
7-1Department of Computer Science and Engineering

7 Visible surface detection methods

Chapter 7

Visible surface detection methods

7-2Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Generally, any procedure that eliminates those portions
of a picture that are either inside or outside of a specified
region of space is referred to as a clipping algorithm or
simply clipping. Usually a clipping region is a rectangle,
although we could use any shape for a clipping
application.
The most common application of clipping is in the viewing
pipeline, where clipping is applied to extract a designated
portion of a scene (either two-dimensional or three-
dimensional) for display on an output device. Clipping
methods are also used to anti-alias object boundaries, to
construct objects using solid-modeling methods, to
manage multi-window environments, etc.

7-3Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Clipping algorithms are applied in two-dimensional
viewing procedures to identify those parts of a picture that
are within the clipping window (i.e. viewport). Everything
outside the clipping window is then eliminated from the
scene description that is transferred to the output device
for display. An efficient implementation of clipping in the
viewing pipeline is to apply the algorithms to the
normalized boundaries of the clipping window. This
reduces calculations, because all geometric and viewing
transformation matrices can be concatenated and applied
to a scene description before clipping is carried out. The
clipped scene can then be transferred to screen
coordinates for final processing.

7-4Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Pipelines
Graphics hardware uses a pipelined approach to process
vertices and convert primitives into the final image. The
pipeline basically involves the following steps:

• Modeling
• Geometry Processing
• Rasterization
• Fragment Processing

7-5Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Modeling
The conversion of analog (real world) objects into
discrete data

i.e. creating vertices and connectivity via range scanning
The design of a complex structure from simpler primitives

i.e. architecture and engineering designs
Done Offline

We will ignore this step for now

7-6Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Application programmer pipes modeling output into…
Geometry Processing

– Animate objects
– Move objects into camera space
– Project objects into device coordinates
– Clip objects external to viewing window

7-7Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Rasterization

– Conversion of geometry in device coordinates into
fragments (or pixels) in screen coordinates

– After this step there is no notion of a “polygon”, just
fragments

7-8Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Fragment Processing

– Texture lookups
– Coloring
– Programmable GPU steps

7-9Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
These last 3 steps need to be FAST
• Developed 20-40 years ago… but little has changed
• Efficient memory use speeds things up

– Cache, cache, cache

• Integers and bit ops over floating point
• Fewer bits usually faster

– float over double, half over float

• Parallel processing

7-10Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Rasterization is very expensive

– More or less linear w/ number of fragments created
– Consists of adds, rounding and logic branches per pixel
– Only rasterize objects that are in viewable region

A few operations now needed to remove invisible onjects
saves many later.

7-11Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Geometry Processing
• Apply modelview and projection matrix.
• Not all primitives map to inside window

– Cull those that are completely outside
– Clip those that are partially inside

• 2D vs. 3D
– Projection plane v. projection cube
– Clipping can occur in either space
– Choice of visible surface algorithm used forces one or the

other

7-12Department of Computer Science and Engineering

7 Visible surface detection methods

7.1 Overview
Clipping algorithms are available for basic primitives used
in computer graphics, such as

– Point clipping
– Line clipping (straight-line segments)
– Fill-area clipping (polygons)
– Curve clipping
– Text clipping

In the following, we will assume that the clipping region is
a rectangular window with boundary edges at xmin, xmax,
ymin, and ymax.

7-13Department of Computer Science and Engineering

7 Visible surface detection methods

7.2 Point clipping
Since the projection of a point P results in coordinates (x,
y), we can easily identify the necessary equations for a
clipping algorithm:

xmin < x < xmax, ymin < y < ymax

Point clipping can be useful for particle systems, such as
smoke simulation or cloud modeling.

7-14Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Line clipping against rectangles

The problem: Given a set of 2D lines or polygons and a window, clip the lines or
polygons to their regions that are inside the window.

