Addendum

Addendum

Vector Review

[T 1 a
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Addendum

Coordinate Systems

Right handed coordinate system

Ay

[T TR [
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Addendum

Vector Arithmetic

::ax a, aZ]

::bx by bZ]

a+b::ax+b a, +b, az+bz:
a— ::ax—bX a, —Db, az—bZ:
a-la, -3, -a)

saz[saX sa, saz]
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Addendum

Vector Magnitude
The magnitude (length) of a vector is:

V| = \/vf +V, +V;

A vector with length=1.0 is called a unit vector

We can also normalize a vector to make it a unit
vector:

v
M
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Addendum

Dot Product

a-b=> ab

a-b=ab, +ab +a,b,

a-b =|a||b|cos &

L g
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Dot Product

Addendum

a-b=> ab

a-b=ab,

ab,

a-b =|alb|cosd

a-b=a'b

a-b:[aX a, az]
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Addendum

Example: Angle Between Vectors

How do you find the angle 0 between vectors a and b?

s |
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Example: Angle Between Vectors

a-b =|alb|cosd

[ h

COSH = %
\ Y, b / g
/a-b\

0 =cos| —— a
o],
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Addendum

Dot Products with General Vectors

The dot product is a scalar value that tells us something
about the relationship between two vectors

If a-b >0 then 6 <90°
If a-b <0 then 6 >90°

If a:b =0 then 6 =90° (or one or more of the vectors is
degenerate (0,0,0))

i

—
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Addendum

Dot Products with One Unit Vector

If |u|=1.0 then a-u is the length of the projection
of a onto u
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Addendum

Example: Distance to Plane

A plane is described by a point p on the plane
and a unit normal n. Find the distance from point
X to the plane

e -
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Addendum

Example: Distance to Plane
The distance is the length of the projection of x-p onto n:

dist =(x—p)-n

1-12

e -l
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Addendum

Dot Products with Unit Vectors

e -
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Addendum

Cross Product

I T ¢
axb=la, a, a,
b, b, b,

a><b:[aybz—azby a,b,—ab, ab —a b]

e - i
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Addendum

Properties of the Cross Product

axb is a vector perpendicular to both
a and b, in the direction defined by
the right hand rule

axb|=|al|b|sin &
a x b| = area of parallelogram ab

axb|=0 if aand b are parallel
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Addendum

Example: Normal of a Triangle

Find the unit length normal of the triangle defined by 3D
points a, b, and c

a
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Addendum

Example: Normal of a Triangle

n“=(b-a)x(c—a)

*

n

n=-—
n

s |
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Addendum

Example: Area of a Triangle

Find the area of the triangle defined by 3D points a, b,
and c

i -
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Addendum

Example: Area of a Triangle

area = %\(b ~a)x(c-a)

C-a. N

i -

WRIGHT STATE Department of Computer Science and Engineering 119



Addendum

Example: Alignment to Target

An object is at position p with a unit length
heading of h. We want to rotate it so that the

heading is facing some target t. Find a unit axis a
and an angle 0 to rotate around.

. 1

P

h
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Addendum

Example: Alignment to Target

_ hx(t—p)
hx(t-p)

(t-p)

d

h
0 = cos{
t—p t ‘(t o p)‘

h

1
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Addendum

Addendum

Cramer’s Rule

[T 1 a
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Addendum

This Is a great method.

Cramer’s Rule is a neat way to evaluate systems and if
you put the work in now you'll do fine. It can be used for
any size (2 by 2, 3 by 3 or even larger) system.

It is easy to memorize and fast.

I’'m going to show you where Cramer’s Rule comes from;
but first, some definitions
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Addendum

Definitions

Determinant — a square array

2nd Order Determinant — a 2 by 2 array

3 Order Determinant —a 3 by 3 array

Elements — The things in the array
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Addendum

What does a determinant look like?
A 2nd order determinant looks like this

And the value of the determinant =

Diagonal down right — diagonal down left ae — bd

e -
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Addendum

Examples

Evaluate

[IHEeE [ ]
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Addendum

Why is this useful for systems?

