CEG477/CEG677

Computer Graphics II

Outline

- **0** Introduction
- **1 Three-Dimensional Object Representations**
- **2 Visible-Surface Detection Methods**
- 3 Illumination Models and Surface-Rendering Methods
- 4 Interactive Input Methods and Graphics User Interfaces
- **5 Color Models and Color Applications**

Literature (books)

Hearn, Baker, **Computer Graphics with OpenGL**, Prentice Hall, 2004

Woo, Neider, Davis, Shreiner, **OpenGL Programming Guide**, Addison Wesley, 2000,

http://www.opengl.org/documentation/red_book_1.0

Foley, van Dam, Feiner und Hughes, Computer

Graphics: Principles and Practice, Addison-Wesley, 1990

Alan Watt, Mark Watt, **Advanced Animation and Rendering Techniques**, Addison Wesley, 1992

Farin, Curves and Surfaces for Computer Aided Geometric Design, Academic Press, 1996

[Barn: 1975]	Barnhill, R.E.; Gregory, J.A. : Polynomial Interpolation to Boundary Data on	
	Triangles.	
	Mathematics of Computation 29, 1975,726-735.	
[Barn: 1978]	Barnhill, R.E.; Brown, S.H.; Klucewicz, I.M.: A New Twist in Computer Aided	
	Geometric Design.	
	Computer Graphics Image Processing 8, 1978,78-91.	
[Barn: 1983]	Barnhill, R.E.: Computer Aided Surface Representation and Design.	
	In Barnhill, R.E.; Böhm, W. (Hrsg.):	
	Surfaces in Computer Aided Geometric Design, North-Holland, 1983,1-24.	
[Barn: 1985]	Barnhill, R.E.: Coon`s Patches.	
	Computers in Industry 3, 1982, 37-43.	
[Barn: 1988]	Barnhill, R.E.; Farin, G.; Fayard, L.; Hagen, H.: Twists, Curvatures and Surface	
	Interrogation.	
	Computer Aided Design 20, 1988, 341-346.	
[Böhm: 1977a]	Böhm, W.: Cubic B-Spline Curves and Surfaces in Computer Aided Geometric	
	Design.	
	Computing 19, 1977, 29-34.	
[Böhm: 1980]	Böhm, W.: Inserting New Knots into B-Spline Curves.	
	Computer Aided Geometric Design 12, 1980, 199-201.	
[Böhm: 1981]	Böhm, W.: Generating the Bézier Points of B-Spline Curves and Surfaces.	
	Computer Aided Geometric Design 13, 1981, 365-366.	

[Böhm: 1984]	Böhm, W.; Farin, G.; Kahmann, S.: A Survey of Curve and Surface Methods in CAGD.
	Computer Aided Geometric Design 1, 1984, 1-60.
[Boor: 1966]	Boor de, C.; Lynch, R.E.: On Splines and Their Minimum Properties. Journal of Mathematics and Mechanics 15, 1966, 953-968.
[Boor: 1972]	Boor de, C.: On Calculating with B-Splines. Journal of Approximation Theory 6, 1972, 50-62.
[Cast: 1959]	Casteljau de, P.: Outillage Méthodes Calcul. André Citroen Automobiles SA, Paris, 1959.
[Cohen: 1982]	Cohen, E.; Riesenfeld, R.F.: General Matrix Representations for Bézier and B-Spline Curves. Computers in Industry 3, 1982, 9-15.
[Coon: 1967]	Coons, S.A.: Surfaces for Computer Aided Design. MIT Project MAC-TR-41, 1967.
[Cox: 1971]	Cox, M.G.: The Numerical Evaluation of B-Splines. Natural Physics Laboratory of England, Teddington, 1971.
[Fari: 1982]	Farin, G.: A Construction for Visual C ¹ -Continuity of Polynomial Surface Patches. Computer Graphics and Image Processing 20, 1982, 272-282.
[Fari: 1989]	Farin, G.; Hagen, H.: Optimal Twist Estimation. In H. Hagen, (Hrsg): Surface Design, SIAM, Philadelphia, 1992
[Fole: 1989]	Foley, T.A.: A Knot selection method For parametric Splines. In Schumaker, L.L.; Lyche, T. (Hrsg.): Mathematical Methods in Computer Aided Geometric Design, Academic Press, 1989.

