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1.1 Overview
The main goal of three-dimensional computer graphics is 
to generate two-dimensional images of a scene or of an 
object based on a a description or a model.
The internal representation of an object depends on 
several implications:

– The object may be a real object or it exists only as a computer 
representation

– The manufacturing of the object is bound closely to the 
visualization:

• Interactive CAD systems
• Modeling and visualization as a tool during design and 

manufacturing
• More than just 2-D output possible!
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1.1 Overview
Implications (continued)

– The precision of the internal computer representation depends 
on the application. For example, an exact description of the 
geometry and shape in CAD applications vs. an approximation 
sufficient for rendering of the object.

– For interactive applications, the object may be described by 
several internal representations. These representations may 
be generated in advance or on-the-fly.

• Level-of-detail (LOD) techniques
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1.1 Overview
The modeling and representation of an object involves the following 
in particular:
• Generation of 3-D geometry data

CAD interface, digitizer, laser scanner (reverse engineering), analytic 
techniques (e.g. sweeping), image (2-D) and video (3-D) analysis

• Representation, efficient data access and conversion
Polygonal nets (e.g. triangulation), is the most common representation 
for rendering objects. Alternatives: finite elements (FEM), constructive 
solid geometry (CSG), boundary representation (B-rep), implicit surfaces 
(isosurfaces), surface elements (surfels = points + normals), …

• Manipulation of objects (change shape, …)
e.g. Boolean operations, local smoothing, interpolation of features (e.g. 
boundary curves), “engraving” of geometric details, …
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1.1 Overview
The topics of this chapter will be:

– Polygonal representations
– Rendering Polygons with OpenGL
– Quadric surfaces
– Blobby Objects
– Spline representations

• Cubic splines
• Bézier splines
• B-Splines
• Rational splines

– Octree, BSP tree
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1.2 Polygonal Representation
Properties/Characteristics:
• The precision of the approximation (number and size of 

polygons) can be chosen depending on the application, 
but several questions arise, e.g.:

– What polygonal resolution is required for a precise 
representation?

– What polygonal resolution is required for the renderer to make 
the piecewise approximation appear smooth?

– What is the correlation between number of polygons and the 
size of the final display of the object?
Often the following rule of thumb is used: Choose the 
polygonal resolution based on the curvature of the object
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1.2 Polygonal Representation
Properties/Characteristics:
• Classic representations of three-dimensional objects in 

computer graphics
• Object is represented by a net of polygonal surfaces 

(usually triangles) piecewise linear interpolation
• The polygonal surfaces are usually an approximation of 

the curved surface, representing the object’s boundary.
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1.2 Polygonal Representation
Hierarchy of the representation:
Concept: The object constitutes of several surface 

elements. Each surface element is represented 
by several polygons. Every polygon has 
vertices and edges.
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1.2 Polygonal Representation
Hierarchy of the representation (continued):
Topology:

object

surfaces

polygons

edges

vertices
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1.2 Polygonal Representation
Hierarchy of the representation (continued):
Data structure:

Vertices 
are stored 
only once
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1.2 Polygonal Representation
Comment on data structures:
Data structures can contain – besides geometry 
information – special attributes required for the 
application or for the rendering:

– Surface attributes:
Representation (triangle, polygon, free-form surface), coefficients, 
normal vector, properties (plane, convex, holes, …), reference to 
vertices (and edges, if necessary)

– Edge attributes:
Length, type (round edge, feature line, virtual edge, reference to 
vertices and/or polygon

– Vertex attributes:
Normal vector, color, texture coordinates, reference to polygon 
and/or edge



1-12Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.2 Polygonal Representation
Comment on edges:
Obviously, there are two different kinds of
edges involved in the approximate
representation:

– Sharp edges (feature lines)
• This type of edge should be visible

– Virtual edges (“inside” a smooth surface)
• These should be invisible after rendering
• Interpolative shading algorithms

flat, Gouraud, Phong shading (now implemented in hardware)

Which kind of edge is to be used can be enforced by the 
data structure by storing edges multiple times (see image).
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1.3 Polygon Rendering with OpenGL
OpenGL rendering pipeline:
Both, vertex and fragment shader are programmable
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1.3 Polygon Rendering with OpenGL
OpenGL supports several types of polygons:

GL_POLYGON

GL_TRIANGLES

GL_TRIANGLE_STRIP

GL_TRIANGLE_FAN

GL_QUADS

GL_QUAD_STRIP

Convenience functions exist for certain objects:
glutSolidTetrahedron glutWiredTetrahedron

glutSolidCube glutWireCube

…
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1.3 Polygon Rendering with OpenGL
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1.3 Polygon Rendering with OpenGL
Beware: 
OpenGL will ignore invalid polygons, e.g. self 
intersecting, non-convex, or non-planar polygons
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1.3 Polygon Rendering with OpenGL
There are basically four different ways to render 
geometric objects with OpenGL:
• Direct rendering
• Display lists
• Vertex arrays
• Vertex buffer objects
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1.3 Polygon Rendering with OpenGL
Direct rendering:

glBegin (GL_TRIANGLES);

glNormal3f ( … );

glVertex3f ( … );

…

glNormal3f ( … );

glVertex3f ( … );

glEnd ();

In case of polygons with a fixed number of vertices, i.e. 
triangles, quads, etc., you can generate several such 
polygons using one glBegin/glEnd block.
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1.3 Polygon Rendering with OpenGL
Display lists:
Stores OpenGL API commands in graphics memory for 
faster access.

