
1-1Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

Chapter 1

Three-Dimensional Object Representations

1-2Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.1 Overview
The main goal of three-dimensional computer graphics is
to generate two-dimensional images of a scene or of an
object based on a a description or a model.
The internal representation of an object depends on
several implications:

– The object may be a real object or it exists only as a computer
representation

– The manufacturing of the object is bound closely to the
visualization:

• Interactive CAD systems
• Modeling and visualization as a tool during design and

manufacturing
• More than just 2-D output possible!

1-3Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.1 Overview
Implications (continued)

– The precision of the internal computer representation depends
on the application. For example, an exact description of the
geometry and shape in CAD applications vs. an approximation
sufficient for rendering of the object.

– For interactive applications, the object may be described by
several internal representations. These representations may
be generated in advance or on-the-fly.

• Level-of-detail (LOD) techniques

1-4Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.1 Overview
The modeling and representation of an object involves the following
in particular:
• Generation of 3-D geometry data

CAD interface, digitizer, laser scanner (reverse engineering), analytic
techniques (e.g. sweeping), image (2-D) and video (3-D) analysis

• Representation, efficient data access and conversion
Polygonal nets (e.g. triangulation), is the most common representation
for rendering objects. Alternatives: finite elements (FEM), constructive
solid geometry (CSG), boundary representation (B-rep), implicit surfaces
(isosurfaces), surface elements (surfels = points + normals), …

• Manipulation of objects (change shape, …)
e.g. Boolean operations, local smoothing, interpolation of features (e.g.
boundary curves), “engraving” of geometric details, …

1-5Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.1 Overview
The topics of this chapter will be:

– Polygonal representations
– Rendering Polygons with OpenGL
– Quadric surfaces
– Blobby Objects
– Spline representations

• Cubic splines
• Bézier splines
• B-Splines
• Rational splines

– Octree, BSP tree

1-6Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Properties/Characteristics:
• The precision of the approximation (number and size of

polygons) can be chosen depending on the application,
but several questions arise, e.g.:

– What polygonal resolution is required for a precise
representation?

– What polygonal resolution is required for the renderer to make
the piecewise approximation appear smooth?

– What is the correlation between number of polygons and the
size of the final display of the object?
Often the following rule of thumb is used: Choose the
polygonal resolution based on the curvature of the object

1-7Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Properties/Characteristics:
• Classic representations of three-dimensional objects in

computer graphics
• Object is represented by a net of polygonal surfaces

(usually triangles) piecewise linear interpolation
• The polygonal surfaces are usually an approximation of

the curved surface, representing the object’s boundary.

1-8Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Hierarchy of the representation:
Concept: The object constitutes of several surface

elements. Each surface element is represented
by several polygons. Every polygon has
vertices and edges.

1-9Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Hierarchy of the representation (continued):
Topology:

object

surfaces

polygons

edges

vertices

1-10Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Hierarchy of the representation (continued):
Data structure:

Vertices
are stored
only once

1-11Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Comment on data structures:
Data structures can contain – besides geometry
information – special attributes required for the
application or for the rendering:

– Surface attributes:
Representation (triangle, polygon, free-form surface), coefficients,
normal vector, properties (plane, convex, holes, …), reference to
vertices (and edges, if necessary)

– Edge attributes:
Length, type (round edge, feature line, virtual edge, reference to
vertices and/or polygon

– Vertex attributes:
Normal vector, color, texture coordinates, reference to polygon
and/or edge

1-12Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Comment on edges:
Obviously, there are two different kinds of
edges involved in the approximate
representation:

– Sharp edges (feature lines)
• This type of edge should be visible

– Virtual edges (“inside” a smooth surface)
• These should be invisible after rendering
• Interpolative shading algorithms

flat, Gouraud, Phong shading (now implemented in hardware)

Which kind of edge is to be used can be enforced by the
data structure by storing edges multiple times (see image).

1-13Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
OpenGL rendering pipeline:
Both, vertex and fragment shader are programmable

1-14Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
OpenGL supports several types of polygons:

GL_POLYGON

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

Convenience functions exist for certain objects:
glutSolidTetrahedron glutWiredTetrahedron

glutSolidCube glutWireCube

…

1-15Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL

1-16Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
Beware:
OpenGL will ignore invalid polygons, e.g. self
intersecting, non-convex, or non-planar polygons

1-17Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
There are basically four different ways to render
geometric objects with OpenGL:
• Direct rendering
• Display lists
• Vertex arrays
• Vertex buffer objects

1-18Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
Direct rendering:

glBegin (GL_TRIANGLES);

glNormal3f (…);

glVertex3f (…);

…

glNormal3f (…);

glVertex3f (…);

glEnd ();

In case of polygons with a fixed number of vertices, i.e.
triangles, quads, etc., you can generate several such
polygons using one glBegin/glEnd block.

1-19Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
Display lists:
Stores OpenGL API commands in graphics memory for
faster access.

GLuint index = glGenLists (1);

if (index != 0) {

glNewList (index, GL_COMPILE);

… // draw something

glEndList ();

}

glCallList (index);

Using GL_COMPILE_AND_EXECUTE instead of
GL_COMPILE makes the glCallList unnecessary.

1-20Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
Vertex arrays:
Store vertices in bulk arrays to reduce number of OpenGL function
calls.

GLfloat vertices[] = { … };

GLfloat normals[] = {… };

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_NORMAL_ARRAY);

glNormalPointer (GL_FLOAT, 0, normals);

glVertexPointer (3, GL_FLOAT, 0, vertices);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);

This constructs a triangle strips using the first ten elements. The 0 as
argument for the arrays is the stride parameter allowing you to skip
elements within the arrays.

1-21Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
Vertex buffer objects (VBO):
Vertex buffer objects are like vertex arrays, but stored in graphics
memory for faster access.
Fill the VBO with data; use indices to remember them:

GLuint vbovertices, vbonormals;
GLfloat vertices[] = { … }, normals[] = {… };
glGenBuffers (1, vbovertices);
glGenBuffers (1, vbonormals);
glBindBuffer (GL_ARRAY_BUFFER vbovertices);
glBufferData (GL_ARRAY_BUFFER, datasize,

vertices, GL_STREAM_DRAW);
glBindBuffer (GL_ARRAY_BUFFER, vbonormals);
glBufferData (GL_ARRAY_BUFFER, datasize,

normals, GL_STREAM_DRAW);

1-22Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.3 Polygon Rendering with OpenGL
Vertex buffer objects (continued):
Now, draw the previously generated VBOs:

glBindBuffer (GL_ARRAY_BUFFER vbovertices);

glVertexPointer (3, GL_FLOAT, 0, (GLvoid *)0);

glBindBuffer (GL_ARRAY_BUFFER, vbonormals);

glNormalPointer (GL_FLOAT, 0, (GLvoid *)0);

glDrawArrays (GL_TRIANGLE_STRIP, 0, count);

Notes:
– There is no actual data pointer required for the
glVertexPointer and glNormalPointer calls since the
VBOs are used as data repository.

– The client states need to be set just like with vertex arrays

1-23Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.4 Quadric Surfaces
Quadric surfaces are described with second-degree
equations (quadrics). Quadratic surfaces are common
elements in computer graphics and CAD. Some examples
are:

Sphere:

Ellipsoid:

rzyx =++ 222

1
222

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

zyx r
z

r
y

r
x

1-24Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.4 Quadric Surfaces
OpenGL supports quadric surfaces directly using the
GLUT or GLU libraries.
For example:

glutSolidSphere (r, xdiscretization,
ydiscretization);

Or:
GLUQuadric *quadric;

quadric = gluNewQuadric ();

gluSphere (quadric, r, xdiscretization,
ydiscretization);

1-25Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
Idea: describe the surface or volume of an object as iso-
surface within a scalar field (i.e. a point is part of the iso-
surface if and only if the scalar field has the same so-
called iso-value). The scalar field itself is generated
through generating primitives (functions).
Example: point heat sources create a spherical field. By
adding two of those fields we get a global scalar field.

1-26Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
The appearance of the iso-surface is relatively easy to
handle if the center points and the individual scalar fields
are chosen reasonably. The following image shows two
iso-surfaces which are generated by two radial symmetric
fields. The two centers of the generating fields approach
each other when going from top to bottom and left to right
in the image until they are at the exact same location.
You can see the merging effect during the transition of
the smooth iso-surface (C1-continuous in this case) after
the two centers get close enough. In the opposite case,
where the centers move apart we would see the iso-
surface separating.

1-27Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects

1-28Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
Density function:
The most commonly used density functions
with have the following properties:

– For is a polynomial
– for is the maximal radius
–
–
– is monotonically decreasing

The following graph shows an example for such a density
function.

],0[: 0 af →ℜ+

0, >ℜ∈ aa
fbbbt)0,](,0[>ℜ∈∈

0)(=tf bt >

f

0)(,)0(== bfaf
0)(',0)0(' == bff

1-29Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
Density function (continued):

Then, a radial symmetric field of a discrete blob at a point
P can be defined as withℜ→ℜ3:dF)()(

2
PxfxFd −=

1-30Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
Application example: flow simulation

1-31Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
Application example: flow simulation

1-32Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.5 Blobby Objects
Application example: flow simulation

1-33Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Motivation:
Free-form-curves and –surfaces became very popular
during the last decade, particularly due to their application
in several engineering disciplines. Free-form-curves are
nowadays a fundamental design method in CAD/CAM
software. This section will introduce basic concepts.

Specifically, we will cover:
– Interpolation using polynomials and splines
– Bézier curves, B-splines
– Rational B-splines

1-34Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

Surface consisting of several segments (patches)

1-35Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

interpolation

1-36Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

interpolation

1-37Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

Piecewise smooth surface reconstruction
based on a network of curves

1-38Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

Usually, more than one possible solution exist to the interpolation problem

1-39Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Interpolation problem:
Let
be a set of pairs of real numbers with pairwise unequal
nodes ,

A polynomial p of degree less than n+1,

with real coefficients cj is called interpolation problem of

if

),(ii ft ni ,...,0=

it
jitt ji ≠≠ for

),(ii ft
niftp ii ,...,0)(== for

∑
=

⋅=
n

j

j
j tctp

0
)(

1-40Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Questions:
• Does a unique solution to this problem exist?
• Is there an algorithmic method to solve the problem? Is

it efficient enough?
• Is the quality good enough for the application?