(x1, y1)

xmin xmax

y
m

ax
y

m
in

(x0, y0)

7-15Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Direct approach
Clip a line against 1 edge of
a square
Similar Triangles

– A/B = C/D
– Which do we know?
– B = (y1 – y2)
– D = (x1 – x2)
– A = (y1 – ymax)
– C = AD/B
– (x’, y’) = (x1+C, ymax)

(x1, y1)

(x2, y2)

A
C

B

D

(x’, y’)

7-16Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
• Similarly handled for the other cases
• Extends easily to 3D
• EXPENSIVE! (below for 2D)

– 4 floating point additions/subtractions
– 2 floating point multiplications
– 1 floating point div
– 4 times (for each edge!)

• We need to save ourselves some operations

7-17Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Possible Configurations
• Both endpoints are inside the
region (line AB)

– No clipping necessary

• One endpoint in, one out (line
CD)

– Clip at intersection point

• Both endpoints outside the
region:

No intersection (lines EF, GH)
Line intersects the region (line IJ)

• Clip line at both intersection points

A

B

C

D

F

E

I

J

G

H

7-18Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Cohen-Sutherland
Basic algorithm:

Accept (and draw) lines that
have both endpoints inside
the region
Reject (and don’t draw) lines
that have both endpoints less
than xmin or ymin or greater
than xmax or ymax

Clip the remaining lines at a
region boundary and repeat
steps 1 and 2 on the clipped
line segments

F

E

Trivially reject

A

BTrivially accept
H

C

D

I

J

G

Clip and
retest

7-19Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Assign 4-bit code to each endpoint corresponding to its

position relative to region:
First bit (1000): if y > ymax

Second bit (0100): if y < ymin

Third bit (0010): if x > xmax

Fourth bit (0001): if x < xmin

Test:
if code0 OR code1 = 0000

accept (draw)
else if code0 AND code1 ≠ 0000

reject (don’t draw)
else clip and retest

01000101 0110

10001001 1010

0001 00100000

7-20Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping

(x1, y1)

(x0, y0)

ymax

ymin

dx

dy

(x, y)

xmin xmax

Intersection algorithm:
if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7-21Department of Computer Science and Engineering

7 Visible surface detection methods

Code dx yxdy

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Intersection algorithm:
if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-22Department of Computer Science and Engineering

7 Visible surface detection methods

Code dx yxdy

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Intersection algorithm:
if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-23Department of Computer Science and Engineering

7 Visible surface detection methods

Code
1010

dx yxdy

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Intersection algorithm:
if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-24Department of Computer Science and Engineering

7 Visible surface detection methods

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Code
1010

dx
250

yxdy
150Intersection algorithm:

if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-25Department of Computer Science and Engineering

7 Visible surface detection methods

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Code
1010

dx
250

yxdy
150Intersection algorithm:

if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-26Department of Computer Science and Engineering

7 Visible surface detection methods

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Code
1010

dx
250

y
200

x
233

dy
150Intersection algorithm:

if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-27Department of Computer Science and Engineering

7 Visible surface detection methods

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Code
1010

dx
250

y
200

x
233

dy
150Intersection algorithm:

if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-28Department of Computer Science and Engineering

7 Visible surface detection methods

(x1, y1)
(400, 300)
Code (1010)

(x0, y0)
(150, 150)
Code (0000)

ymax=200

ymin=100

Xmin = 100 xmax = 300

Code
1010

dx
250

y
200

x
233

dy
150Intersection algorithm:

if code0 ≠ 0000 then code = code0
else code = code1

dx = x1 – x0; dy = y1 – y0
if code AND 1000 then begin // ymax

x = x0 + dx * (ymax – y0) / dy; y = ymax
end
else if code AND 0100 then begin // ymin

x = x0 + dx * (ymin – y0) / dy; y = ymin
end
else if code AND 0010 then begin // xmax

y = y0 + dy * (xmax – x0) / dx; x = xmax
end
else begin // xmin

y = y0 + dy * (xmin – x0) / dx; x = xmin
end

if code = code0 then begin x0 = x; y0 = y; end
else begin x1 = x; y1 = y; end

7.3 Line clipping

7-29Department of Computer Science and Engineering

7 Visible surface detection methods

Cohen-Sutherland algorithm: summary
• Choose an endpoint outside the clipping region
• Using a consistent ordering (top to bottom, left to right)

find a clipping border the line intersects
• Discard the portion of the line from the endpoint to the

intersection point
• Set the new line to have as endpoints the new

intersection point and the other original endpoint
• You may need to run this several times on a single line