GLuint index = glGenLists (1);

if (index != 0) {

glNewList (index, GL_COMPILE);

… // draw something

glEndList ();

}

glCallList (index);

Using GL_COMPILE_AND_EXECUTE instead of 
GL_COMPILE makes the glCallList unnecessary.
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1.3 Polygon Rendering with OpenGL
Vertex arrays:
Store vertices in bulk arrays to reduce number of OpenGL function 
calls.

GLfloat vertices[] = { … };

GLfloat normals[] = {… };

glEnableClientState (GL_VERTEX_ARRAY);

glEnableClientState (GL_NORMAL_ARRAY);

glNormalPointer (GL_FLOAT, 0, normals);

glVertexPointer (3, GL_FLOAT, 0, vertices);

glDrawArrays (GL_TRIANGLE_STRIP, 0, 10);

This constructs a triangle strips using the first ten elements. The 0 as 
argument for the arrays is the stride parameter allowing you to skip 
elements within the arrays.
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1.3 Polygon Rendering with OpenGL
Vertex buffer objects (VBO):
Vertex buffer objects are like vertex arrays, but stored in graphics 
memory for faster access.
Fill the VBO with data; use indices to remember them:

GLuint vbovertices, vbonormals;
GLfloat vertices[] = { … }, normals[] = {… };
glGenBuffers (1, vbovertices);
glGenBuffers (1, vbonormals);
glBindBuffer (GL_ARRAY_BUFFER vbovertices);
glBufferData (GL_ARRAY_BUFFER, datasize,

vertices, GL_STREAM_DRAW);
glBindBuffer (GL_ARRAY_BUFFER, vbonormals);
glBufferData (GL_ARRAY_BUFFER, datasize,

normals, GL_STREAM_DRAW);
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1.3 Polygon Rendering with OpenGL
Vertex buffer objects (continued):
Now, draw the previously generated VBOs:

glBindBuffer (GL_ARRAY_BUFFER vbovertices);

glVertexPointer (3, GL_FLOAT, 0, (GLvoid *)0);

glBindBuffer (GL_ARRAY_BUFFER, vbonormals);

glNormalPointer (GL_FLOAT, 0, (GLvoid *)0);

glDrawArrays (GL_TRIANGLE_STRIP, 0, count);

Notes:
– There is no actual data pointer required for the 
glVertexPointer and glNormalPointer calls since the 
VBOs are used as data repository.

– The client states need to be set just like with vertex arrays
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1.4 Quadric Surfaces
Quadric surfaces are described with second-degree 
equations (quadrics). Quadratic surfaces are common 
elements in computer graphics and CAD. Some examples 
are:

Sphere:

Ellipsoid:
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1.4 Quadric Surfaces
OpenGL supports quadric surfaces directly using the 
GLUT or GLU libraries.
For example:

glutSolidSphere (r, xdiscretization, 
ydiscretization);

Or:
GLUQuadric *quadric;

quadric = gluNewQuadric ();

gluSphere (quadric, r, xdiscretization, 
ydiscretization);
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1.5 Blobby Objects
Idea: describe the surface or volume of an object as iso-
surface within a scalar field (i.e. a point is part of the iso-
surface if and only if the scalar field has the same so-
called iso-value). The scalar field itself is generated 
through generating primitives (functions).
Example: point heat sources create a spherical field. By 
adding two of those fields we get a global scalar field.
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1.5 Blobby Objects
The appearance of the iso-surface is relatively easy to 
handle if the center points and the individual scalar fields 
are chosen reasonably. The following image shows two 
iso-surfaces which are generated by two radial symmetric 
fields. The two centers of the generating fields approach 
each other when going from top to bottom and left to right 
in the image until they are at the exact same location.
You can see the merging effect during the transition of 
the smooth iso-surface (C1-continuous in this case) after 
the two centers get close enough. In the opposite case, 
where the centers move apart we would see the iso-
surface separating.
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1.5 Blobby Objects
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1.5 Blobby Objects
Density function:
The most commonly used density functions 
with have the following properties:

– For is a polynomial
– for is the maximal radius
–
–
– is monotonically decreasing

The following graph shows an example for such a density 
function.
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1.5 Blobby Objects
Density function (continued):

Then, a radial symmetric field of a discrete blob at a point 
P can be defined as withℜ→ℜ3:dF )()(

2
PxfxFd −=
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1.5 Blobby Objects
Application example: flow simulation
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1.5 Blobby Objects
Application example: flow simulation
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1.5 Blobby Objects
Application example: flow simulation
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1.6 Spline Representations
Motivation:
Free-form-curves and –surfaces became very popular 
during the last decade, particularly due to their application 
in several engineering disciplines. Free-form-curves are 
nowadays a fundamental design method in CAD/CAM 
software. This section will introduce basic concepts.