Theorem 1: There exist a unique solution to the
interpolation problem.

1-41Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Proof:
Plugging in the definition of the polynomial into the interpolation
problem results in a system of linear equations:

or . The matrix is the well-known Vandermonde matrix
with the property:

Since is regular, we have proven the theorem.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

nn
n
nnn

n

n

f

f
f

c

c
c

ttt

ttt
ttt

MM

L

MM

L

L

1

0

1

0

2

1
2
11

0
2
00

1

1
1

fcA =⋅ A

A

∏
>=

−=
n

jiji
ji ttA

;0,

)(det

1-42Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Note: Let be a set of n+1 points at
different nodes ti.
Then, an interpolation 3-D curve p with
can be determined in an analog fashion by solving the
linear equation system:
Here, the coefficients are vectors, i.e.

For each coordinate, we get a linear system with an
identical matrix A.

f i xi , yi , zi IR3

p t i f i

Ac f
ci IR3

xz

y f1

fn

...

t0 t1 tn

parametrisation

1-43Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Lagrange interpolation
The solution of the linear equation system of the
interpolation problem usually has complexity O(n3).
However, we would prefer a set of basis functions with
the property:

such that

Using these so called blending functions simplifies the
matrix of the linear equation system to the identity matrix,
i.e. and the resulting polynomial can
be written as

Li t
i 0
n Li t j ij

p t
i 0

n

f i Li t

ci f i i 0, . . . , n

1-44Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Theorem 2: The Lagrange polynomials

fulfill the desired property:

Li t
k 0,k i

n t t k

t i t k

Li t j ij .

1-45Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Proof:

Plug in ti

and for

Li ti
k 0, k i

n ti t k

ti t k
1

j i : Li t j . . .
t j t j

ti t j
. . . 0

1-46Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Lagrange polynomials

t0

1

t0 tnti

Li (t)

......

1-47Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example:
1. n=1, i.e. linear interpolation

Interpolate the points (x0,y0) and (x1, y1) (use x0,x1 as nodes)

2. Interpolate the following set of points:

0.222
0.511
100
yixii

10

1
0)(

xx
xxxL

−
−

=
01

0
1)(

xx
xxxL

−
−

=

10

0110

01

0
1

10

1
0

)()()(
xx

xxyxxy
xx
xxy

xx
xxyxP

−
−+−

=
−
−

+
−
−

=

1-48Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

() ()
() ()

() ()
() () ()

() ()
() ()

() ()
() ()

() ()
() ()

() ()
() () ()

() () ()
16.01.0

2.0
2
15.02123

2
1)(

2
1

1202
10)(

2
2101
20)(

23
2
1

2010
21)(

2

222

2

1202

10
2

2

2101

20
1

2

2010

21
0

+⋅−⋅=

⋅−+⋅+−+⋅+−=

−=
−⋅−
−⋅−

=
−⋅−
−⋅−

=

+−=
−⋅−
−⋅−

=
−⋅−
−⋅−

=

+−=
−⋅−
−⋅−

=
−⋅−
−⋅−

=

xx

xxxxxxxP

xxxx
xxxx

xxxxxL

xxxx
xxxx

xxxxxL

xxxx
xxxx

xxxxxL

1-49Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example:
cubic Lagrange polynomials with uniform nodes

3
iti =

1-50Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

ttttLtL

ttttLtL

tttttt

ttt
tt
tt

tt
tt

tt
tttL

tttttt

ttt
tt
tt

tt
tt

tt
tttL

+−=−=

−+−=−=

−+−=
−

−+−
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

+−+−=
−

−+−
=

⎟
⎠
⎞

⎜
⎝
⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=

2
2
93

2
9

03

2
923

2
27

12

2
2
453

2
27

9
2

9
2

9
1123

3
2

3
1
3
2

3
1

31

3

21

2

01

0
1

2
1123

2
9

9
2

9
2

9
1123

3
2
3
2

3
1
3
1

30

3

20

2

10

1
0

)1()(

18)1()(

92

1)(

192

1
1)(

1-51Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Newton interpolation
The Newton scheme has the advantage of being a
dynamic scheme, i.e. additional nodes can be added
without having to re-compute all basis functions.
For this scheme, the following basis functions are used:

with properties for i>j

N i t
k 0

i 1

t t k

N i t j 0

N i t i 0 .

1-52Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
The coefficients ai for the solution

Are computed recursively using the k-th divided
differences

p t
i 0

n

ai N i t

f t j , . . . ,t j k

f t j : f j j 0, . . . , n

f t j , . . . ,t j k :
f t j 1 , . . . , t j k f t j , . . . , t j k 1

t j k t j
ai f t0 , . . . , t i

1-53Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
This results in the following scheme:

...t3

...
...t2

t1

t0

321k=0
f 0 f t0 a0

f 1 f t1

f 2 f t2

f 3 f t 3

f t0 , t1 a1

f t1 , t2

f t2 , t3

f t0 , t1 , t2 a2

f t1 , t2 , t3

f t0 , . . . , t3 a3

0

1

2

3

1-54Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Note: the coefficients ai can also be determined using a
linear equation system. Since the matrix of the resulting
linear system is a triangular matrix, solving this system
would be equivalent to the scheme using the divided
differences.
Example: ti , f i 0,1 ; 2,3 ; 4,5

54
1

0=a232
1=a1

1=a00
ti fi

p(x) = a0+a1(x-t0)+a2(x-t0)(x-t1)
= 1 + x

1-55Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Beware: the interpolating polynomial interpolating n+1

nodes is not necessarily of degree n, but at most
of degree n.

Note:
– The order of the nodes does not change the result when using

Newton’s scheme
– Interpolating a continuous function f on the interval [a,b] using

n points does not necessarily ensure that the series of
interpolating polynomials fn converges to f.

Conclusion: Using more points does not
necessarily improve the quality of
the resulting interpolating polynomial!

1-56Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Disadvantages of polynomial interpolation
(particularly with respect to CAD/CAM):

– Interpolating polynomials of degree larger than 5
often are quite “wavy”

Remedy: introduce additional conditions, such as
minimization of folding energy
(→ splines)

– Each point that is to be interpolated influences the
resulting curve globally

Remedy: Use basis functions with local influence

1-57Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
The higher the degree of a polynomial, the more wavy its
shape, especially at the end points of the interval. The
parameterization (choice of nodes) influences the quality
of the resulting curve.

1-58Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Interpolating derivatives
Let ti (i=0,…,n) be different nodes and for each i the
values of the first ni-1 derivatives are known:

fi, fi
(1), …, fi

(n-1) (i=0,…,n)

We are looking for a polynomial of degree

such that p(j)(ti) = fi
(j) (i=0,…n; j=0,…,ni-1)

∑
=

−=≤
n

i
inm

0
1

∑
=

=
m

j

j
jtctp

0
)(

1-59Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Plugging in the desired conditions into the polynomial
equation – similar to the previous interpolation problem –
results in a linear system of equations.
Theorem 3: There is a unique solution to this linear

system of equations
Proof: Overall, there are m+1 conditional equations with
m+1 coefficients. The system is regular if the
homogenous problem (fi

(j)=0) only allows the trivial
solution. This is exactly the case: since p has exactly m+1
zeros (including multiplicities) and p is of degree ≤m, the
polynomial p has to be zero.

1-60Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example: We are looking for the cubic polynomial which
interpolates f(0), f’(0), f(1), and f’(1). A cubic polynomial
can be described as:

p(t) = c3t3 + c2t2 + c1t + c0

And the derivative:
p’(t) = 3c3t2 + 2c2t + c1

This gives us:
f(0) = c0

f’(0) = c1

f(1) = c3 + c2 + c1 + c0

f’(1) = 3c3 + 2c2 + c1

1-61Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Or in matrix form:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

)1('
)1(
)0('
)0(

3210
1111
0010
0001

3

2

1

0

f
f
f
f

c
c
c
c

1-62Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Hermite interpolation:
In analogy to the Lagrange interpolation, we can find
basis polynomials that are optimal for interpolating
derivatives. These are called Hermite polynomials.
Example: we are looking for cubic Hermite polynomials
for the system resulting from the previous example. The
coefficients can be determined by inverting the matrix:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−−−

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

)1('
)1(
)0('
)0(

1212
1323

0010
0001

3

2

1

0

f
f
f
f

c
c
c
c

1-63Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Then, the resulting Hermite polynomials are:

The Hermite polynomials have the following properties:

0

1

0 1

H 1H 0

H 1

H 0

23
1

23
1

23
0

23
0

)(

32)(

2)(

132)(

tttH

tttH

ttttH

tttH

−=

+−=

+−=

+−=

0)(

)(

=

=

jH

jH

i

iji δ

iji

i

jH
jH

δ=
=

)('
0)('

1,0, =ji

Interpolation:)1(')0(')1()0()(
1010
fHfHfHfHtX +++=

1-64Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Bézier segments:
Modeling of individual curve segments is easier and more
intuitive if there is a correlation between the coefficients
(design parameters) and the geometry of the curve.
Interpolated points are not very suitable for this matter
because the waviness cannot be controlled by the
interpolated points. Bézier segments are polynomial
curves, which are defined through a control polygon.
This control polygon is approximated by the resulting
curve, but only interpolates at the end points. The
vertices of the control polygon (control points, here:
Bézier points) constitute the coefficients of the
representation using Bernstein polynomials (new basis).

1-65Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Bézier segments:
By changing the geometric layout of the control polygon,
the curve can be easily modified. One of the properties of
Bézier segments is that the number of inflection points of
the curve is less or equal to the number of inflection
points of the control polygon. This variation diminishing
property allows for good control of the waviness of the
curve.
Bézier segments have many applications and are often
used for modeling of composite curves and surfaces
(Bézier splines). The Bézier technique is further
explained in the following.