(e.g., a line that crosses multiple clip boundaries)

7.3 Line clipping

7-30Department of Computer Science and Engineering

7 Visible surface detection methods

A

B

E

F
G

H

C

D

I

J

A 0001
B 0100
OR 0101
AND 0000
subdivide

C 0000
D 0010
OR 0010
AND 0000
subdivide

E 0000
F 0000
OR 0000
AND 0000
accept

G 0000
H 1010
OR 1010
AND 0000
subdivide

I 0110
J 0010
OR 0110
AND 0010
reject

01000101
0110

10001001 1010

0001 00100000

7.3 Line clipping

7-31Department of Computer Science and Engineering

7 Visible surface detection methods

A

B

G

H

C

D

A 0001
A’ 0001

remove

A’

G’

C’

A’ 0001
B 0100
OR 0101
AND 0000
subdivide

C 0000
C’ 0000
OR 0000
AND 0000
accept

C’ 0000
D 1010

remove

G 0000
G’ 0000
OR 0000
AND 0000
accept

G’ 0000
H 1010

remove

01000101
0110

10001001 1010

0001 00100000

7.3 Line clipping

7-32Department of Computer Science and Engineering

7 Visible surface detection methods

B’

B

A’ 0001
B’ 0100

remove

A’

B’ 0100
B 0100
OR 0100
AND 0100
reject

01000101
0110

10001001 1010

0001 00100000

7.3 Line clipping

7-33Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Liang-Barsky line clipping
To achieve faster clipping, we should do a little more
testing before we actually compute the intersection.
Parametric definition of a line:

• x = x1 + uΔx
• y = y1 + uΔy
• Δx = (x2-x1), Δy = (y2-y1), 0 ≤ u ≤ 1

Goal: find range of u for which x and y both inside the
viewing window

7-34Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Liang-Barsky line clipping (continued)
Mathematically, we need to find values for u that fulfill the
following inequalities:

xmin≤ x1 + uΔx ≤ xmax

ymin ≤ y1 + uΔy ≤ ymax

This can be rearranged to:
1: u · (-Δx) ≤ (x1 – xmin)
2: u · (Δx) ≤ (xmax – x1)
3: u · (-Δy) ≤ (y1 – ymin)
4: u · (Δy) ≤ (ymax – y1)

Or in general: u · (pk) ≤ (qk)

7-35Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Liang-Barsky line clipping (continued)
Rules:

pk = 0: the line is parallel to boundaries
If for that same k, qk < 0, it’s outside
Otherwise it’s inside

pk < 0: the line starts outside this boundary
rk = qk/pk

u1 = max(0, rk, u1)
pk > 0: the line starts inside the boundary

rk = qk/pk

u2 = min(1, rk, u2)
If u1 > u2, the line is completely outside

7-36Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
Liang-Barsky line clipping (continued)
The algorithm also extends to 3D

– Add z = z1 + uΔz to the parametric description of a line

– Add 2 more p’s and q’s
– Still only 2 u’s (since the line is still a 2-D primitive)

7-37Department of Computer Science and Engineering

7 Visible surface detection methods

Liang-Barsky v. Cohen-Sutherland

– Generally, Liang-Barsky is more efficient
• Requires only one division
• Find intersection values for (x,y) only at end

– This depends, however, on the application
– Cohen-Sutherland may be easier to implement

7.3 Line clipping

7-38Department of Computer Science and Engineering

7 Visible surface detection methods

Nicholl-Lee-Nicholl line clipping
• This test is most complicated
• Also the fastest
• Only works well for 2D
• Quick overview here