[Forr: 1972]	Forrest, A.R.: Interactive Interpolation and Approximation by Bezier Polynomials.
	Computer Journal 15, 1972, 71-79.
[Gord: 1971]	Gordon, W.S.: Blending Function Methods of Bivariate and Multivariate Interpolation and Approximation.
	SIAM Journal of Numerical Analysis 8, 1971, 158-177.
[Gord: 1974]	Gordon, W.S.; Riesenfeld, R.F.: Bernstein-Bezier Methods for Computer Aided Design of Free-Form Curves and Surfaces.
	Journal of the ACM 21, 1974, 293-310.
[Greg: 1974]	Gregory, J.A.: Smooth Interpolation without Twist Constraints. In Barnhill, R.E.; Riesenfeld, R.F. (Hrsg.): Computer Aided Geometric Design, Academic Press, 1974, 71-87.
[Greg: 1983]	Gregory, J.A.: C ¹ -Rectangular and Non-Rectangular Surface Patches. In Barnhill, R.E.; Böhm, W. (Hrsg.): Surfaces in Computer Aided Geometric Design, North-Holland, 1983, 25-33.
[Hage: 1986]	Hagen, H.: Geometric Surface Patches without Twist Constraints. Computer Aided Geometric Design 3, 1986, 179-184.
[Hage: 1986]	Hagen, H.: Bézier Curves with Curvature and Torsion Continuity. Rocky Mountain Journal of Mathematics 16, 1986, 629-638
[Hage: 1987]	Hagen, H.; Schulze, G.: Automatic Smoothing with Geometric Surface Patches.
	Computer Aided Geometric Design 4, 1987, 231-236.

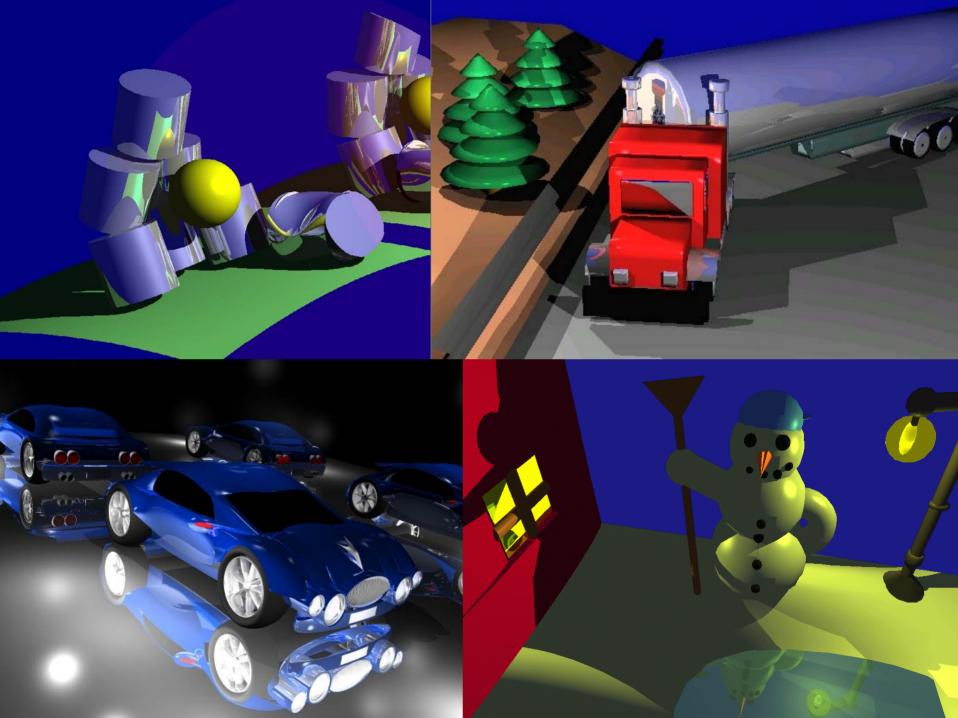
[Hosc: 1989]	Hoschek, J.; Lasser, D.: Grundlagen der geometrischen
	Datenverarbeitung.
	Teubner, Stuttgart, 1989.
[Lane: 1983]	Lane, J.M.; Riesenfeld, R.F.: A Geometric Proof for the Variation
	Diminishing Property of B-Spline Approximation.
	Journal of Approximation Theory 37, 1983, 1-4.
[Lee: 1975]	Lee, E.T.Y.: On Choosing Notes in Parametric Curve
	Interpolation.
	SIAM Applied Geometry meeting, Albany, NY, 1975.
[Niel: 1979]	Minimum Norm Interpolation in Triangles,
	SIAM Journal of Numerical Analysis 17 (1):46-62, 1980
[Nowa: 1983]	Nowacki, H.; Reese, D.: Design and Fairing of Ship Surfaces.
	In Barnhill, R.E.; Böhm, W. (Hrsg.): Surfaces in Computer Aided
	Geometric Design, North-Holland, 1983, 121-134.
[Ries: 1973]	Riesenfeld, R.F.: Applications of B-Spline Approximation to
	Geometric Problems of Computer Aided Design.
	Dissertation, Syrakus, 1973.
[Scho: 1967]	Schoenberg, I.S.; Greville, T.N.E.: On Splinefunctions.
	In Shisha, O. (Hrsg.): Inequalities, Academic Press 1967, 255-291.
[Stär: 1976]	Stärk, E.: Mehrfach differenzierbare Bézierkurven und
_	Bézierflächen.
	Dissertation, Braunschweig, 1976.