1-66Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Bézier segments: the de Casteljau algorithm
The de Casteljau algorithm [Cast.59][Böhm84]
generalizes linear interpolation of polynomial curves. Let
b0 and b1 be two points and t a parameter between 0 and
1. Then t uniquely defines a point on the linear segment
connecting b0 and b1:

X(t) = (1 - t) b0 + t b1

X(t)

t : (1
-t)

b0

b1

1-67Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
de Casteljau algorithm

X(t)

b0

b1

t
:

 (1
 - t)

b0

b0

b1 b2

b3

b1

b2

t
:

 (1
 - t)

t : (1-t)
t

: (1 - t)

X(t)

X(t)

linear

cubic

quadratic

1-68Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
de Casteljau algorithm
Let bi (i=0,…,n) be n+1 Bézier points. Then, the de
Casteljau algorithm for evaluating a Bézier segment is
based on the following recursion:

n

j
i

j
i

j
i

ii

btX

njjnitbbtb

nibb

0

1
1

1

0

)(

),...,1,,...,0()1(

),...,0(

=

=−=+−=

==
−
+

−

b0

b1 ...

bn

b0 = X(t)

b0
2

bn-2
2

bn-1
1

b1
1

b0
1

n

Example: n=3

1-69Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
de Casteljau algorithm

Scheme of the de Casteljau algorithm
Every point bi

j is a convex combination of its
predecessors bi

j-1 and bi+1
i-1, weighted using (1-t) and t,

respectively.
bi

j(t) is a polynomial of degree j (or less).

X(t)bbb

bb

b

n
nn =− 0
1

1
0

1
0

0
1

0
0

L

OMM

1-70Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Properties of Bézier segments
1) Convex hull: the curve X(t), t [0,1] is located within

the convex hull of the control polygon, i.e. there are
weights with

2) Variation diminishing: an arbitrary straight line
intersects the curves as often or less than the control
polygon (within the plane).

3) End point interpolation: X(0) = b0, X(1) = bn.

∈

0≥iα

1

)(

0

0

=

=

∑

∑

=

=

n

i
i

n

i
iibtX

α

α
X(t)

1-71Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
4) Affine invariance: let φ be an affine mapping

φ(p) = Ap+v. Then, φ(X(t)) = Y(t), with the curve Y
being defined by the transformed Bézier points φ(bi).

5) Bernstein basis: the de Casteljau algorithm results in
a curve of (maximal) degree n. As basis the so called
Bernstein polynomials are used:

X(t)
Y(t)

inin
i

n

i

n
ii tt

i
n

tBtBbtX −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==∑)1()(,)()(

0

1-72Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
6) Properties of the Bernstein polynomials: the

Bernstein polynomials are symmetric, not negative
between [0,1], and the sum of all polynomials is one:

∑ =

∈≥

−= −

1)(

]1,0[, 0)(

)1()(

tB

ttB

tBtB

n
i

n
i

n
in

n
i

0
0

1

1
0

0

1

1

B0
2

B1
2

B2
2 B0

3

B1
3 B2

3
B3

3

1-73Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
7) Symmetry: inverting the sequence of the control

points bi of X(t) results in a Bézier segment Y(t) with
inverted parametrization: Y(t) = X(1-t).

8) Pseudo-local control: the Bernstein polynomials
influence the curve globally, however, their maxima
are located in the proximity of the control points:
max(Bi

n) = Bi
n(i/n).

Moving a control point bi results in a limited change of
the curve. The change is maximal at t=i/n.
(Interpolated polynomials do not allow for pseudo-
local control). However, small changes to the control
points can change the curve significantly.

1-74Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
9) Degree increase: a Bézier segment of degree n can

be represented as a Bézier segment of degree n+1 (of
course, the actual degree will be the same but the
representation will use the higher degree Bernstein
polynomials):

)1,...,0(,
1

1
1

' 1 +=⎟
⎠
⎞

⎜
⎝
⎛

+
−+

+
= − nib

n
ib

n
ib iii

b2b1

b´3

b´2

b´1

b0 = b´0 bn = b´n+1

1-75Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
10)Subdivision: a Bézier segment can be separated at a

location t into two Bézier segments using the de
Casteljau algorithm. The new control points are b0

i

and bi
n-i (i=0,…,n).

b0

...

b3

b0

b0
2

b1
2

b2
1b0

1

3

00

1-76Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
11)Derivative: the derivative of a Bézier segment of

degree n can be represented as a Bézier segment of
degree n-1 using the control points

bi’ = n(bi+1 – bi) (i=0,…,n).

This can be concluded from the following equation

X(t)

b´0

b´2

b´1

b0

b2
b1

b3

X´(t)

(scaled by 1/n)

0:,))()(()(11
1

11
1 =−= −−

−
−−

−
n
n

nn
i

n
i

n
i BBtBtBntB

dt
d

1-77Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Derivatives
For higher derivatives you can use the following recursive
formula:

The derivatives can also be determined using the
derivatives of the Bernstein polynomials:

iii
p

i
p

i
p

pn
ii

pn

i

p
p

p

bbbbb

tBb
pn

ntX
dt
d

=ΔΔ−Δ=Δ

Δ
−

=

−

+

−

−
−

=
∑

01
1

1

0
)(

)!(
!)(

 and with

∑
=

−
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

p

k

pn
kpi

kn
ip

p

tB
k
p

pn
ntB

dt
d

0
)()1(

)!(
!)(

1-78Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Derivatives at end points
At the end points the p-th derivative only depend on p+1
control points:

)33)(2)(1()1('''
)2)(1()1(''

)()1('
)33)(2)(1()0('''

)2)(1()0(''
)()0('

321

21

1

0123

012

01

−−−

−−

−

−+−−−=
+−−=

−=
−+−−−=

+−−=
−=

nnnn

nnn

nn

bbbbnnnX
bbbnnX

bbnX
bbbbnnnX

bbbnnX
bbnX

1-79Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Derivatives
The derivatives of a Bézier segment can also be
calculated using the de Casteljau algorithm:

)2)(1()(''

)()('
2

0
2

1
2

2

1
0

1
1

−−−

−−

+−−=

−=
nnn

nn

bbbnntX

bbntX

b0

b1 ...

bn

b0 = X(t)

b0
n-1

b1
n-1

b2
n-2

b1
n-2

b0
n-2

n

Example: n=3

1-80Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comments:
1) Due to the convex hull property the bounding box of

the control points encloses the Bézier segment. By
splitting the segment recursively into sub-segments
this enclosure can be refined.

2) The variation diminishing property means that the
approximation using the Bernstein polynomials is at
least as smooth as the control polygon itself. Hence,
the waviness of the resulting curve can controlled by
the control polygon.

1-81Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example (n=3): basis transformation (to monomials)

()
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

−−

=

+

+−+

+−+

+−+−=

3

2

1

0

23

3
3

23
2

23
1

23
0

0001
0033
0363
1331

1

)(

)33(

)363(

)133()(

b
b
b
b

ttt

tb

ttb

tttb

tttbtX

1-82Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example (n=3): Equivalence of Bernstein basis and de
Casteljau

3

3
0
0

3
3

2
3

2
2

1
3

1
2

1
2

1
1

2
32

21
2

10

3
3

2
2

2
1

3
0

)1(

))1(()1)()1((

))1((

))1(2)()1(()1)()1((

)1(3)1(3)1()(

bBbtbtb

ttbtbttbtb

ttbtb

tttbtbttbtb

tbttbttbtbtX

==+−=

+−+−+−=

+−+

−+−+−+−=

+−+−+−=

1
1

b 1
2

b

1

3
b

2
2

b 2
3

b

2
0

B 2
1

B

2

2
B

1
0

B 1
1

B

1-83Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example (de Casteljau algorithm)
The control polygon has the vertices (0,0), (2,4.5),
(8.5,6.5), and (11,2). Compute X(0.6) of the cubic Bézier
segment: 0

0

2 1.2
4.50 4 2.7

0 6 8.5 5.9 4.02
6.5 5.7 4.5
11 6.6310 8.36
2 4.543.8 4.56

.

.

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

6.63
(0.6)

4.54
X ⎛ ⎞

⇒ = ⎜ ⎟
⎝ ⎠

Sp
lit

tin
g

ra
tio

1-84Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example (continued)
Compute the first derivative X’(0.6) and second derivative
X’’(0.6):

()2 2
3 2

8.36 4.02 13.02
0.6 3 3

4.56 4.50 0.18
X () b b

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞′ = ⋅ − = ⋅ − =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

()1 1 1
3 2 1

10.00 5.9 1.2 3.6
0.6 6 2 6 2

3.80 5.7 2.7 29.4
X () b b b

⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ = ⋅ − + = ⋅ − ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

1-85Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Generalization
Often, a series of Bézier segments compose a spline
curve. Therefore, the individual segments might be
parameterized differently (e.g. on the interval [a,b]
instead of [0,1]) so that a more general Bézier segment
can be defined as:

Caution: changing the parameterization also changes the
derivative so that the p-th derivative gets scaled by

n

inin

i
i

n

i

n
ii ab

tbat
n
i

b
ab
aBbtX

)(
)()(1)(

00 −
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛

−
−

=
−

==
∑∑

pab)(
1
−

1-86Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Integrating a Bézier segment

Let a Bézier segment defined on

the interval [a,b]. The integral can then be computed by:

Proof:

∑
=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
n

i

n
ii ab

aBbtX
0

1)(

)(
1

)(
10 m

b

a

bbb
m

abdttX +++
+
−

=∫ K

asabsgdsabsBdt
ab
atB

mi
m

tB

b

a

m
i

+−=−=⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
+

=

∫∫

∫

)()())((

),,0(
1

1)(

1

0

1

0

 withngsubstituti after

get we From K

1-87Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Interpolating with Bézier segments
Interpolating with Bézier segments can be achieved using
a system of linear equations, which is derived directly
from the interpolating condition:

There is a unique solution to this system of linear
equations. This is obviously the case since the solution
could be computed using the Lagrange basis as well.