7.3 Line clipping

7-39Department of Computer Science and Engineering

7 Visible surface detection methods

Nicholl-Lee-Nicholl line clipping
Divide the region based on the
location of the first point p1

– Case 1: p1 inside
– Case 2: p1 across edge
– Case 3: p1 across corner

T

R

B

L

LT

LR

LB

L
L

LT
TR

LB

L T

TB

7.3 Line clipping

7-40Department of Computer Science and Engineering

7 Visible surface detection methods

Nicholl-Lee-Nicholl Line Clipping
• Symmetry handles other cases
• Find slopes of the line and 4 region bounding lines
• Find which region P2 is in

– If not in any labeled, the line is discarded

• Subtractions, multiplies and divisions can be carefully
used to minimum

7.3 Line clipping

7-41Department of Computer Science and Engineering

7 Visible surface detection methods

7.3 Line clipping
A note on redundancy
Why present multiple forms of clipping?

– Why do you learn multiple sorts?
– Not always easy to do the fastest
– The fastest for the general case isn’t always the fastest for

every specific case
• Mostly sorted list bubble sort

– History repeats itself
• You may need something similar in a different area. Grab the

one that maps best.

7-42Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Clipping polygons is more complex than clipping the
individual lines

Input: polygon
Output: original polygon, new polygon, or nothing

Since polygons are bounded by line segments, can we
just use line clipping?

7-43Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Why can’t we just clip the lines of a polygon?

7-44Department of Computer Science and Engineering

7 Visible surface detection methods

Why Is Clipping Hard?
What happens to a triangle during clipping?
Possible outcomes:

triangle triangle

7.4 Polygon clipping

triangle quad triangle 5-gon

How many sides can a clipped triangle have?

7-45Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
How many sides?
Seven…

7-46Department of Computer Science and Engineering

7 Visible surface detection methods

Why Is Clipping Hard?
A really tough case:

7.4 Polygon clipping

7-47Department of Computer Science and Engineering

7 Visible surface detection methods

Why Is Clipping Hard?
A really tough case:

7.4 Polygon clipping

concave polygon multiple polygons

7-48Department of Computer Science and Engineering

7 Visible surface detection methods

Sutherland-Hodgeman algorithm (A divide-and-conquer
strategy)
– Polygons can be clipped against each edge of the

window one at a time. Edge intersections, if any, are
easy to find since the x or y coordinates are already
known.

– Vertices which are kept after clipping against one
window edge are saved for clipping against the
remaining edges.

– Note that the number of vertices usually changes and
will often increases.

7.4 Polygon clipping

7-49Department of Computer Science and Engineering

7 Visible surface detection methods

Top Clip Boundary

Right Clip
Boundary

Bottom Clip Boundary

Left Clip
Boundary

Clipping A Polygon Step by Step:
7.4 Polygon clipping

7-50Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Sutherland-Hodgeman Algorithm
Note the difference between this strategy and the Cohen-Sutherland
algorithm for clipping a line: the polygon clipper clips against each
window edge in succession, whereas the line clipper is a recursive
algorithm.
Given a polygon with n vertices, v1, v2,…, vn, the algorithm clips the
polygon against a single, infinite clip edge and outputs another series
of vertices defining the clipped polygon. In the next pass, the partially
clipped polygon is then clipped against the second clip edge, and so
on. Let us consider the polygon edge from vertex vi to vertex vi+1.
Assuming that the start point vi has been dealt with in the previous
iteration, four cases will appear.

7-51Department of Computer Science and Engineering

7 Visible surface detection methods

Inside Outside

Clip
Boundary

Polygon is
clipped

vi

vi+1: output

Case 1: Inside Outside

Polygon is
clipped

vi

vi+1

Case 2:

i: output

Inside Outside

Polygon is
clipped

vi

vi+1

Case 3:
(no output)

Inside Outside

vi

Case 4:

vi+1: second
output

i: first
output

7.4 Polygon clipping

7-52Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Sutherland-Hodgeman Clipping
Four cases:

– s inside plane and p inside plane
• Add p to output
• Note: s has already been added