Lets work through an elimination example using all

variables; then we can see how the determinant will be
useful in solving.

e -
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Addendum

ax+by=c | . ~aex+bey =ce

dx + ey = f eliminate y bdx + bey — bf
aex — bdx = ce — bf
X(ae —bd) =ce —Dbf

c b
ce — bf f e
X = » X =
ae — hd a b
Look familiar? d e
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Addendum

If you apply the same process but eliminate x

a C

y_af—c:d y:d f
ae — bd a b

d e

So, what does Cramer’'s Rule say?

i -
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Addendum

Cramer’s Rule

. ax+by=c
Given a system y
dx+ey =f Replace solutions in
Replace solutions izr\/\’_?column to solve
for

X column to solve c b a y
for X

f e y d f

X = —
a b a b
d e d e

Denominators
are coefficient

What do you think is the trick? determinants

Department of Computer Science and Engineering 1:30
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Addendum

Examples

Solve using Cramer’s Rule

1.
X+ 7y =-9

g XTY=9
5X+4b=-1
2X—b =10

e -
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Addendum

Cramer’s Rule in General

Cramer's Rule: For the system of equations Ax =,
where A is an nxn nonsingular matrix, the solution for the
ith endogenous variable, x,, is

X. = [AJA]
where the matrix A, represents a matrix that is identical
to the matrix A but for the replacement of the ith column
with the nx1 vectory.
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Addendum

Linear Systems in Matrix Form

Ay Xy + Xy +o0 Qg X, :bl Aq Gy g || X b1

y1 Xy + 8y X, +-00+ 8,5, X, =D, Ay yp v Gy || K| b, (1)
: = | D, : o

A X taX, +--+a, X, = bn _anl dp, - ann_ _Xn_ _bn_

i - i
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Addendum

Solution of Linear Systems
Each side of the equation

Can be multiplied by A-1: . .
A"A-x=A"Db

Due to the definition of AT:  AA-X=1-X= X

Therefore the solution of (2) is:
-1
x = Ah
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Addendum

Consistency (Solvability)

* A-1does not exist for every A

* The linear system of equations A-x=b has a solution, or
said to be IFF

Rank{A}=Rank{A|b}
« Asystemis when
Rank{A}<Rank{A|b}

Rank{A} is the maximum number of linearly independent columns
or rows of A. Rank can be found by using ERO (Elementary Row
Oparations) or ECO (Elementary column operations).
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Addendum

Elementary row and column operations

The following operations applied to the augmented matrix
[A|b], yield an equivalent linear system

— Interchanges: The order of two rows/columns can be
changed

— Scaling: Multiplying a row/column by a nonzero
constant

— Sum: The row can be replaced by the sum of that row
and a nonzero multiple of any other row.

One can use ERO and ECO to find the Rank as follows:

ERO=minimum # of rows with at least one nonzero entry
or

ECO=minimum # of columns with at least one nonzero entry

WELGLT STATE Departnr ent of Cormputer Science and Enginzering 1-36



Addendum

An inconsistent example: Geometric interpretation

1 2)x| (4 ,
2 41X, 5 |
) equation 1
0 E
equation 2
1 2 4l
0 0 i 3 4 s
1 2 4
0 0 -
wm.;,:? ’::T-'&TE Department of Computer Science and Engineering 137



Addendum

Uniqueness of solutions

e The system has a unique solution IFF
Rank{A}=Rank{A|b}=n
n is the order of the system

e Such systems are called full-rank systems

e -
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Addendum

Full-rank systems

 If Rank{A}=n
Det{A} # 0 = A1 exists =

. equat|0n1
— - - - = equation 2
-1 5 :
1 0 1 I2 3 4
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Addendum

Rank deficient matrices
e If Rank{A}=m<n
Det{A} = 0 = A is singular so not invertible
(n-m free variables)

under-determined system

equation 1

- el
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Addendum

lll-conditioned system of equations

A small deviation in the entries of A matrix, causes a

large deviation in the solution.

1 2
048 0.99
.
049 0.99

1.47

WRIGHT STATE

Department of Computer Science and Engineering
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Addendum

lll-conditioned continued.....

* Alinear system of

equations is said to be 25 B
“ill-conditioned” if the 2\
Coefficient matrix 1.5 .................. ................................... i
<
0.5
0_... .................................
0.5- \
-1 |
-2 1 0 1 2 3 4
X1
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Addendum

Gaussian Elimination

— By using ERO, matrix A is transformed into an upper triangular
matrix (all elements below diagonal 0)

— Back substitution is used to solve the upper-triangular system

A, - a; aln__xl_ _bl_ _ail R TR aln__xl_ _bl_ /\

ail aii a|n XI — bl :> O a‘ii 5“ln XI — 6;
- ERO f :

Apg Api a'nn__Xn_ _bn_ i o - 0 - é’nn__Xn_ _bn_ =
mm;_ﬁ STATE Department of Computer Science and Engineering 143
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Addendum