∑
=

==
n

i
j

n
iij

njtBbP
0

),,0()(K

1-88Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Interpolating with Bézier segments
The system for interpolating the Points P0,…,Pr using a
Bézier segment is given by:

Example:

Chordal parameterization (i.e. choosing the parameter
intervals based on the Euclidean distance between the
points): [a,b]=[0,8.13]; t0=0; t1=1.42; t2=3.66; t3=8.13

),,0()()(
0

riPtBbtX
ii

r
j

r

j
ji

K=≡= ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

6
6

2
4

1
2

2
1

3210
PPPP

1-89Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Interpolating condition

Plugging in the definition of a Bézier segment:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

6
6

)13.8()(
2
4

)66.3()(

1
2

)42.1()(
2
1

)0()(

32

10

XtXXtX

XtXXtX

3
3

3

0

3
3

0

3
3

0
0

3
3

0

)0(
2
1

)66.3(
2
4

)42.1(
1
2

)0(
2
1

bBbBb

BbbBb

i
i

ii
i

i

i
i

ii
i

i

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∑∑

∑∑

==

==

1-90Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
This then results in the following system of linear
equations:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=

=+

−=+

=+

=+

27.5
86.6

51.1
5.2

12.133.041.0

18.007.036.0

29.333.041.0

38.107.036.0

21

21

21

21

21

bb

bb

bb

bb

bb

yy

yy

xx

xx

 and solution the with

1-91Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Spline curves
Especially when using polynomials of higher degree for
interpolation strong oscillating effects are the result. To
control the waviness and to minimize the oscillating
artifacts curves are often pieced together using several
segments. These segments are then described by
polynomials of lower degree (mostly three or five). The
segments are usually defined in such a way that the
transition between segments is “smooth”. Often, the
segments are defined so that they connect two points that
are to be interpolated to fulfill the interpolation condition
X(t) = pi.

1-92Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example:

1-93Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Definition: Ck continuity
A function f(t) is Ck continuous (k≥0) if the function itself
and the first k derivatives are continuous. Ck[t0,tn] is the
set of Ck continuous functions on the interval [t0,tn].

Definition: Spline
Let τ={t0,t1,…,tn} be a monotonic vector composed of
nodes ti<ti+1. A function S is called spline of degree k-1
(of order k) if:

– S is a polynomial of degree k-1 in each of the intervals [ti,ti+1]
– S is Ck-2 continuous on [t0,tn]

1-94Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comments:

1) The spline S is called interpolating spline if S(ti)=pi
for a given set of points pi.

2) The interpolating spline is generally not uniquely
defined. There are k-2 additional degrees of
freedom, i.e. further boundary conditions are
required.
For cubic splines (k=4) often the natural boundary
conditions S’’(t0) = 0 and S’’(tn) = 0 are chosen.
If the two nodes t0 and tn are associated with the
same points, i.e. p0 = pn, then a closed spline is the
result (without additional boundary conditions).

1-95Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Cubic splines
Instead of requiring a certain type of interpolating
polynomials, e.g. a polynomial of a certain degree, we
can demand properties, for example, a very smooth
curve:
Therefore, we require that

and use the boundary conditions

minimal is ∫ ′′
nt

t

dttg
0

2)(

nnjj ptgptgnjptg ′=′′=′==)()(),,0()(00 and , , K

1-96Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Theorem: minimum norm property

Among all functions which fulfill the previous

boundary conditions, the cubic spline is the function with

the smallest value of . This is a well known

fact from calculus of variations [de Boor, 1966].

There are different ways for using the additional degrees

of freedom. The most common ones are:

∫ ′′
nt

t

dttg
0

2)(

],[0
2

nttCg∈

splineperiodic
spline natural and

→′′=′′′=′=
→=′′=′′

)()(),()(),()(
0)(0)(

000

0

nnn

n

tStStStStStS
tStS

1-97Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
In order to better understand the algorithm for spline
curves, we first start with computing the coefficients ai, bi,
ci, and di of a natural cubic spline:

S(t) = Si(t) = ai+bi(t-ti)+ci(t-ti)2+di(t-ti)3

for t∈[ti,ti+1]; i=0,...,n-1
This results in the following conditions for the polynomials
(segments) Si:

Si(t) = pi i=0,...,n
Si(ti) = Si-1(ti)
Si´(ti) = Si-1´(ti) i=1,...,n-1
Si´´(ti) = Si-1´´(ti)

1-98Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
This means for the coeffcients of the individual segments:

ai = pi i=0,...,n
ai = ai-1+bi-1(ti-ti-1)+ci-1(ti-ti-1)2+di-1(ti-ti-1)3 i=1,..,n
bi = bi-1+2ci-1(ti-ti-1)+3di-1(ti-ti-1)2 i=1,...,n-1
ci = ci-1+3di-1(ti-ti-1)

1-99Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
By defining Δi:=ti+1-ti we get the following after a few
transformations:

1,,0)2(
3

)(1

1,,0)(
3
1

1,,1)(3)(3

)())(2()(

11

1

1
1

1

1111

−=+
Δ

−−
Δ

=

−=−
Δ

=

−=−
Δ

−−
Δ

=

Δ+Δ+Δ+Δ

++

+

−
−

+

+−−−

niccaab

niccd

niaaaa

ccc

ii
i

ii
i

i

ii
i

i

ii
i

ii
i

iiiiiii

K

K

K

1-100Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Since ai = pi, the coefficients ai are well known. Hence,
we have to solve a system of linear equations with n-1
equations and n+1 unknown variables ci (i=0,...,n).
For a natural cubic spline we use S´´(t0) = S´´(tn) = 0 which
results in c0 = cn = 0.

In summary, we can use this criteria to formulate an
algorithm:

1-101Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Algorithm for a natural cubic spline
Let ti (i=0,...,n) be a set of nodes with t0<t1<...<tn and
p0,...,pn a set of function values that are to be interpolated.
We then look for the natural cubic spline S with the
following representation:

Si(t) = ai+bi(t-ti)+ci(t-ti)2+di(t-ti)3

for t∈[ti,ti+1]; i=0,...,n-1
We now need to describe an algorithm that computes the
coefficients ai, bi, ci, and di.

1-102Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Algorithm for a natural cubic spline (continued)

1,,0)2(
3

)(1

1,,0)(
3
1

)for systemequation (linear

1,,1)(3)(3

)())(2()(
0

11

1

1
1

1

1111

0

−=+
Δ

−−
Δ

=

−=−
Δ

=

−=−
Δ

−−
Δ

=

Δ+Δ+Δ+Δ
==

=

++

+

−
−

+

+−−−

niccaab

niccd

c

niaaaa

ccc
cc
pa

ii
i

ii
i

i

ii
i

i

i

ii
i

ii
i

iiiiiii

n

ii

K

K

K

1-103Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comments:
1) The previous system of linear equations can also be

expressed in matrix form Ac = b:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Δ
−

−
Δ
−

Δ
−

−
Δ
−

⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ+ΔΔ
ΔΔ

ΔΔ+ΔΔ
ΔΔ+Δ

=

−

−−

−

−
−

−−−

−

2

21

1

1

0

01

1

12

1

1

122

22

2211

110

3

)(20
0

0)(2
0)(2

n

nn

n

nn
n

nnn

n

aaaa

aaaa

b
c

c
c

A

MM

MM

OO

O

LL

1-104Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
2) The matrix A is tri-diagonal, symmetric, diagonal-

dominant, positive definite, and also has positive
elements. Hence, A is regular und there is a unique
solution for the system of linear equations. For solving
the system of linear equations the LU decomposition
for tridiagonal matrices is appropriate due to its
complexity of O(n).

3) In case of a periodic cubic spline the additional
boundary conditions is no longer necessary since the
transistional conditions are already sufficient.

1-105Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Algorithm for a peridodic cubic spline
If the nodes t0 and tn are identified, i.e. p0 = pn then the
interpolating curve is closed and has a C2 continuous
transition at t0 (or tn, respectively). In this case, the matrix
describing the system of linear equations changes to:

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Δ+ΔΔΔ
Δ

Δ
ΔΔ+ΔΔ

ΔΔΔ+Δ

=

−−

−
)(20

0

0)(2
0)(2

0110

1

2

2211

0110

nn

n

A

L

OOM

MOOM

L

L

1-106Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
This matrix A is cyclic tri-diagonal, symmetric, diagonal-
dominant, positive definite, and has only positive
elements, i.e. A is well-conditioned. The system can
again be solved with a complexity of O(n).
Compared to the system for natural cubic splines, the
matrix A has an additional row and an additional column
due to the fact that there are n transitions between
segments compared to n-1 in the previous case. In
addition, there is an additional entry in the upper right and
lower left corner of the matrix A because of the cyclic
band-like structure.

1-107Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Since splines are often applied in CAD applications for
modeling of 2-D or 3-D curves, we need the notion of
vector-valued and parametric splines.
Definition: Let Δ={t0,…,tn}, a=t0<t1<…<tn=b a set of
nodes subdividing the interval [a,b]⊂IR. Then, the
mapping X:[a,b]→IR3 is called parametric spline of
degree k-1 (order k) if the components (segments) of the
spline are of degree k-1.
Particularly, the individual components xi are Ck-2

continuous, i.e. xi∈Ck-2[a,b] (i=0,…,n) which we abbreviate
as X∈Ck-2[a,b].

1-108Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
A common criterion for local smoothness of three-
dimensional curves, which are composed of
concatenated segments is defined using derivatives:
Definition: If two parametric curves X:[t0,t1]→IR3 and
Y:[s0,s1]→IR3 with X∈Cm[t0,t1] and Y∈Cm[s0,s1] and if both
curves have the point X(t1)=Y(s0) in common we call the
transition between the two segments Ck if:

For all r with 1≤r≤k.
(If none of the derivatives are equal we call the transition
C0)

)()(01 sY
ds
dtX

dt
d

r

r

r

r

=

1-109Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Algorithm for parametric cubic curves
Let pi=(xi,yi,zi), i=0,…,n a set of 3-D points. We are then

looking for an interpolating parametric cubic spline.
There are basically three steps for finding the

interpolating curve:
Step 1: parameterization: Define the parameter values

(nodes) ti (i=0,…,n) corresponding to the points that
are to be interpolated.

Step 2: choose boundary conditions
Step 3: Compute the spline curves for each component

Sx, Sy, Sz individually, such that Sx(ti)=xi, Sy(ti)=yi, Sz(ti)=zi
using the previously defined spline algorithm.

1-110Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Sx(t)=Sx,i(t)=ax,i+bx,i(t-ti)+cx,i(t-ti)2+dx,i(t-ti)3

Sy(t)=Sy,i(t)=ay,i+by,i(t-ti)+cy,i(t-ti)2+dy,i(t-ti)3

Sz(t)=Sz,i(t)=az,i+bz,i(t-ti)+cz,i(t-ti)2+dz,i(t-ti)3

t∈[ti,ti+1], i=0,…,n
Comments:
For closed parametric curves, periodic splines can be
used, if the curve is supposed to be smooth at every
point. If there are cusps (C0 transitions, e.g. the cross
section of a wing of an airplane) then natural splines can
be used with the cusp as start and end point.