– s inside plane and p outside plane
• Find intersection point i
• Add i to output

– s outside plane and p outside plane
• Add nothing

– s outside plane and p inside plane
• Find intersection point i
• Add i to output, followed by p

7-53Department of Computer Science and Engineering

7 Visible surface detection methods

Point-to-Plane test
Point-to-Plane test
A very general test to determine if a point p is “inside” a plane P,
defined by q and n:

(p - q) • n < 0: p inside P
(p - q) • n = 0: p on P
(p - q) • n > 0: p outside P

Remember: p • n = |p| |n| cos (q)
θ = angle between p and n

P

n
p

q

P

n
p

q

P

n
p

q

7-54Department of Computer Science and Engineering

7 Visible surface detection methods

Finding Line-Plane Intersections
Edge intersects plane P where E(t) is on P

q is a point on P
n is normal to P

(L(t) - q) • n = 0

t = [(q - L0) • n] / [(L1 - L0) • n]

The intersection point i = L(t) for this value of t. P

n
q

L0

L1

7-55Department of Computer Science and Engineering

7 Visible surface detection methods

An example for the polygon clipping

v1

v5

v2 v3

v4

7.4 Polygon clipping

7-56Department of Computer Science and Engineering

7 Visible surface detection methods

v1

v5

v2 v3

v4

As we said, the Sutherland-Hodgeman algorithm clips the polygon against
one clipping edge at a time. We start with the right edge of the clip rectangle.
In order to clip the polygon against the line, each edge of the polygon have to
be considered. Starting with the edge, represented by a pair of vertices, v5v1:

v1

v5

v1

Clipping edge Clipping edge Clipping edge

7.4 Polygon clipping

7-57Department of Computer Science and Engineering

7 Visible surface detection methods

v1

v5

v2 v3

v4

Now v1v2:

Clipping edge Clipping edge Clipping edge

v1

v2

v1

v2

7.4 Polygon clipping

7-58Department of Computer Science and Engineering

7 Visible surface detection methods

v1

v5

v2 v3

v4

Now v2v3:

Clipping edge Clipping edge Clipping edge

v1

v2v2 v3
v2 v3

7.4 Polygon clipping

7-59Department of Computer Science and Engineering

7 Visible surface detection methods

v1

v5

v2 v3

v4

Now v3v4:

Clipping edge Clipping edge Clipping edge

v1

v2v2 v3v3

v4

i1

7.4 Polygon clipping

7-60Department of Computer Science and Engineering

7 Visible surface detection methods

v1

v5

v2 v3

v4

Now v4v5:

Clipping edge Clipping edge Clipping edge

v1

v2v2 v3

i1

v5

v4 i2

v5

After these, we have to clip the polygon against the other three edges of the
window in a similar way.

7.4 Polygon clipping

7-61Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Problem with Sutherland-Hodgeman
Concavities can end up linked:

Weiler-Atherton creates separate polygons cases like
this.

7-62Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Weiler-Atherton Polygon Clipping
To find the edges for a clipped polygon, we follow a path
(either clockwise or counterclockwise) around the fill area
that detours along a clipping-window boundary whenever
a polygon edge crosses to the outside of that boundary.
The direction of a detour at a clipping-window border is
the same as the processing direction for the polygon
edges.
For a counterclockwise traversal of the polygon vertices,
we apply the following Weiler-Atherton procedures:

7-63Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Weiler-Atherton Polygon Clipping (continued)
1. Process the edges of the polygon in a

counterclockwise order until an inside-outside pair of
vertices is encountered for one of the clipping
boundaries; that is, the first vertex of the polygon edge
is inside the clip region and the second vertex is
outside the clip region.

2. Follow the window boundaries in a counterclockwise
direction from the exit-intersection point to another
intersection point with the polygon. If this is a
previously processed point, proceed to the next step.
If this is a new intersection point, continue processing
polygon edges in a counterclockwise order until a
previously processed vertex is encountered.