Specifically, we will cover:
– Interpolation using polynomials and splines
– Bézier curves, B-splines
– Rational B-splines
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1.6 Spline Representations

Surface consisting of several segments (patches)
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1.6 Spline Representations

interpolation
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1.6 Spline Representations

interpolation
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1.6 Spline Representations

Piecewise smooth surface reconstruction
based on a network of curves
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1.6 Spline Representations

Usually, more than one possible solution exist to the interpolation problem
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1.6 Spline Representations
Interpolation problem:
Let
be a set of pairs of real numbers with pairwise unequal 
nodes ,

A polynomial p of degree less than n+1,

with real coefficients cj is called interpolation problem of

if
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1.6 Spline Representations
Questions:
• Does a unique solution to this problem exist?
• Is there an algorithmic method to solve the problem? Is 

it efficient enough?
• Is the quality good enough for the application?

Theorem 1: There exist a unique solution to the 
interpolation problem.
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1.6 Spline Representations
Proof:
Plugging in the definition of the polynomial into the interpolation 
problem results in a system of linear equations:

or . The matrix      is the well-known Vandermonde matrix 
with the property:

Since      is regular, we have proven the theorem.
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1.6 Spline Representations
Note: Let be a set of n+1 points at 
different nodes ti.
Then, an interpolation 3-D curve p with
can be determined in an analog fashion by solving the 
linear equation system:
Here, the coefficients are vectors, i.e.

For each coordinate, we get a linear system with an 
identical matrix A.

f i xi , yi , zi IR3

p t i f i

Ac f
ci IR3

xz

y f1

fn

...

t0 t1 tn

parametrisation
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1.6 Spline Representations
Lagrange interpolation
The solution of the linear equation system of the 
interpolation problem usually has complexity O(n3). 
However, we would prefer a set of basis functions with 
the property:

such that

Using these so called blending functions simplifies the 
matrix of the linear equation system to the identity matrix, 
i.e. and the resulting polynomial can 
be written as

Li t
i 0
n Li t j ij

p t
i 0

n

f i Li t

ci f i i 0, . . . , n



1-44Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Theorem 2: The Lagrange polynomials

fulfill the desired property:

Li t
k 0,k i

n t t k

t i t k

Li t j ij .
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1.6 Spline Representations
Proof:

Plug in ti

and for

Li ti
k 0, k i

n ti t k

ti t k
1

j i : Li t j . . .
t j t j

ti t j
. . . 0
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1.6 Spline Representations
Lagrange polynomials

t0

1

t0 tnti

Li (t)

......
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1.6 Spline Representations
Example:
1. n=1, i.e. linear interpolation

Interpolate the points (x0,y0) and (x1, y1) (use x0,x1 as nodes)

2. Interpolate the following set of points:
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1.6 Spline Representations
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1.6 Spline Representations
Example: 
cubic Lagrange polynomials with uniform nodes

3
iti =



1-50Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
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1.6 Spline Representations
Newton interpolation
The Newton scheme has the advantage of being a 
dynamic scheme, i.e. additional nodes can be added 
without having to re-compute all basis functions.
For this scheme, the following basis functions are used:

with properties for i>j

N i t
k 0

i 1

t t k

N i t j 0

N i t i 0 .
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1.6 Spline Representations
The coefficients ai for the solution

Are computed recursively using the k-th divided 
differences

p t
i 0

n

ai N i t

f t j , . . . ,t j k

f t j : f j j 0, . . . , n

f t j , . . . ,t j k :
f t j 1 , . . . , t j k f t j , . . . , t j k 1

t j k t j
ai f t0 , . . . , t i
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1.6 Spline Representations
This results in the following scheme:

...t3

...
...t2

t1

t0

321k=0
f 0 f t0 a0

f 1 f t1

f 2 f t2

f 3 f t 3

f t0 , t1 a1

f t1 , t2

f t2 , t3

f t0 , t1 , t2 a2

f t1 , t2 , t3

f t0 , . . . , t3 a3

0

1

2

3
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1.6 Spline Representations
Note: the coefficients ai can also be determined using a 
linear equation system. Since the matrix of the resulting 
linear system is a triangular matrix, solving this system 
would be equivalent to the scheme using the divided 
differences.
Example: ti , f i 0,1 ; 2,3 ; 4,5

54
1

0=a232
1=a1

1=a00
ti fi

p(x) = a0+a1(x-t0)+a2(x-t0)(x-t1)
= 1 + x
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1.6 Spline Representations
Beware: the interpolating polynomial interpolating n+1

nodes is not necessarily of degree n, but at most 
of degree n.