1-111Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Parameterization
The choice of parameterization has great influence on the
shape of the curve and therefore on the quality of the
resulting curve (and surface).

Interpolation problem with different parameterizations

1-112Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Parameterizations
The effect of the chosen parameterization can be
illustrated using the following analogon:
Interpret the parameter t as the time which determines
how long it takes for a point X to walk along the curve
X(t).

We now introduce a few different parameterizations.
Therefore, we assume that a curve interpolates a set of
n+1 points on the parameter interval [a,b].

1-113Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Equidistant parameterization
The equidistant parameterization assigns the same
amount of time to each segment connecting the points
(pi,pi+1).

If the distances between consecutive points differs a lot,
then the point X has to walk along the curve X(t) at
different speeds. For example, if a large distance
between two points is followed by a short distance then
the point X has to slow down which results in an
“overshooting” effect.

niiat
n

abt i ,...,0 ; ; =+=
−

=Δ

1-114Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Chordal parameterization
The parameterization should reflect the “structure of the
point set”. This can be achieved by using the chordal
parameterization:

The parameter intervals are chosen proportional to the
distances between two consecutive points and then
normalized using a constant factor s (e.g. s if often set to
the overall length of the polygon defined by the set of
points that are to be interpolated)

s
PP

ttt ii
iii

−
=−=Δ +

+
1

1

1-115Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Centripetal parameterization
Another possibility for choosing a parameterization, which
reflects the structure of the data, is the so called
centripetal parameterization [Lee 1975]:

Here, the centripetal acceleration is approximately
minimized. You can also combine the different types of
parameterizations. A parameterization which not only
considers distances but also takes the angular changes
of the interpolated points into account was developed by
T. Foley (see [Foley 1989])

s
PP

t ii
i

−
=Δ +1

1-116Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Foley parameterization

As distance function we can use the Euclidian metric of
the affine-invariant Nielson-Metric.

Pi-1

φiPi

di

Pi+1

⎟
⎠
⎞

⎜
⎝
⎛ −=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
⋅

⋅+
+
⋅

⋅+=Δ
+

++

−

−

2
,minˆ where

ˆ
5.1

ˆ
5.11

1

11

1

1

πφπφ

φφ

ii

ii

ii

ii

ii
ii dd

d
dd

ddt

1-117Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Nielson metric

()222

1

1

22

1

22

11

2

2

2

 ;)y-()x-(1

 ;)y-(1 ;)x-(1

 ; 1y ; 1xwith

),(),(),(

∑∑∑∑∑

∑∑∑∑

∑∑

∑∑

∑∑

−=Δ⋅=

==

==

⋅

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

ΔΔ
−

ΔΔ⋅=

=

==

==

xyyxyx
n

xy

y
n

yx
n

x

y
n

x
n

yx
xxy

xyy

yxyx

n

i
ii

n

i
i

n

i
i

n

i
i

n

i
i

N

1-118Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
The Nielson metric first scales the set of points in such a
way that the variance in all directions is unified (see also
Principal Component Analysis). The distances are
derived from the scaled arrangement of the points. This
metric allows for a complete independence from
coordinate systems and scaling (i.e. it is affine invariant).

The effects of different parameterizations will be
illustrated using the following figures which show
interpolation of the same set of points with different
parameterizations:

1-119Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

1-120Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

1-121Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Parameter transformation
The parameterization of the interpolating points has great
influence on the overall shape of the resulting curve.
However, it is possible to change the parameterization
afterwards without changing the shape of the curve.
Definition:
Let X(t) be a curve and φ(t) a bijective and continuous
function. Then Y(t)=X(φ(t)) also defines a curve which
results from X after parameter transformation.
If both φ and φ-1 are continuous differentiable we call φ a
C1 parameter transformation.

1-122Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example: The length of an arc is

A curve can then be re-parameterized in such a way that
and t represents the arc length of the curve.

dt
dXXdttXttL

t

t

== ∫ && ,)(),(
1

0

10

1)(=tX&

1-123Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Bézier splines
Instead of calculating each segment by solving a system
of linear equations we can also define the segments of a
spline using Bézier segments. For example for a cubic
spline, each segment is defined by four Bézier points. In
order to achieve a smooth spline the Bézier points should
be chosen in such a way that the transition between
segments fulfills the continuity criterion, i.e. for a cubic
spline the resulting curve should be C2 continuous.

1-124Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Bézier splines
Bézier segments have the nice property that the
derivatives can be computed easily from the locations of
the Bézier points (control points). This property can be
used to define a C2 continuous cubic spline:
Let t0,…,tn; t0<t1<…<tn be a set of nodes and p0,…,pn the
points that we want to interpolate. Then, we can use the
following equation to define the Bézier segments of a
Bézier spline of degree m :

∑
= +

+⋅ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=
m

l ii

im
llimi tt

ttBbtS
0 1

)(

1-125Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Now, we have to define the Bézier points in such a way
that the interpolation condition is fulfilled and the
transition between segments is smooth.
From the interpolation condition and the fact that each
Bézier segment interpolates the end points of the control
polygon we get: bm·i = pi (i=0,…,n).
We can also compute the derivatives using the formulas
we derived before:

1-126Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

)2()1()(''

)()('

)2()1()(''

)()('

)1(1)1(2)1(2
1

11

)1(1)1(
1

11

2)1(1)1()1(21

1)1()1(1

1

+++++
+

++

+++
+

++

−+−+++

−+++

+

+−
Δ
−

=

−
Δ

=

+−
Δ
−

=

−
Δ

=

−=Δ

imimim
i

ii

imim
i

ii

imimim
i

ii

imim
i

ii

iii

bbbmmtS

bbmtS

bbbmmtS

bbmtS

tt

1-127Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
For a C1 transition we need that S’i(ti+1)=S’i+1(ti+1), i.e.:

)()()1(1)1(
1

1)1()1(+++
+

−++ −
Δ

=−
Δ imim

i
imim

i

bbmbbm

bm(i+1)-1 bm(i+1) bm(i+1)+1

Δi : Δi+1

1-128Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
For a C2 transition we need that S’’i(ti+1)=S’’i+1(ti+1), i.e.:

bm(i+1)-1 bm(i+1) bm(i+1)+1

Δi : Δi+1

)2()1()2()1(
)1(1)1(2)1(2

1
2)1(1)1()1(2 +++++

+
−+−++ +−

Δ
−

=+−
Δ
−

imimim
i

imimim
i

bbbmmbbbmm

bm(i+1)-2

bm(i+1)+2

Δ
i :

Δ
i+1

Δ i
: Δ i+1

1-129Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
How can we solve the interpolation problem with, for
example, a cubic Bézier spline?
Introduce additional points (de Boor points):

b3(i+1)-1 b3(i+1) b3(i+1)+1

Δi : Δi+1

b3(i+1)-2

b3(i+1)+2

Δ
i :

Δ
i+1

Δ i
: Δ i+1

di+1

1-130Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
From the previous cartoon we can derive the following
three equations for an interpolating cubic Bézier spline:

)(3)

)(2)

)(1)

1)1(31
1

1)1(32)1(3

2)1(31)1(3
1

1)1(31

1)1(3)1(3
1

)1(31)1(3

+++
+

++++

−+−+
+

−++

−++
+

+++

+−
Δ
Δ

+=

−
Δ
Δ

+=

−
Δ
Δ

+=

ii
i

i
ii

ii
i

i
ii

ii
i

i
ii

bdbb

bbbd

bbbb

1-131Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
If we take a closer look at the newly introduced points we
can see that there is a straight connection between two
Bézier points and these de Boor points:

This gives us:

b3(i+1)-2 b3(i+1)-1 di+1

Δi-1 : Δi : Δi+1

di

1111)1(311

1112)1(311

)()(

)()(

+−+−+−+

+−+−+−+

Δ+Δ+Δ=Δ+Δ+Δ

Δ+Δ+Δ=Δ+Δ+Δ

iiiiiiiii

iiiiiiiii

ddb

ddb

similarily and

1-132Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

. that fact the used weonsubstituti the For
:Note

:result previous the withsubstitute can we

that fact the to Due

1)1(32)2(3

2121

1111)1(3111

1)1(31)1(31)1(31

))((

))(())((

)(

++−+

++++

+−++++−+

++−++++

=

Δ+Δ+ΔΔ

+Δ+Δ+ΔΔ=Δ+ΔΔ+Δ+Δ

Δ+Δ=Δ+Δ

ii

iiiiii

iiiiiiiiiiii

iiiiiii

bb

dd

ddb

bbb

1-133Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Overall, we get the following system of linear equations:

Note: set Δ-1 = Δn = 0
)1,...,1(

)()(
)2,...,0(

))((

))(())((
)2,...,0(

)()(

1111)1(311

2121

1111)1(3111

1112)1(311

−=

Δ+Δ+Δ=Δ+Δ+Δ
−=

Δ+Δ+ΔΔ

+Δ+Δ+ΔΔ=Δ+ΔΔ+Δ+Δ
−=

Δ+Δ+Δ=Δ+Δ+Δ

+−+−+−+

++++

+−++++−+

+−+−+−+

ni

ddb
ni

dd

ddb
ni

ddb

iiiiiiiii

iiiiii

iiiiiiiiiiii

iiiiiiiii

1-134Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Then, we can derive the three steps for computing an
interpolating cubic Bézier spline:

1) Choose the boundary condition, i.e. the Bézier
points b1 and bn·m-1.

2) Determine the location of the de Boor points based
on a system of linear equations as previously
shown.

3) Using the previous equations 1) and 3) the missing
Bézier points can be calculated.

1-135Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Special case:
Cubic Bézier spline with equidistant parameterization,
such that Δi = 1.
In this case, the system of linear equations reduces to:

The matrix of this system is tri-diagonal; hence, it can be
solved efficiently using the LU decomposition.

)1,...,1(23

)2,...,0(46

)2,...,0(23

11)1(3

21)1(3

12)1(3

−=+=

−=++=

−=+=

+−+

+++

+−+

niddb

nidddb

niddb

iii

iiiii

iii

1-136Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example:
Interpolation of three points p0, p1, and p2 using a cubic
Bézier spline with two segments (Δ1=Δ2=1), such that the
Bézier spline has the given points as end points.
(i) b0 = p0, b3 = p1, b6 = p2

b0

b1

b2
b3 b4

b5

b6p0

p1

p2

1-137Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
(ii) Pick the additional degrees of freedom, i.e. b1 and b5

(iii) Determine the de Boor points d0, d1, and d2 using the
system of linear equations:
3b1 = 2d0 + d1

6b3 = d0 + 4d1 + d2

3b5 = d1 + 2d2

(iv) Using previous equations 1) and 3), calculate the
missing Bézier points b2 and b4.