7-64Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Weiler-Atherton Polygon Clipping (continued)
3. Form the vertex list for this section of the clipped

polygon.
4. Return to the exit-intersection point and continue

processing the polygon edges in a counterclockwise
order.

Note: this may generate more than one polygon!

7-65Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Weiler-Atherton Polygon Clipping (continued)
Example:

add clip pt.
and end pt.

add end pt. add clip pt.
cache old dir.

follow clip edge until
a) new crossing found
b) reach pt. already

added

7-66Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Weiler-Atherton Polygon Clipping (continued)
Example (continued)

continue from
cached location

add clip pt.
and end pt.

add clip pt.
cache dir.

follow clip edge until
a) new crossing found
b) reach pt. already

added

7-67Department of Computer Science and Engineering

7 Visible surface detection methods

7.4 Polygon clipping
Weiler-Atherton Polygon Clipping (continued)
Example (continued)

continue from
cached location

nothing added
finished

Final result:
Two unconnected
polygons

7-68Department of Computer Science and Engineering

7 Visible surface detection methods

Difficulties with Weiler-Atherton polygon clipping
What if the polygon re-crosses edge?

How many “cached” crossings?

Your geometry step must be able to create new polygons instead
of 1-in-1-out

7.4 Polygon clipping

7-69Department of Computer Science and Engineering

7 Visible surface detection methods

7.5 Curve clipping
Areas with curved boundaries can
be clipped with methods similar to
those discussed in the previous
sections. If the objects are
approximated with straight-line
segments, we use a polygon-
clipping method. Otherwise, the
clipping procedures involve
nonlinear equations, and this
requires more processing than for
objects with linear boundaries.

Before Clipping

After Clipping

7-70Department of Computer Science and Engineering

7 Visible surface detection methods

7.5 Curve clipping
For a simple accept/reject test, the
bounding box can be used. This box
(in the 2-D case just a square)
describes the maximal extent of the
curved object parallel to the
coordinate axes. If the bounding box
does not intersect with the clipping
region, no part of the object is
inside. Otherwise, if the bounding
box is completely contained by the
clipping region, the entire object is
going to be inside.

Before Clipping

After Clipping

7-71Department of Computer Science and Engineering

7 Visible surface detection methods

7.5 Curve clipping
If the bounding box is partly inside
the clipping area we have to do
further testing. Similar to polygon
clipping, the intersections with the
boundaries of the clipping region
need to be computed. An
intersection calculation involves
substituting a clipping-boundary
position (xmin, xmax, ymin, and ymax) in
the nonlinear equation for the object
boundary and solving for the other
coordinate value.

Before Clipping

After Clipping

7-72Department of Computer Science and Engineering

7 Visible surface detection methods

7.6 Text Clipping
There are several techniques that can be used to provide
text clipping. The simplest method for processing
character strings relative to the clipping window is to use
the all-or-none string clipping strategy. This procedure
is implemented by examining the coordinate extent of the
text string (bounding box). If the coordinate limits of this
bounding box are not entirely within the clipping window,
the string is rejected.
Sometimes, only the lower left corner is used for clipping:
only if this point is within the clipping region the string is
drawn. This, for example, is how OpenGL clips the
Bitmap Characters (based on the current raster position).

7-73Department of Computer Science and Engineering

7 Visible surface detection methods

7.6 Text Clipping
An alternative is to use the all-or-none character
clipping strategy. Here we eliminate only those
characters that are not completely inside the clipping
region. In this case, the coordinate extents of individual
characters are compared to the clipping boundaries. Any
character that is not completely within the clipping-
window boundary is eliminated.

7-74Department of Computer Science and Engineering

7 Visible surface detection methods

7.6 Text Clipping
A third approach to text clipping is to clip the components
of individual characters. This provides the most accurate
display of clipped character strings, but it requires the
most processing. If an individual character overlaps a
clipping boundary, we clip off only the parts of the
character that are outside the clipping region. Outline
character fonts defined with line segments are processed
in this way using polygon-clipping algorithms. Characters
defined with bitmaps are clipped by comparing the
relative position of the individual pixels in the character
grid patterns to the borders of the clipping region.