Note:
– The order of the nodes does not change the result when using 

Newton’s scheme
– Interpolating a continuous function f on the interval [a,b] using 

n points does not necessarily ensure that the series of 
interpolating polynomials fn converges to f.

Conclusion: Using more points does not 
necessarily improve the quality of 
the resulting interpolating polynomial!
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1.6 Spline Representations
Disadvantages of polynomial interpolation 
(particularly with respect to CAD/CAM):

– Interpolating polynomials of degree larger than 5 
often are quite “wavy”

Remedy: introduce additional conditions, such as 
minimization of folding energy
(→ splines)

– Each point that is to be interpolated influences the 
resulting curve globally

Remedy: Use basis functions with local influence



1-57Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
The higher the degree of a polynomial, the more wavy its 
shape, especially at the end points of the interval. The 
parameterization (choice of nodes) influences the quality 
of the resulting curve.
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1.6 Spline Representations
Interpolating derivatives
Let ti (i=0,…,n) be different nodes and for each i the 
values of the first ni-1 derivatives are known:

fi, fi
(1), …, fi

(n-1) (i=0,…,n)

We are looking for a polynomial of degree

such that p(j)(ti) = fi
(j) (i=0,…n; j=0,…,ni-1)

∑
=

−=≤
n

i
inm

0
1

∑
=

=
m

j

j
jtctp

0
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1.6 Spline Representations
Plugging in the desired conditions into the polynomial 
equation – similar to the previous interpolation problem –
results in a linear system of equations.
Theorem 3: There is a unique solution to this linear 

system of equations
Proof: Overall, there are m+1 conditional equations with 
m+1 coefficients. The system is regular if the 
homogenous problem (fi

(j)=0) only allows the trivial 
solution. This is exactly the case: since p has exactly m+1
zeros (including multiplicities) and p is of degree ≤m, the 
polynomial p has to be zero.
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1.6 Spline Representations
Example: We are looking for the cubic polynomial which 
interpolates f(0), f’(0), f(1), and f’(1). A cubic polynomial 
can be described as:

p(t) = c3t3 + c2t2 + c1t + c0

And the derivative:
p’(t) = 3c3t2 + 2c2t + c1

This gives us:
f(0) = c0

f’(0) = c1

f(1) = c3 + c2 + c1 + c0

f’(1) = 3c3 + 2c2 + c1
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Or in matrix form:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

)1('
)1(
)0('
)0(

3210
1111
0010
0001

3

2

1

0

f
f
f
f

c
c
c
c



1-62Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Hermite interpolation:
In analogy to the Lagrange interpolation, we can find 
basis polynomials that are optimal for interpolating 
derivatives. These are called Hermite polynomials.
Example: we are looking for cubic Hermite polynomials 
for the system resulting from the previous example. The 
coefficients can be determined by inverting the matrix:
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Then, the resulting Hermite polynomials are:

The Hermite polynomials have the following properties:
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Bézier segments:
Modeling of individual curve segments is easier and more 
intuitive if there is a correlation between the coefficients 
(design parameters) and the geometry of the curve. 
Interpolated points are not very suitable for this matter 
because the waviness cannot be controlled by the 
interpolated points. Bézier segments are polynomial 
curves, which are defined through a control polygon. 
This control polygon is approximated by the resulting 
curve, but only interpolates at the end points. The 
vertices of the control polygon (control points, here: 
Bézier points) constitute the coefficients of the 
representation using Bernstein polynomials (new basis).
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Bézier segments:
By changing the geometric layout of the control polygon, 
the curve can be easily modified. One of the properties of 
Bézier segments is that the number of inflection points of 
the curve is less or equal to the number of inflection 
points of the control polygon. This variation diminishing 
property allows for good control of the waviness of the 
curve.
Bézier segments have many applications and are often 
used for modeling of composite curves and surfaces 
(Bézier splines). The Bézier technique is further 
explained in the following.
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Bézier segments: the de Casteljau algorithm
The de Casteljau algorithm [Cast.59][Böhm84] 
generalizes linear interpolation of polynomial curves. Let 
b0 and b1 be two points and t a parameter between 0 and 
1. Then t uniquely defines a point on the linear segment 
connecting b0 and b1:

X(t) = (1 - t) b0 + t b1

X(t)

t :     (1
-t)

b0

b1
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de Casteljau algorithm

X(t)

b0

b1

t
:    

 (1
 - t)

b0

b0

b1 b2

b3

b1

b2

t
:    

 (1
 - t)

t :   (1-t)
t

:     (1 - t)