1-138Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comment:
The choice of the degrees of freedom, i.e.
the derivatives at the two end points of the
curve, influences the curve globally.

1-139Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
B-splines
Motivation:
We would like a spline curve that has two advantages
over Bézier splines:

1) Control points should have only local influence on
the resulting curve

2) A continuous transition should be guarantied
automatically without having to place the control
points accordingly.

Idea: find a new set of basis functions.

1-140Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
For a control polygon described by points d0,…,dn, define
blending functions as new basis functions. First, we need
to define a knot vector:

(u0, ..,un+m); ui≤ui+1

Then, the new basis functions are recursively defined as:

)()()(

)(

1,1
1

1,
1

,

1

0
1, { 1

uN
uu
uuuN

uu
uuuN

uN

mk
kmk

mk
mk

kmk

k
mk

uuu

k

kk

−+
++

+
−

−+

≤≤

−
−

+
−

−
=

=
+ if

otherwise

1-141Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

1-142Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Based on these blending functions a B-spline curve of
degree m-1 (order m) with control points d0,…,dn,, where
n>m is defined as:

11
0

,
)()(

+−
=

≤≤= ∑ nm

n

i
mii

uuuuNduX

1-143Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

1-144Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comments:
1) The knot vector can have individual knots with

multiplicity greater than one, i.e. the same value can
appear more than once.

2) The resulting B-spline has degree m-1 is Cm-2

continuous. At knots with multiplicity M this reduces to
Cm-1-M continuity.

3) If n=m-1 and a knot vector with multiplicity m at both
ends these blending functions resemble the Bernstein
polynomials.

1-145Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
4) Each section of the B-spline (between two successive

knot values) is influenced by m control points.
5) Any control point can affect the shape of at most m

curve sections.
6) For any um-1≤ u≤un+1, the sum of all blending functions

equal to one: ∑Bk,m(u)=1. Hence, B-splines fulfill the
convex hull property just like Bézier splines.

7) The B-spline is called uniform if the knot values are
spaced uniformly, i.e. equidistant (except multiplicities
at both ends of the know vector). Otherwise we speak
of a nonuniform B-spline.

1-146Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Why multiple knot values?
As noted before, the multiplicity of a knot value reduces
the continuity accordingly. Hence, it allows you to create
design features, such as cusps.
In addition, often times multiplicity m is desired at both
ends of the knot vector. To see why, we should take a
closer look at the resulting blending functions:

1-147Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

1-148Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Effect of multiplicity of m at both ends of knot vector
Since the blending functions at the ends of the interval
equals to one, the resulting B-spline curve interpolates
the two end points of the control polygon. Otherwise the
B-spline would stop before reaching the end points of the
control polygon.
This feature is usually only desired for “open” B-splines.
With periodic B-splines, mostly this multiplicity at the end
of the knot vector is not used to achieve Cm-2 continuity at
the end points of the control polygon

1-149Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Knot insertion
Sometimes it is useful to be able to insert an additional
knot into the knot vector without changing the shape of
the curve.
First, we have to identify in which segment the new knot t
is located in, i.e. t∈[uk,uk+1). This means that the point X(t)
lies in the convex hull defined by the points dk,…,dk-m.
Consequently, we have to find new control points that
replace dk-1,…,dk-m+1 without changing the shape of the
curve.

1-150Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations

The new points can be computed easily using the
formula:

kimk
uu

uta

dadaq

imi

i
i

iiiii

≤≤+−
−

−
=

+−=

−+

−

1

)1(

1

1

 for where

Note: Pi = di

1-151Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
The new B-spline then has the knot vector
u0,…,uk,t,uk+1,…,un+m and the control polygon consists of
the points d0,…,dk-m,qk-m+1,…,qk,dk,…,dn resulting in the
following replacement scheme:

Note: p = m; pi = di

1-152Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Example:
Let (u0,…,u11) be a knot vector defined as (0, 0, 0, 0, 0.2,
0.4, 0.6, 0.8, 1, 1, 1, 1). We would like to insert an
additional knot at t=0.5 which lies in the interval [u5,u6).
Hence, the affected control points are d5, d4, d3, and d2.
Then, the new control points are determined:

6
5

06.0
05.0

2
1

2.08.0
2.05.0

6
1

4.01
4.05.0

36

3
3

47

4
4

58

5
5

=
−
−

=
−
−

=

=
−
−

=
−
−

=

=
−
−

=
−
−

=

uu
uta

uu
uta

uu
uta

1-153Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
And the new control points are:

The new control polygon consist of the points d0, d1, d2, q3,
q4, q5, d5, d6, and d7 with knot vector (0, 0, 0, 0, 0.2, 0.4, 0.5,
0.6, 0.8, 1, 1, 1, 1).

323

434

545

6
5

6
51

2
1

2
11

6
1

6
11

ddq

ddq

ddq

+⎟
⎠
⎞

⎜
⎝
⎛ −=

+⎟
⎠
⎞

⎜
⎝
⎛ −=

+⎟
⎠
⎞

⎜
⎝
⎛ −=

1-154Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
For example, the B-spline could look like this before
insertion of the new knot:

1-155Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
After inserting the new knot:

1-156Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Displaying B-spline curves
Usually, B-splines curves are approximated with line
segments for display purposes. Obviously, the number of
points that are used for the approximation has great
influence on the quality of the resulting visualization of the
curve. We could use the control polygon as an
approximation; however, this is often times too coarse.
Sub-division techniques can lead to better results.
Therefore, the control polygon is sub-divided by adding
additional points in order to get a better representation.
Fortunately, we can exploit some properties of B-splines
for sub-dividing the control polygon.

1-157Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Displaying B-spline curves (continued)
First, we convert the B-spline into a Bézier spline. This
can be achieved by inserting knots so that every knot has
multiplicity m-1. Then, the blending functions of the B-
spline resemble the Bernstein polynomials so that the
control polygon has the Bézier points as vertices. This
already represents a finer approximation since several
points were added to the control polygon. If a finer
representation is necessary, we can further add points by
using the de Casteljau algorithm as we saw earlier.

1-158Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Displaying B-splines with OpenGL
OpenGL already provides a methodology for rendering B-
splines:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();

gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotvector,
stride, *controlPoints, order,
GL_MAP1_VERTEX_3);

gluEndCurve ();

1-159Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comment:
OpenGL automatically determines the necessary
discretization of the B-spline, i.e. the number of line
segments needed for the approximation. The
approximation depends on the viewing distance. This
means the closer the camera moves to the B-spline the
more points are used and vice versa. Caution: if you use
display lists to generate B-splines OpenGL cannot
regenerate the approximation since it is already stored in
the display list. Therefore, the approximation is no longer
adapted automatically.

1-160Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Demonstration
Behavior of a uniform B-spline curve
http://www.cs.biu.ac.il/~zultia/applets/CAGD/UBS%20dra
w2/UBsDraw.htm
http://www.ibiblio.org/e-notes/Splines/Basis.htm

http://www.cs.biu.ac.il/~zultia/applets/CAGD/UBS draw2/UBsDraw.htm
http://www.cs.biu.ac.il/~zultia/applets/CAGD/UBS draw2/UBsDraw.htm
http://www.ibiblio.org/e-notes/Splines/Basis.htm

1-161Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Rational B-splines
Regular B-splines cannot be used to exactly represent
conic sections. This includes circle, ellipse, and parabola.
Since these types of curves are common in designs, we
would like to be able to model those type of curves
exactly, i.e. without any approximation errors. Therefore,
we define rational B-splines similar to B-splines:

11

0
,

0
,

)(

)(
)(

+−

=

= ≤≤=

∑

∑
nmn

i
mii

n

i
miii

uuu
uN

uNd
uX

ω

ω

1-162Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Comments:
1) The ωi are weights that can be used to manipulate the

resulting curve. For ωi =1 we get a regular B-spline.
2) By increasing the weight ωi we can pull the curve

towards the control point di. Decreasing the weight
pushes the curve away from di.

3) Using a nonuniform knot vector results in the so called
NURBS curve (nonuniform rational B-spline).

1-163Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Conic sections
If we define a cubic rational B-spline as

We can obtain various conic sections with the following
values for the parameter r:

r > ½: hyperbolic section
r = ½: parabolic section
r < ½: ellipse section
r = 0: straight-line segment

)()(
1

)(

)()(
1

)(
)(

3,23,13,0

3,223,113,00

uNuN
r

ruN

uNduNd
r

ruNd
uX

+
−

+

+
−

+
=

1-164Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Displaying NURBS with OpenGL
OpenGL already provides a methodology for rendering
NURBS:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();

gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotvector,
stride, *controlPoints, order,
GL_MAP1_VERTEX_4);

gluEndCurve ();

The vertices have the weights as their fourth component.

1-165Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Often surfaces based on the tensor product are used.
Tensor product surfaces are parametric surfaces which
are defined by two one-dimensional curve representa-
tions.

parametric curve parametric surface

1-166Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations

{ } { }

surface. the of tscoefficien shaped-matrix the are where

 with

:surface product tensor a derive can we

 and functions basis of sets two with

tionsrepresenta curvearbitrary two From

ji

ij

m

i
iijj

n

j
jj

m

i

n

j
jiij

n
j

m
i

n

j
jj

m

i
ii

c

scsctsc

tsctsf

tbthsasg

∑∑

∑∑

∑∑

==

= =

==

==

==

=

==

00

0 0

00

00

)()()()(

)()(),(

)()()()(

φψ

ψφ

ψφ

ψφ

1-167Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
To construct a 3-D surface we often base the surfaces on
several curves. First, we evaluate the curves with respect
to the parameter s:

The resulting coefficients cj(s) are then used to determine
a curve on the surface using the second parameter t:

Of course, we can also switch the parameters s and t and
evaluate using the parameter t first.