7-75Department of Computer Science and Engineering

7 Visible surface detection methods

7.6 Text Clipping
STRING1

STRING2

Before Clipping

STRING1

STRING3

Before Clipping

STRING4
STRING2

STRING1

Before Clipping

STRING2

All or none
text clipping

STRING2

All or none
character clipping

Clipping individual
character

After Clipping

ING1

TRING3

After Clipping

STRING4

STRI

STRING1

STRING2

After Clipping

7-76Department of Computer Science and Engineering

7 Visible surface detection methods

7.7 3-D Clipping
• For orthographic projection, view volume is a box.
• For perspective projection, view volume is a frustrum.

Far clipping plane.

Near clipping plane

left

right

Need to calculate intersection
With 6 planes.

7-77Department of Computer Science and Engineering

7 Visible surface detection methods

7.7 3D Clipping
We extend the Cohen-Sutherland algorithm.

– Now 6-bit code instead of 4 bits.
– Trivial acceptance where both endpoint codes are all zero.
– Perform logical AND, reject if non-zero.
– Find intersect with a bounding plane and add the two new

lines to the line queue.
– Line-primitive algorithm.

7-78Department of Computer Science and Engineering

7 Visible surface detection methods

Sutherland-Hodgman Algorithm

Four cases of polygon clipping :

Inside Outside Inside Outside Inside Outside Inside Outside

Case 3
No

output
Case 1

Output
Vertex

Case 2

Output
Intersection

Case 4

Second
Output

First
Output

7.7 3D Clipping

7-79Department of Computer Science and Engineering

7 Visible surface detection methods

7.7 3D Clipping
• Sutherland-Hodgman extends easily to 3D
• Call ‘CLIP’ procedure 6 times rather than 4
• Polygon-primitive algorithm

7-80Department of Computer Science and Engineering

7 Visible surface detection methods

7.8 Hidden Surface Removal
Visibility
• Given a set of polygons, which is visible at each pixel?

(in front, etc.). Also called hidden surface removal
• Very large number of different algorithms known. Two

main classes:
– Object precision: computations that operate on primitives
– Image precision: computations at the pixel level

• All the spaces in the viewing pipeline maintain depth, so
we can work in any space

– World, View and Canonical Screen spaces might be used
– Depth can be updated on a per-pixel basis as we scan convert

polygons or lines

7-81Department of Computer Science and Engineering

7 Visible surface detection methods

7.8 Hidden Surface Removal
Visibility Issues
• Efficiency – it is slow to overwrite pixels, or scan convert

things that cannot be seen
• Accuracy - answer should be right, and behave well

when the viewpoint moves
• Must have technology that handles large, complex

rendering databases
• In many complex worlds, few things are visible

– How much of the real world can you see at any moment?

• Complexity - object precision visibility may generate
many small pieces of polygon

7-82Department of Computer Science and Engineering

7 Visible surface detection methods

Painters Algorithm (Image Precision)
• Algorithm:

– Choose an order for the
polygons based on some choice
(e.g. depth to a point on the
polygon)

– Render the polygons in that
order, deepest one first

• This renders nearer polygons
over further

• Difficulty:
– works for some important

geometries (2.5D - e.g. VLSI)
– doesn’t work in this form for

most geometries - need at least
better ways of determining
ordering

zs

xs

Fails

Which
point for
choosing
ordering?

7.8 Hidden Surface Removal

7-83Department of Computer Science and Engineering

7 Visible surface detection methods

Depth Sorting (Object Precision, in view space)

• An example of a list-priority algorithm
• Sort polygons on depth of some point
• Render from back to front (modifying order on the fly)
• Rendering: For surface S with greatest depth

– If no overlap in depth with other polygons, scan convert
– Else, for overlaps in depth, test for overlaps in the image plane

• If none, scan convert and go to next polygon

– If S, S’ overlap in depth, swap order and try again
– If S, S’ have been swapped already, split and reinsert