X(t)

X(t)

linear

cubic

quadratic
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de Casteljau algorithm
Let bi (i=0,…,n) be n+1 Bézier points. Then, the de 
Casteljau algorithm for evaluating a Bézier segment is 
based on the following recursion:

n

j
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Example: n=3
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de Casteljau algorithm

Scheme of the de Casteljau algorithm
Every point bi

j is a convex combination of its 
predecessors bi

j-1 and bi+1
i-1, weighted using (1-t) and t, 

respectively.
bi

j(t) is a polynomial of degree j (or less).
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Properties of Bézier segments
1) Convex hull: the curve X(t), t  [0,1] is located within 

the convex hull of the control polygon, i.e. there are 
weights with

2) Variation diminishing: an arbitrary straight line 
intersects the curves as often or less than the control 
polygon (within the plane).

3) End point interpolation: X(0) = b0, X(1) = bn.

∈
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4) Affine invariance: let φ be an affine mapping            

φ(p) = Ap+v. Then, φ(X(t)) = Y(t), with the curve Y
being defined by the transformed Bézier points φ(bi).

5) Bernstein basis: the de Casteljau algorithm results in 
a curve of (maximal) degree n. As basis the so called 
Bernstein polynomials are used:

X(t)
Y(t)
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6) Properties of the Bernstein polynomials: the 

Bernstein polynomials are symmetric, not negative 
between [0,1], and the sum of all polynomials is one:

∑ =
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7) Symmetry: inverting the sequence of the control 

points bi of X(t) results in a Bézier segment Y(t) with 
inverted parametrization: Y(t) = X(1-t).

8) Pseudo-local control: the Bernstein polynomials 
influence the curve globally, however, their maxima 
are located in the proximity of the control points: 
max(Bi

n) = Bi
n(i/n).

Moving a control point bi results in a limited change of 
the curve. The change is maximal at t=i/n. 
(Interpolated polynomials do not allow for pseudo-
local control). However, small changes to the control 
points can change the curve significantly.
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9) Degree increase: a Bézier segment of degree n can 

be represented as a Bézier segment of degree n+1 (of 
course, the actual degree will be the same but the 
representation will use the higher degree Bernstein 
polynomials):
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10)Subdivision: a Bézier segment can be separated at a 

location t into two Bézier segments using the de 
Casteljau algorithm. The new control points are b0

i

and bi
n-i (i=0,…,n).

b0

...

b3

b0

b0
2

b1
2
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1b0
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3
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11)Derivative: the derivative of a Bézier segment of 

degree n can be represented as a Bézier segment of 
degree n-1 using the control points

bi’ = n(bi+1 – bi)  (i=0,…,n).

This can be concluded from the following equation

X(t)

b´0

b´2

b´1

b0

b2
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Derivatives
For higher derivatives you can use the following recursive 
formula:

The derivatives can also be determined using the 
derivatives of the Bernstein polynomials:
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Derivatives at end points
At the end points the p-th derivative only depend on p+1
control points:
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Derivatives
The derivatives of a Bézier segment can also be 
calculated using the de Casteljau algorithm:
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Comments:
1) Due to the convex hull property the bounding box of 

the control points encloses the Bézier segment. By 
splitting the segment recursively into sub-segments 
this enclosure can be refined.

2) The variation diminishing property means that the 
approximation using the Bernstein polynomials is at 
least as smooth as the control polygon itself. Hence, 
the waviness of the resulting curve can controlled by 
the control polygon.
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Example (n=3): basis transformation (to monomials)
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Example (n=3): Equivalence of Bernstein basis and de 
Casteljau
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Example (de Casteljau algorithm)
The control polygon has the vertices (0,0), (2,4.5), 
(8.5,6.5), and (11,2). Compute X(0.6) of the cubic Bézier 
segment: 0

0

2 1.2
4.50 4 2.7   

0 6 8.5 5.9 4.02
6.5 5.7 4.5
11 6.6310 8.36
2 4.543.8 4.56

.

.
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Example (continued)
Compute the first derivative X’(0.6) and second derivative
X’’(0.6):

( )2 2
3 2

8.36 4.02 13.02
0.6 3 3

4.56 4.50 0.18
X ( ) b b
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

( )1 1 1
3 2 1

10.00 5.9 1.2 3.6
0.6 6 2 6 2

3.80 5.7 2.7 29.4
X ( ) b b b

⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞′′ = ⋅ − + = ⋅ − ⋅ + =⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠



1-85Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Generalization
Often, a series of Bézier segments compose a spline 
curve. Therefore, the individual segments might be 
parameterized differently (e.g. on the interval [a,b]
instead of [0,1]) so that a more general Bézier segment 
can be defined as:

Caution: changing the parameterization also changes the 
derivative so that the p-th derivative gets scaled by
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Integrating a Bézier segment