Pivotal Element

4 (1) (1) (1) (1) ] [ (1) ]
a a o, a 3 ap, X4 bl
(1) (1) (1) (1) (1)
a 5 a ,, a 5 a,, X5 bz
(1) (1) (1) (1) _ (1)
a 3 a 3 a 33 asy, X3 - bs
(1) (1) (1) (1) (1)
_anl an2 a'n3 ann __Xn_ _bn

The first coefficient of the first row (pivot) is used to zero out first coefficients

of other rows. In terms of numerical stability it is usually best to use the

k
largest element in the column, i.e. Max agk)‘
k<j<n
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Addendum

First step of elimination

4 (1) (1) (1) LW T ] Ry (1) ]
a g a a 3 ar, Xy b1
_ (1) (1) 2 2 2 2
m,, = ay [ a 0 aéz) a§3) aén) X, bz( )
_ (1) (1) 2 2 2 _ 2
My, = ag [ay 0 ay,’ ag) - ag) || Xs|=|by?
_ (1) (1) 2 2 2 2
mn,l_ anl /all i 0 ar(12) a.gg) a.gn)__xn_ _brf )

First row, multiplied by appropriate factor is subtracted from other rows.

e -
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Addendum

Second step of elimination

4 (1)
A

0

0

(1)
alZ

(2)
a22

(2)
a32

(2)
an2

(1)
a13

(2)
a23

(2)
a33

(2)
an3

(1) |
a1n

(2)
a2n

(2)
a3n

q (2)

nn

i - i

WWELGIHT STATE
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Addendum

Second step of elimination

4 (1) (1) (1) L 11 ] [ (1) ]
Ay ai, a3 ap, Xy bl
(2) (2) 2 2
0 a 5, a 53 aén) X5 bz( :
_ (2) (2) 3 3 3
m,, = ag [ as, 0 0 33(3) as(n) Xg | = bgf :
_ (2) (2) 3 3 3
m,, ay lay i 0 0 arg3) aén)__xn_ _b,f)

i - i
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Addendum

Gaussion elimination algorithm

Define number of steps as p (pivotal row)
For p=1,n-1
For r=p+1ton
_ 4(P) [ 5(P)
M, p = arpp /apg
a,” =0

br(p+1) _ br(p) -m, | ><blglo)

(p+1) _ A(P) (p)
Ar =a — mr,p X apc

e - i
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Addendum

Back substitution algorithm

[ 4 (1) (1) (1) (1) ] R (D)
Ay ai, A g o Xy bl
(2) (2) (2) 2

0 a ,, a 53 a,, Xy bz( :

0 0 al® al® || x, b,

n n -1

0 0 0 a'r(1—)1n—1 ar(1—)1n Xn-1 bff?l )
0 0 0 0 ay |l x| | b

[t 1 1

WRIGHT STATE Department of Computer Science and Engineering 149




Addendum

Back substitution algorithm

The answer is obtained as following:

b(n)
Xn = 2"
(n-1) _ 4n-1
Xn—l (n 1) [b n—1an]
a‘n 1n-1
X, =~ {b(') Za(') } i=n-1,n-2,....1
a k=i+1
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Addendum

LU decomposition
If we now define a matrix R

4 (1) (1) (1) (1) ]
Ay a, a; a,
(2) (2) (2)
0 a a 53 a,,
(3) (3)
R — 0 0 a 4, as,
(n) (n)
O O O anrlln—l anrlln
(n)
0 0 0 0 alm |
and another matrix L = (l;;) with
(k)
a.
=i
Ay

thenwe get: A=L R

e -
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Addendum

LU decomposition

Note that the matrices R and L are upper and lower
triangular matrices. Hence, we can solve the linear
equation system in two steps:

Lc=D

RX=cC
Solving these two systems can be achieved similar to
the using a similar algorithm we used for back
substitution.
Also note that solving the system of linear equations for
different solutions b does not require a repetition of the
Gaussian elimination algorithm.
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Addendum

Cholesky decomposition

If the matrix A is symmetric, a solution for the LU
decomposition is even easier since there exist the
following decomposition for those matrices:

A=CIC
where
Cll Cln
0 :
C=| .
ko -0 Cnn)
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Addendum

Cholesky decomposition

How can we compute C? Let us look at the equation:

c, O
C12

\Cln CZn

Hence:

K k-1
2
:ZCjijk = Ci :\/akk _ZCjk

0)c, - - Cln\ a, v e aln\
. O ‘. . . .
0 | : B

Cnn 0 0 Cnn \anl ann

=1 j=1
k-1
: 8y — 2 CyC;
_ _ 1
=) CyCy =Cy = for k<l<n
=1 Crk

i

—

WRIGHT STATE
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