7.8 Hidden Surface Removal

7-84Department of Computer Science and Engineering

7 Visible surface detection methods

7.8 Hidden Surface Removal
Depth Sorting (continued)
Testing for overlaps: Start drawing when first condition is
met:

x-extents or y-extents do not overlap

S is behind the plane of S’

S’ is in front of the plane of S

S and S’ do not intersect in the image plane

S
S’

S

S’
or

z

x

S
S’

z

x

S
S’

S
S’

7-85Department of Computer Science and Engineering

7 Visible surface detection methods

Depth Sorting (continued)
Advantages:

– Filter anti-aliasing works fine
• Composite in back to front order
• No depth quantization error
• Depth comparisons carried out in high-precision view space

Disadvantages:
– Over-rendering
– Potentially very large number of splits -

Ω(n2) fragments from n polygons

7.8 Hidden Surface Removal

7-86Department of Computer Science and Engineering

7 Visible surface detection methods

Area Subdivision
• Exploits area coherence: Small areas of an image are

likely to be covered by only one polygon
• Three easy cases for determining what’s in front in a

given region:
– a polygon is completely in front of everything else in that

region
– no surfaces project to the region
– only one surface is completely inside the region, overlaps the

region, or surrounds the region

7.8 Hidden Surface Removal

7-87Department of Computer Science and Engineering

7 Visible surface detection methods

Warnock’s Area Subdivision (Image Precision)

• Start with whole image
• If one of the easy cases is satisfied (previous slide), draw what’s

in front
• Otherwise, subdivide the region and recurse
• If region is single pixel, choose surface with smallest depth
• Advantages:

– No over-rendering
– Anti-aliases well - just recurse deeper to get sub-pixel information

• Disadvantage:
– Tests are quite complex and slow

7.8 Hidden Surface Removal

7-88Department of Computer Science and Engineering

7 Visible surface detection methods

Warnock’s Algorithm
• Regions labeled with case

used to classify them:
1)One polygon in front
2)Empty
3)One polygon inside,

surrounding or intersecting
• Small regions not labeled
• Note it’s a rendering

algorithm and a HSR
algorithm at the same time

– Assuming you can draw
squares

2 2 2

2222

2

2

3

3

3

3 33

3

3

3

3

3

333

3
3

1

1 1 1
1

7.8 Hidden Surface Removal

7-89Department of Computer Science and Engineering

7 Visible surface detection methods

BSP-Trees (Object Precision)

Construct a binary space partition tree
– Tree gives a rendering order
– A list-priority algorithm

Tree splits 3D world with planes
– The world is broken into convex cells
– Each cell is the intersection of all the half-spaces of splitting planes

on tree path to the cell

Also used to model the shape of objects, and in other visibility
algorithms

– BSP visibility in games does not necessarily refer to this algorithm

7.8 Hidden Surface Removal

7-90Department of Computer Science and Engineering

7 Visible surface detection methods

BSP-Trees (continued)
Example:

7.8 Hidden Surface Removal

7-91Department of Computer Science and Engineering

7 Visible surface detection methods

BSP-Trees (continued)
If a cutting plane intersects an object the object needs to
be split.
To render the scene, we process that part of the tree
which is further away from the view point with respect to
the cutting plane. This way, the objects are drawn in a
back to front order. Thus, the foreground objects are
painted over the background objects.
Note: if the viewpoint changes we can still use the same
BSP tree (assuming the objects did not change); only
the front and back side with respect to the cutting planes
may switch.

7.8 Hidden Surface Removal

	Chapter 7
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.1 Overview
	7.2 Point clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.3 Line clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	Point-to-Plane test
	Finding Line-Plane Intersections
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.4 Polygon clipping
	7.5 Curve clipping
	7.5 Curve clipping
	7.5 Curve clipping
	7.6 Text Clipping
	7.6 Text Clipping
	7.6 Text Clipping
	7.6 Text Clipping
	7.7 3-D Clipping
	7.7 3D Clipping
	7.7 3D Clipping
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal
	7.8 Hidden Surface Removal