Let a Bézier segment defined on 

the interval [a,b]. The integral can then be computed by:
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Interpolating with Bézier segments
Interpolating with Bézier segments can be achieved using 
a system of linear equations, which is derived directly 
from the interpolating condition:

There is a unique solution to this system of linear 
equations. This is obviously the case since the solution 
could be computed using the Lagrange basis as well.
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Interpolating with Bézier segments
The system for interpolating the Points P0,…,Pr using a 
Bézier segment is given by:

Example:

Chordal parameterization (i.e. choosing the parameter 
intervals based on the Euclidean distance between the 
points): [a,b]=[0,8.13]; t0=0; t1=1.42; t2=3.66; t3=8.13
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Interpolating condition

Plugging in the definition of a Bézier segment:
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This then results in the following system of linear 
equations:
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Spline curves
Especially when using polynomials of higher degree for 
interpolation strong oscillating effects are the result. To 
control the waviness and to minimize the oscillating 
artifacts curves are often pieced together using several 
segments. These segments are then described by 
polynomials of lower degree (mostly three or five). The 
segments are usually defined in such a way that the 
transition between segments is “smooth”. Often, the 
segments are defined so that they connect two points that 
are to be interpolated to fulfill the interpolation condition 
X(t) = pi.
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Example:
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Definition: Ck continuity
A function f(t) is Ck continuous (k≥0) if the function itself 
and the first k derivatives are continuous. Ck[t0,tn] is the 
set of Ck continuous functions on the interval [t0,tn].

Definition: Spline
Let τ={t0,t1,…,tn} be a monotonic vector composed of 
nodes ti<ti+1. A function S is called spline of degree k-1
(of order k) if:

– S is a polynomial of degree k-1 in each of the intervals [ti,ti+1]
– S is Ck-2 continuous on [t0,tn]
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Comments:

1) The spline S is called interpolating spline if S(ti)=pi
for a given set of points pi.

2) The interpolating spline is generally not uniquely 
defined. There are k-2 additional degrees of 
freedom, i.e. further boundary conditions are 
required.
For cubic splines (k=4) often the natural boundary 
conditions S’’(t0) = 0 and S’’(tn) = 0 are chosen.
If the two nodes t0 and tn are associated with the 
same points, i.e. p0 = pn, then a closed spline is the 
result (without additional boundary conditions).
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Cubic splines
Instead of requiring a certain type of interpolating 
polynomials, e.g. a polynomial of a certain degree, we 
can demand properties, for example, a very smooth 
curve:
Therefore, we require that

and use the boundary conditions
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Theorem: minimum norm property

Among all functions which fulfill the previous 

boundary conditions, the cubic spline is the function with 

the smallest value of . This is a well known 

fact from calculus of variations [de Boor, 1966].

There are different ways for using the additional degrees 

of freedom. The most common ones are:
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In order to better understand the algorithm for spline 
curves, we first start with computing the coefficients ai, bi, 
ci, and di of a natural cubic spline:

S(t) = Si(t) = ai+bi(t-ti)+ci(t-ti)2+di(t-ti)3

for t∈[ti,ti+1]; i=0,...,n-1
This results in the following conditions for the polynomials 
(segments) Si:

Si(t) = pi i=0,...,n
Si(ti) = Si-1(ti)
Si´(ti) = Si-1´(ti) i=1,...,n-1
Si´´(ti) = Si-1´´(ti)
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This means for the coeffcients of the individual segments:

ai = pi i=0,...,n
ai = ai-1+bi-1(ti-ti-1)+ci-1(ti-ti-1)2+di-1(ti-ti-1)3 i=1,..,n
bi = bi-1+2ci-1(ti-ti-1)+3di-1(ti-ti-1)2 i=1,...,n-1
ci = ci-1+3di-1(ti-ti-1)
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By defining Δi:=ti+1-ti we get the following after a few 
transformations:
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Since ai = pi, the coefficients ai are well known. Hence, 
we have to solve a system of linear equations with n-1 
equations and n+1 unknown variables ci (i=0,...,n).
For a natural cubic spline we use S´´(t0) = S´´(tn) = 0 which 
results in c0 = cn = 0.

In summary, we can use this criteria to formulate an 
algorithm:
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Algorithm for a natural cubic spline
Let ti (i=0,...,n) be a set of nodes with t0<t1<...<tn and 
p0,...,pn a set of function values that are to be interpolated. 
We then look for the natural cubic spline S with the 
following representation:

Si(t) = ai+bi(t-ti)+ci(t-ti)2+di(t-ti)3

for t∈[ti,ti+1]; i=0,...,n-1
We now need to describe an algorithm that computes the 
coefficients ai, bi, ci, and di.
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Algorithm for a natural cubic spline (continued)
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Comments:
1) The previous system of linear equations can also be 

expressed in matrix form Ac = b:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