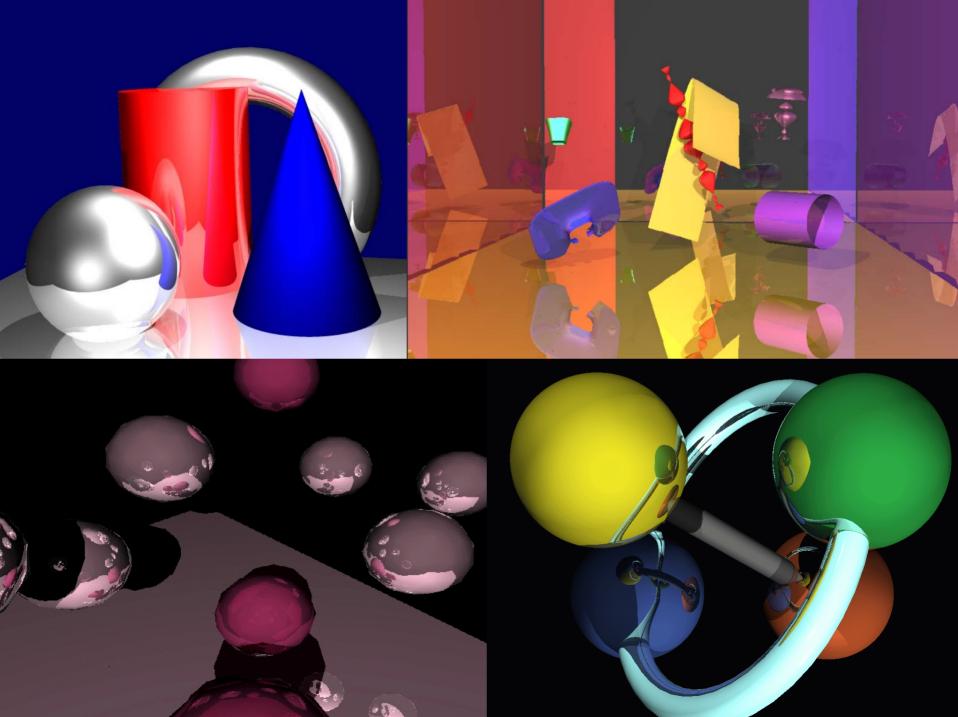
Applications for Computer Graphics

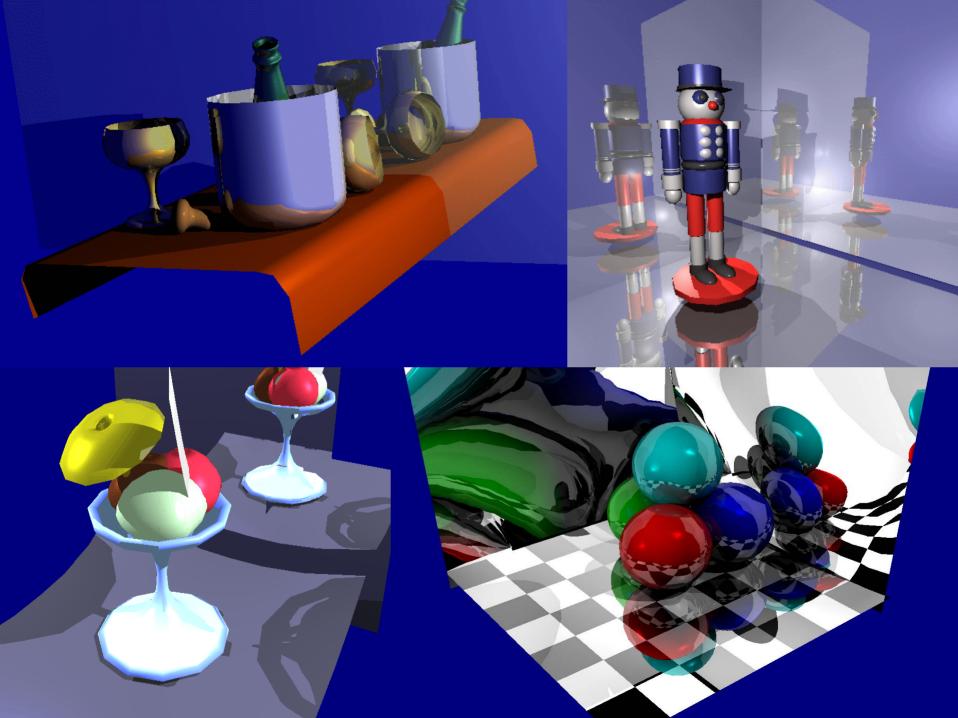
- Computer games
- Special effects in movies
- Animation
- Advertisements
- Visualization of scientific data

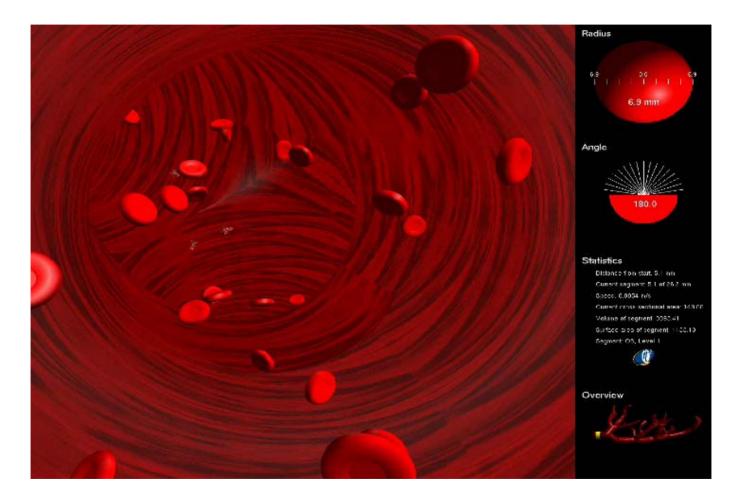
Example: Happy Feet

Example: Helm's Deep


http://www.lordoftherings.net/effects/




Example: The Incredibles



Animation

CEG476 Computer Graphics I

By now, you should be already familiar with the following techniques:

- Raster algorithms
- Geometric primitives and their attributes
- Clipping
- Anti-aliasing
- Geometric transformations
- Structures and hierarchical models
- Input devices
- Interactive techniques

Raster Algorithms

- Bresenham algorithm for
 - Lines
 - Circles
 - Ellipse
- Polygon filling algorithm
 - Scan line algorithms
 - Seed fill algorithms
- Anti-aliasing

Geometric primitives and their attributes

- Line attributes:
 - Width, style, ...
- Polygon attributes:
 - Fill styles
 - Fill color (solid, blended)
- Fill algorithms:
 - Flood fill
 - Scan-line fill
- Anti-aliasing

Clipping

- Line clipping algorithms
 - Cohen-Sutherland algorithm
 - Nichol-Lee-Nichol algorithm
- Polygon fill-area clipping
 - Sutherland-Hodgman algorithm
 - Weiler-Atherton algorithm
- Text clipping

Geometric Transformations

- Affine transformations
 - Rotation
 - Scaling
 - Transformation
- Homogeneous coordinates

Structures and Hierarchical Models

Reuse of geometry

Example:

Car with four wheels:

Geometry for each wheel can be reused and displayed at all four locations using different translation matrices

Input Devices

- Mouse
- Keyboard
- Scanner
- Digital camera
- Tracked stylus (virtual environment)
- Haptic devices (e.g. cyber grasp)

Interactive Techniques

• Camera flight path?