∑
=

=
m

i
iijj scc

0
)(φ

∑
=

=
n

j
ii tsctsf

0
)()(),(ψ

1-168Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Lagrange surfaces
An interpolating surface based on a given set of
coefficients cij can be constructed using the tensor
product of the Lagrange polynomials:

basis. Lagrange the ofproperty
inginterpolat the from results This surface. the of part are

 and

curves of set two the Here,

∑∑

∑∑

==

= =

==

=

n

j

n
jiji

m

i

m
iijj

m

i

n

j

n
j

m
iij

tLctcsLcsc

tLsLctsf

00

0 0

)()()()(

)()(),(

1-169Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Lagrange surface
Example (m=3, n=2):

∑

∑

=

=

=

=

m

i

m
iijj

n

j

n
jiji

sLcsc

tLctc

0

0

)()(

)()(

∑∑
==

==
m

i

m
ii

n

j

n
jj sLctLctsf

00
)()(),(

1-170Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Hermite surfaces
Using the cubic Hermite polynomials as basis
polynomials, we can interpolate the points and first
derivates of the surface at two nodes:

)()()()()(1111000 tHftHftHftHftf o ′++′+=

0

1

0 1

H 1H 0

H 1

H 0

1-171Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Hermite surfaces
If the surface is defined using the tensor product of cubic
Hermite polynomials, the resulting surface then
interpolates the interpolation points at the corners, its
partial derivatives . vectors twist and f,

2

ts
f

ts
f

∂∂
∂

∂
∂

∂
∂

1-172Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Hermite-Lagrange tensor product
If only the derivatives in one direction are known, i.e. of
one set of curves, a tensor product of Hermite and
Lagrange polynomials can be used.

The interpolation of derivatives and maybe also the twist
vectors is particularly useful if several patches are
supposed to build a single smooth surface.

1-173Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Basis transformation
Similar to polynomial curves, we can transform the
polynomial representation from one basis to another. This
is especially useful if the data is supposed to be
exchanged between different software systems.
Special basis polynomials, such as Bernstein polynomials
or B-splines, allow a closer correlation between
coefficients (control points) and the surface geometry.
Hence, these basis polynomials are more versatile.

1-174Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Bézier tensor product
The tensor product of two Bézier curves results in a
Bézier surface representation. Similar to the previous
approaches, we define a set of curves Xj defined by the
control points bij:

This set of curves then gives us control points bj=Xj(s)
which we can use to define a Bézier curve with a second
parameter t:

),...,0()()(njsBbsX
m

m
iijj ==∑

=

0i

∑∑∑
= ==

==
n

j

m

i

n
j

m
iij

n

j

n
jj tBsBbtBbtsX

0 00
)()()(),(

1-175Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Example (m=3, n=2):

b00

b30

b20

X0(s)
b10

b01

b21 b31

X1(s)
b11

b02

b22

X2(s)

b12

1-176Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Example (m=3, n=2):

b0=X0(s)

b1=X1(s)

b2=X2(s)

X(s,t)

Boundary curve

No surface curve

(only determines
control points)

1-177Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Bézier tensor product
We can also construct a set of curves Xi(t) first, and then
compute the control points for the curve parameterized by
s. Only the curves at the edge of surface are curves on
the surfaces. All other curves of the set are not
necessarily surface curves, i.e. part of the surface.
For m=n, the resulting surface is called bilinear,
biquadratic, or bicubic, etc. The monomial basis of a
bilinear surface consists of the polynomials {1, s, t, st}. For
the quadratic case the monomial basis is {1, s, t, st, s2, t2,
st2, s2t2}.

1-178Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Bézier tensor product
Increasing the degree of the surface or subdividing the
surface (along one direction) can be achieved by applying
the respective algorithm to the row or column of the
coefficient matrix.
For evaluating the Bézier tensor product efficiently, the de
Casteljau algorithm can be applied once for each
parameter. It does not make any difference if the
algorithm is applied first to parameter t or s.

1-179Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
De Casteljau algorithm for surfaces

Example (m=n=2):

mn

kl
ji

kl
ij

lk
ij

kl
ji

kl
ij

lk
ij

ijij

btsX

tbbtb

sbbsb

bb

00

1,
1,

,1
,1

00

),(

)1(

)1(

=

+−=

+−=

=

+
+

+
+

mnb00 get we
until orderArbitrary

bij
00 bij

10 bij
11 bij

21),(22 tsXbij =

1-180Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
The partial derivatives

() ()

. :surface

 theof vector normal theneed also wetion,trianglula
ingapproximatan using e.g. surface, therenderingFor

:algorithmCasteljau de theusing determined be alsocan

)()(),(

)()(),(

1,
00

1,
01

,1
00

,1
10

0 0
,,

0 0
,,

ts

ts

nmnm
t

nmnm
s

m

i

n

j
njmiijt

m

i

n

j
njmiijs

XX
XXN

bbnXbbmX

tBsBb
t
XtsX

tBsBb
s
XtsX

×
×

=

−=−=

′=
∂
∂

=

′=
∂
∂

=

−−−−

= =

= =

∑∑

∑∑

1-181Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Partial derivatives
Another option for computing the partial derivatives is to
represent the derivatives as a Bézier surface on its own
using the control points

tijjiij

sijjiij

Xbbnbn

Xbbmbm
′−=Δ

′−=Δ

+

+

 for
 for

)(:

)(:

1,01

,110

Δ10 bij Δ01bij

1-182Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
For a more generic intervall [a,b]×[c,d] we get:

ijij

ij
,q

i,j
,q

ij
q

ij
,qp

,ji
,qp

ij
pq

qppq

m

i

n

j

qn
j

pm
iij

pq
pqq

q

p

p

bbΔ

bΔbΔbΔ

bΔbΔbΔ
c)(dq)!(n

n!
a)(bp)!(m

m!A

cd
ctB

ab
asBbΔAX(s,t)

ts

=

−=

−=

−
⋅

−
⋅

−
⋅

−
=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

⋅=
∂
∂

∂
∂

−
+

−

−
+

−

= =

−−∑∑

00

10
1

100

1
1

1

0 0

11
where

1-183Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Properties of Bézier surfaces
1) The surface segment lies in the convex hull of the

defining net of control points (due to the successive
convex-combinations of the de Casteljau algorithm)

2) The Bézier point bij has the greatest influence on the
segment at (s,t)=(i/m, i/n) (pseudo-local control)

3) The corners of the net of control points and the
corners of the Bézier segment are identical, i.e. the
they are interpolated.

4) The control points on the edge of the net are the
Bézier points of the edge of the Bézier segment.

1-184Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Surface curves of the type X(s,t0) or X(s0,t) (s0, t0 constant)
are called iso-parameter lines and are polynomials of
degree m or n, respectively. This is not true for diagonal
surface curves X(at+b,ct+d) (a,b,c,d constant) which
generally are polynomials of degree m+n.
Using the de Casteljau algorithm, we can sub-divide an
iso-parameter line in sub-segments. Continuing this sub-
division process in both parameter direction results in a
series of Bézier nets that converges towards the Bézier
surface. This fact can be used, for example, for
determining the intersection of two surfaces using this
series as approximation.

1-185Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Example: bicubic Bézier surface
Similar to Hermite surface, the inner control points of the
boundary curves ○ define the partial derivatives in the
corners ●. The inner control points □ determine the twist
vectors.

b00

b30

b03

b33

1-186Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Example (continued):

b00
b10

b01
b11

vector) (twist

: example for corners, the In

)(9)0,0(

)(3)0,0(

)(3)0,0(

)0,0(

00011011

2

0001

0010

bbbb
ts

XX

bb
t
XX

bb
s
XX

X

st

t

s

+−−=
∂∂

∂
=

−=
∂
∂

=

−=
∂
∂

=

1-187Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
The twist vector
The twist vector Xst describes the twist of the patch, e.g.
how much two parallel straight edges are rotated against
each other.

Surface with zero twist Surface with constant twist

1-188Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Spline surfaces

Spline surfaces are composed of several patches
(surface segments). At the boundaries certain conditions
for a smooth and continuous transition need to be
observed.

1-189Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Spline surfaces
Let us consider two patches
a with (s,t)∈[s0,s1]×[t0,t1] and
b with (s,t)∈[s0,s1]×[t0,t1].

For Ck continuity, the first k partial derivatives of a and b
along the common boundary at s1 have to be equal:
C0: a(s1, t) = b(s1, t), t∈[t0, t1]
C1: as(s1, t) = bs(s1, t) , t∈[t0, t1]
C2: ass(s1, t) = bss(s1, t) , t∈[t0, t1]

1-190Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Spline surfaces
If Bézier surfaces are used as patches a and b then the
condition for a Ck continuous transition is identical with
the conditions for the individual curves when looking at
the individual cells of the Bézier net.

1-191Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Spline surfaces

For a C0 continuous transition it is required that am,i=b0,i
(i=0,…,n).
For a C1 continuous transition we get the additional
condition:)(1)(1

,0,1
1

,1,
0

iiimim bb
s

aa
s

−
Δ

=−
Δ −

1-192Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Spline surfaces
For C2 continuity the following additional equation needs
to be fulfilled:

If one patch, for example a, is given then the neighboring
control points of the next patch b can be derived from
these equations. The rows of the control net of the patch
a can be interpreted as control polygons of a Bézier curve
so that the next points of the control net can be
determined accordingly.

)2(1)2(1
,0,1,22

1
,2,1,2

0
iiiimimim bbb

s
aaa

s
+−

Δ
=+−

Δ −−

1-193Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Spline surfaces
The new control points can be found, for example, by
evaluating using the de Casteljau algorithm at s2, i.e.
outside of the interval Δs0. In analogy to sub-dividing a
Bézier curve we can extend it. For a Ck continuous
transition we need the new points b0,i,…,bk,i.

Δs 0
: Δ

s 1

1-194Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Example:
Determination of the eight neighboring points to achieve
C2 continuity of a bicubic Bézier patch.

Step 1: rows Step 2: columns

1-195Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Interpolating using Bézier surfaces
Let pij be a set of given points that are to be interpolated
at the parameter values (si, tj). (the parameterization is
given by two vectors and not an arbitrary matrix of
nodes.)
In order to determine an interpolating Bézier surface

we can use the algorithm for curves.

∑∑
= =

==
m

i

n

j
ijji

n
j

m
iij ptsftBsBbtsf

0 0
),()()(),(,

1-196Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Interpolating using Bézier surfaces

Bicubic interpolating surface

1-197Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Interpolating using Bézier surfaces
First, we generate a set of interpolating curves

The inner Bézier points are determined using a system of
linear equations (which uses the same matrix for each j).