Δ
−

−
Δ
−

Δ
−

−
Δ
−

⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

Δ+ΔΔ
ΔΔ

ΔΔ+ΔΔ
ΔΔ+Δ

=

−

−−

−

−
−

−−−

−

2

21

1

1

0

01

1

12

1

1

122

22

2211

110

3

)(20
0

0)(2
0)(2

n

nn

n

nn
n

nnn

n

aaaa

aaaa

b
c

c
c

A

MM

MM

OO

O

LL

                           



1-104Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
2) The matrix A is tri-diagonal, symmetric, diagonal-

dominant, positive definite, and also has positive 
elements. Hence, A is regular und there is a unique 
solution for the system of linear equations. For solving 
the system of linear equations the LU decomposition 
for tridiagonal matrices is appropriate due to its 
complexity of O(n).

3) In case of a periodic cubic spline the additional 
boundary conditions is no longer necessary since the 
transistional conditions are already sufficient.
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Algorithm for a peridodic cubic spline
If the nodes t0 and tn are identified, i.e. p0 = pn then the 
interpolating curve is closed and has a C2 continuous 
transition at t0 (or tn, respectively). In this case, the matrix 
describing the system of linear equations changes to:
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This matrix A is cyclic tri-diagonal, symmetric, diagonal-
dominant, positive definite, and has only positive 
elements, i.e. A is well-conditioned. The system can 
again be solved with a complexity of O(n).
Compared to the system for natural cubic splines, the 
matrix A has an additional row and an additional column 
due to the fact that there are n transitions between 
segments compared to n-1 in the previous case. In 
addition, there is an additional entry in the upper right and 
lower left corner of the matrix A because of the cyclic 
band-like structure.
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Since splines are often applied in CAD applications for 
modeling of 2-D or 3-D curves, we need the notion of  
vector-valued and parametric splines.
Definition: Let Δ={t0,…,tn}, a=t0<t1<…<tn=b a set of 
nodes subdividing the interval [a,b]⊂IR. Then, the 
mapping X:[a,b]→IR3 is called parametric spline of 
degree k-1 (order k) if the components (segments) of the 
spline are of degree k-1.
Particularly, the individual components xi are Ck-2

continuous, i.e. xi∈Ck-2[a,b] (i=0,…,n) which we abbreviate 
as X∈Ck-2[a,b].
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A common criterion for local smoothness of three-
dimensional curves, which are composed of 
concatenated segments is defined using derivatives:
Definition: If two parametric curves X:[t0,t1]→IR3 and 
Y:[s0,s1]→IR3 with X∈Cm[t0,t1] and Y∈Cm[s0,s1] and if both 
curves have the point X(t1)=Y(s0) in common we call the 
transition between the two segments Ck if:

For all r with 1≤r≤k.
(If none of the derivatives are equal we call the transition 
C0)
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r
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Algorithm for parametric cubic curves
Let pi=(xi,yi,zi), i=0,…,n a set of 3-D points. We are then 

looking for an interpolating parametric cubic spline.
There are basically three steps for finding the 

interpolating curve:
Step 1: parameterization: Define the parameter values 

(nodes) ti (i=0,…,n) corresponding to the points that 
are to be interpolated.

Step 2: choose boundary conditions
Step 3: Compute the spline curves for each component 

Sx, Sy, Sz individually, such that Sx(ti)=xi, Sy(ti)=yi, Sz(ti)=zi
using the previously defined spline algorithm.



1-110Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Sx(t)=Sx,i(t)=ax,i+bx,i(t-ti)+cx,i(t-ti)2+dx,i(t-ti)3

Sy(t)=Sy,i(t)=ay,i+by,i(t-ti)+cy,i(t-ti)2+dy,i(t-ti)3

Sz(t)=Sz,i(t)=az,i+bz,i(t-ti)+cz,i(t-ti)2+dz,i(t-ti)3

t∈[ti,ti+1], i=0,…,n
Comments:
For closed parametric curves, periodic splines can be 
used, if the curve is supposed to be smooth at every 
point.  If there are cusps (C0 transitions, e.g. the cross 
section of a wing of an airplane) then natural splines can 
be used with the cusp as start and end point.
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Parameterization
The choice of parameterization has great influence on the 
shape of the curve and therefore on the quality of the 
resulting curve (and surface).

Interpolation problem with different parameterizations
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Parameterizations
The effect of the chosen parameterization can be 
illustrated using the following analogon:
Interpret the parameter t as the time which determines 
how long it takes for a point X to walk along the curve 
X(t).

We now introduce a few different parameterizations. 
Therefore, we assume that a curve interpolates a set of 
n+1 points on the parameter interval [a,b].
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Equidistant parameterization
The equidistant parameterization assigns the same 
amount of time to each segment connecting the points 
(pi,pi+1).

