0] - lastPos[0];
dy = curPos[1] - lastPos[1];
dz = curPos[2] - lastPos[2];

5-107Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
glutMotionFunc (2)
if (dx || dy || dz)
{
/* compute theta and cross product */
angle = 90.0 * sqrt(dx*dx + dy*dy + dz*dz);
axis[0] = lastPos[1]*curPos[2] –

lastPos[2]*curPos[1];
axis[1] = lastPos[2]*curPos[0] –

lastPos[0]*curPos[2];
axis[2] = lastPos[0]*curPos[1] –

lastPos[1]*curPos[0];
/* update position */
lastPos[0] = curPos[0];
lastPos[1] = curPos[1];
lastPos[2] = curPos[2];

}
}
glutPostRedisplay();
}

5-108Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Idle and Display Callbacks
void spinCube()
{

if (redrawContinue) glutPostRedisplay();
}

void display()
{ glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
if (trackballMove)
{

glRotatef(angle, axis[0], axis[1], axis[2]);
}
colorcube();
glutSwapBuffers();
}

5-109Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Mouse Callback
void mouseButton(int button, int state, int x, int y)
{
if(button==GLUT_RIGHT_BUTTON) exit(0);

/* holding down left button
allows user to rotate cube */

if(button==GLUT_LEFT_BUTTON) switch(state)
{

case GLUT_DOWN:
y=winHeight-y;
startMotion(x,y);
break;

case GLUT_UP:
stopMotion(x,y);
break;

}
}

5-110Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Start Function
void startMotion(int x, int y)
{

trackingMouse = true;
redrawContinue = false;
startX = x;
startY = y;
curx = x;
cury = y;
trackball_ptov(x, y, winWidth, winHeight,

lastPos);
trackballMove=true;

}

5-111Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Stop Function
void stopMotion(int x, int y)
{

trackingMouse = false;
/* check if position has changed */

if (startX != x || startY != y)
redrawContinue = true;

else
{

angle = 0.0;
redrawContinue = false;
trackballMove = false;

}
}

5-112Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Animation
Animations are often useful showcasing your results. The
human eye is more receptive for movement; hence, a
moving scene is more likely to catch the eye. Also, a
complex scene may be difficult to analyze in a 2-D
projection. It may be easier to imagine the missing third
dimension if the objects in the scene move, for example,
around a center axis of the scene.

5-113Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Animation
Simple animation of the scene can be achieved by
moving the camera around. The simplest way would be to
just rotate the camera around all our objects. We could
do this by, for example, using glRotate.

5-114Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Camera flight path
Another option is to define a flight path that the camera
follows. This could be done, for example, by defining a
parametric curve. The parameter can be advanced based
on time so that the camera moves along the path defined
by the curve. The curve should be at least continuous to
avoid jumps in camera movement. Similarly, a curve can
be defined for the look-at point. This gives us two curves
e(t) and c(t) for the eye and center point. Using gluLookAt,
we can let the camera move according to these curves:

gluLookAt (e(t), c(t), up);

5-115Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Camera flight path (continued)
In order to get a more realistic setup and to allow
zooming, a perspective projection should be used.
The parameter t can be advanced using the idle callback
function using GLUT. In that function, we can check if
time progressed by a specific amount. If that is the case,
we can increment t by a pre-defined value.
To specify the up vector, we do not need to define a
parametric curve. However, it is necessary to adapt it to
the new eye and center values to avoid undesired
rotation of the camera.

5-116Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Camera flight path (continued)
After initializing the up-vector, we can update it after
every camera movement using something like this:

Vector tmp, v = c(t) – e(t);
vectorProduct (tmp, v, up);
vectorProduct (up, tmp, v);
normalize (up);

This assumes that the change of the view direction is not
too drastic. The up-vector is changed in such a way, that
it is orthogonal to the view direction, i.e. the vector
connecting the locations of eye and center as specified in
gluLookAt.

5-117Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Camera flight path (continued)
As an example, the camera could fly along a curve e(t)
defined by a consecutive list of straight-line segments.
The point the camera is pointing towards is chosen to be
on the exact same curve, but at a slightly larger
parameter value.
Then, we could set up our camera like this:

gluLookAt (e(t), e(t+0.05), up);

5-118Department of Computer Science and Engineering

5 Input Devices and Interactive Techniques

5.4 Interactive techniques
Camera flight path (continued)
Example

	Chapter 5
	Overview
	5.1 Input devices
	5.1 Input devices
	5.1 Input devices
	5.1 Input devices
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.2 Handling input
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.3 3-D Rendering in OpenGL
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques
	5.4 Interactive techniques