),...,0()()()(
0

njpsasBasa ijij

m

i

m
iijj ===∑

=

 ,

aj(s)

a0,j = p0,j

am,j = pm,j
a1,j

a2,j

p2,j

p1,j

1-198Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Interpolating using Bézier surfaces
Then, the points aij are interpolated row-wise in order to
determine the Bézier points bij of the surface:

The surface described by the Bézier points bij then
interpolates the points pij.
Proof:

),...,0()()()(
0

mjatbtBbtb ijji

n

j

n
jiji ===∑

=

 ,

∑

∑ ∑

=

= =

===

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

m

i
klklk

m
iil

m

i

m
i

n

j
l

n
jijlk

psasBa

sBtBbtsf

0

0 0

)()(

)()(),(

1-199Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Trimming
In some cases, it is necessary to bound the area on
which a free-form surface is defined, e.g. by choosing a
boundary curve (trimming curve) in order to limit (trim)
the surface:

Trimmed free-form surface

1-200Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Displaying B-spline surfaces with OpenGL
OpenGL already provides a methodology for rendering B-
spline surfaces:

GLUnurbsObj *surfName;

surfName = gluNewNurbsRenderer ();

gluBeginSurface (surfName);

gluNurbsSurface (surfName, nuknots,
*uknotvector, nvknots,
*vknotvector, ustride, vstride,
controlPoints, udegree,
vdegree, GL_MAP2_VERTEX_3);

gluEndSurface (surfName);

1-201Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Trimming a B-spline surface with OpenGL
OpenGL already provides a methodology for trimming B-
spline surfaces:

GLUnurbsObj *surfName;

gluBeginTrim (surfName);

gluPw1Curve (surfName, npts, *curvepts, stride,
GL_MAP1_TRIM_2);

gluEndTrim (surfName);

1-202Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Scalar fields
Instead of using three-dimensional control points for
defining a free-form surface, we can use scalar valued
“points” (ordinates). The resulting one-dimensional
surface function can then be visualized as a graph on top
of the defining area. Surfaces that are defined in such a
way are called scalar fields (in an analog way, 3-D
functions can be interpreted as vector fields).
One-dimensional spline surfaces are often used for
representing geographical height fields (terrain models):

1-203Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Scalar fields

Crater lake terrain model. Source: U.S. Geological Survey

1-204Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Iso-curves
The height curves of
a scalar field f, i.e.
f(x,y) constant, are
called iso-curves.
Iso-curves are
algebraic or implicit
curves, respectively.

Iso-lines of a bilinear spline surface,
Lawrence Livermore National Laboratory

1-205Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Iso-surfaces
In analogy to iso-cruves we can define iso-surfaces by
using three-dimensional scalar fields. For an iso-value c,
the corresponding iso-surface is defined as the set of all
points with f(x,y,z)=c.
Tri-variate functions (i.e. functions with three arguments,
“volumes”) can be defined as tensor product. Often
times, tri-linear volumes are used:

∑∑∑
= = =

=
l

i

m

j
kj

n

k
iijk uNtNsNdutsf

0 0

22

0

2)()()(),,(

1-206Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Iso-surfaces

Iso-surface of a three-dimensional density function,
Lawrence Livermore National Laboratory

1-207Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Deformation
Deformation, e.g. of a 2-D image, can be by displacing
control points of a regular grid structure. The surface
defined by the displaced control net then maps the
domain onto itself: (x’,y’)=f(x,y).

1-208Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Morphing
Deformations are used, for example, to cross-fade from
one image to another one (image morphing).
Let m1(x,y) and m2(x,y) be two images. We then look for a
function

m(t,x,y), t∈[0,1]
that fades continuously from m1 to m2 in such a way that
m(0,x,y)=m1(x,y) and m(1,x,y)=m2(x,y).
The simple approach, m=(1-t)·m1 + t·m2, would not
consider the contours of the image properly. Therefore, it
is necessary to work with deformations.

1-209Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Morphing
First, a deformation f2(x,y) is defined manually which
maps previously picked points within m1 onto m2. While
moving the geometry, i.e. f(t,x,y)=(1-t)·(x,y)+t ·f2(x,y), the
color values of the images are “blended” accordingly.

[S. Lee, et al., Image morphing using deformation techniques, 1996]

1-210Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Morphing
In the same way, three-dimensional objects can be cross-
faded, e.g. using B-spline volumes, which are called free-
form deformations (FFDs).

3D Morphing, Stanford University

1-211Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
For representing an object using space subdivision
techniques the object space is split up into several
smaller elements. For each element, we store if this
specific element is covered by the object.
Standard approach:

– Space is divided by a regular equidistant grid, resulting in a
grid where each cell has exact identical geometry.

– In 3-D space, we get cube-shaped cells, which are called
voxels (volume element).
→ The name is in analogy to pixel (picture element) in 2-D

1-212Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Example: volumetric image of a CT-scanned object

1-213Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Advantages:

– It can be determined very easily if a given point is part of the
object or not.

– It can be checked easily if two objects are connected or
attached to each other.

– The representation of an object is unique.

Disadvantages:
– There cannot be any cells that are only partly filled.
– Objects can generally be represented approximately.
– For a resolution of n voxels in each dimension we need n3

voxels to represent the object. Therefore, it requires a lot of
memory → save space using octrees.

1-214Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Octrees
An octree is a hierarchical data structure for storing an
irregular, i.e. not equidistant, sub-division of a 3-D space.
Idea:

– The initial element is a cube which covers the entire object
space. The element can have two states: covered or
uncovered.

– In case an element is partly covered, it is
sub-divided into eight equally sized sub-
elements.

– The coverage of each element is checked
recursively until a desired resolution is
achieved.

1-215Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Octrees (continued)
In an octree, each node (element) that is not a leaf has
eight successors (sub-elements).
The root of the tree represents the initial cube. For each
sub-division a fixed numbering scheme is used for the
sub-elements when inserting a new node as a child.
Each leaf stores the state of
its corresponding (sub-)
cube.
Each inner node represents
a partly covered cube.

1-216Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Octrees (continued)
Example: representation of a 3-D object using an octree
a) Object embedded into initial cube.
b) Representation of the object using a maximal sub-

division of two.
c) Corresponding octree data structure

(a) (b) (c)

1-217Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Octrees (continued)
Octrees can not only be used for representing 3-D
objects. A very common use of octrees is the sub-division
of a 3-D scene.

– Here, the individual objects are represented by standard data
structures, e.g. polygons.

– The state of the cells of the octree is then extended to a data
structure that stores a list of objects, e.g. polygons, which are
contained by the cell.

This results in a significant performance increase for
algorithms that work on the individual areas of the object
space locally (e.g. ray tracing).

1-218Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Quadtrees
The principle of sub-dividing the 3-D space can be
generalized to an n-dimensional space.
For the case n=2 we get the sub-division of a 2-D plane
resulting in a quadtree, where each inner node of the tree
has exactly four children.
Historically, quadtrees are the older data structures. They
were used initially in the late 60’s of the last century.
Octrees were derived from quadtrees and used since the
late 70’s, early 80’s of the last century.

1-219Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning

(a) (b)

Quadtrees (continued)
Example: sub-division of a 2-D space using a quadtree.
a) Sub-division of the 2-D space until each cell containes

maximally one object.
b) Corresponding data structure.

1-220Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Binary space-partitioning (BSP trees)
Octrees and quadtrees both sub-divide at each level
equally in each dimension, i.e. at the center.
A BSP tree offers an alternative representation where an
element can be sub-divided into two sub-elements at an
arbitrary (hyper-)plane

– If one sub-element is defined as part of the inside while the
other sub-element is defined as the outside, a convex
polyhedron can be represented by using properly chosen
planes limiting the volume.

– By uniting convex interior areas, arbitrary concave polyhedra
with holes can be defined.

1-221Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
BSP trees (continued)
In the realm of computer graphics, BSP trees are often
used for determining the visibility of an object.
Idea:

– BSP trees can – similar to octrees and quadtrees – be used for
sub-dividing a 3-D scene (see next example). Here, the
objects are not bound to a particular rasterization.

– The object space is to be sub-divided recursively in such a
way, that each area contains at most one object.

– Using the locations of those areas relatively to the view point,
the objects can be sorted according to the viewing distance
(depth) easily, i.e. it can be determined which objects are
completely invisible.

1-222Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
BSP trees (continued)
Example: sub-division of a 2-D scene
a) Using a quadtree
b) Using a BSP tree

(a) (b)

1-223Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Principal Component Analysis (PCA)
An ideal choice of dividing planes for a BSP tree is
offered by the principal component analysis (PCA). Let
us assume that a complex scene is given by a point cloud

Pi∈IR3 (i=1,…,n)
(for example object centers or vertices of polygons).
PCA defines an orthogonal coordinate system e1, e2, e3
which orientation corresponds to the one of the point
cloud.

1-224Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.8 Space Partitioning
Principal Component Analysis (continued)
Now, we choose the average of all points as the center of
the coordinate system:

B has the real eigenvalues λ1, λ2, λ3 and eigenvectors e1,
e2, e3, i.e. λi·ei = B·ei. The eigenvectors in combination with
the center c form the coordinate system we are looking
for. The extent of the point cloud in direction of ei is
proportional to √λi.

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−
−−−

=

znzynyxnx

zzyyxx

zzyyxx

cPcPcP

cPcPcP
cPcPcP

A
MMM

222

111

∑

∑

=

=

−
=

−
=

=

n

k
kjkiij

T

n

i
i

aa
n

b

AA
n

B

P
n

c

1

1

1
1
1

1

1

	Chapter 1
	1.1 Overview
	1.1 Overview
	1.1 Overview
	1.1 Overview
	1.2 Polygonal Representation
	1.2 Polygonal Representation
	1.2 Polygonal Representation
	1.2 Polygonal Representation
	1.2 Polygonal Representation
	1.2 Polygonal Representation
	1.2 Polygonal Representation
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.3 Polygon Rendering with OpenGL
	1.4 Quadric Surfaces
	1.4 Quadric Surfaces
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.5 Blobby Objects
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.6 Spline Representations
	1.6 Spline Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.7 Surface Representations
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning
	1.8 Space Partitioning