If the distances between consecutive points differs a lot, 
then the point X has to walk along the curve X(t) at 
different speeds. For example, if a large distance 
between two points is followed by a short distance then 
the point X has to slow down which results in an 
“overshooting” effect.
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Chordal parameterization
The parameterization should reflect the “structure of the 
point set”. This can be achieved by using the chordal
parameterization:

The parameter intervals are chosen proportional to the 
distances between two consecutive points and then 
normalized using a constant factor s (e.g. s if often set to 
the overall length of the polygon defined by the set of 
points that are to be interpolated)

s
PP

ttt ii
iii

−
=−=Δ +

+
1

1



1-115Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
Centripetal parameterization
Another possibility for choosing a parameterization, which 
reflects the structure of the data, is the so called 
centripetal parameterization [Lee 1975]:

Here, the centripetal acceleration is approximately 
minimized. You can also combine the different types of 
parameterizations. A parameterization which not only 
considers distances but also takes the angular changes 
of the interpolated points into account was developed by 
T. Foley (see [Foley 1989])
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Foley parameterization

As distance function we can use the Euclidian metric of 
the affine-invariant Nielson-Metric.
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Nielson metric
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The Nielson metric first scales the set of points in such a 
way that the variance in all directions is unified (see also 
Principal Component Analysis). The distances are 
derived from the scaled arrangement of the points. This 
metric allows for a complete independence from 
coordinate systems and scaling (i.e. it is affine invariant).

The effects of different parameterizations will be 
illustrated using the following figures which show 
interpolation of the same set of points with different 
parameterizations:
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Parameter transformation
The parameterization of the interpolating points has great 
influence on the overall shape of the resulting curve. 
However, it is possible to change the parameterization 
afterwards without changing the shape of the curve.
Definition:
Let X(t) be a curve and φ(t) a bijective and continuous 
function. Then Y(t)=X(φ(t)) also defines a curve which 
results from X after parameter transformation.
If both φ and φ-1 are continuous differentiable we call φ a 
C1 parameter transformation.
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Example: The length of an arc is

A curve can then be re-parameterized in such a way that 
and t represents the arc length of the curve.
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Bézier splines
Instead of calculating each segment by solving a system 
of linear equations we can also define the segments of a 
spline using Bézier segments. For example for a cubic 
spline, each segment is defined by four Bézier points. In 
order to achieve a smooth spline the Bézier points should 
be chosen in such a way that the transition between 
segments fulfills the continuity criterion, i.e. for a cubic 
spline the resulting curve should be C2 continuous.
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Bézier splines
Bézier segments have the nice property that the 
derivatives can be computed easily from the locations of 
the Bézier points (control points). This property can be 
used to define a C2 continuous cubic spline:
Let t0,…,tn; t0<t1<…<tn be a set of nodes and p0,…,pn the 
points that we want to interpolate. Then, we can use the 
following equation to define the Bézier segments of a 
Bézier spline of degree m :
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Now, we have to define the Bézier points in such a way 
that the interpolation condition is fulfilled and the 
transition between segments is smooth.
From the interpolation condition and the fact that each 
Bézier segment interpolates the end points of the control 
polygon we get: bm·i = pi (i=0,…,n).
We can also compute the derivatives using the formulas 
we derived before:
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For a C1 transition we need that S’i(ti+1)=S’i+1(ti+1), i.e.:
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For a C2 transition we need that S’’i(ti+1)=S’’i+1(ti+1), i.e.:

bm(i+1)-1 bm(i+1) bm(i+1)+1

Δi : Δi+1
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How can we solve the interpolation problem with, for 
example, a cubic Bézier spline?
Introduce additional points (de Boor points):

b3(i+1)-1 b3(i+1) b3(i+1)+1

Δi : Δi+1

b3(i+1)-2

b3(i+1)+2

Δ
i :

Δ
i+1

Δ i
: Δ i+1

di+1



1-130Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.6 Spline Representations
From the previous cartoon we can derive the following 
three equations for an interpolating cubic Bézier spline:
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If we take a closer look at the newly introduced points we 
can see that there is a straight connection between two 
Bézier points and these de Boor points:

This gives us:

b3(i+1)-2 b3(i+1)-1 di+1
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Overall, we get the following system of linear equations:

Note: set Δ-1 = Δn = 0
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Then, we can derive the three steps for computing an 
interpolating cubic Bézier spline:

1) Choose the boundary condition, i.e. the Bézier 
points b1 and bn·m-1.

2) Determine the location of the de Boor points based 
on a system of linear equations as previously 
shown.

3) Using the previous equations 1) and 3) the missing 
Bézier points can be calculated.
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Special case:
Cubic Bézier spline with equidistant parameterization, 
such that Δi = 1.
In this case, the system of linear equations reduces to:

The matrix of this system is tri-diagonal; hence, it can be 
solved efficiently using the LU decomposition.
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Example:
Interpolation of three points p0, p1, and p2 using a cubic 
Bézier spline with two segments (Δ1=Δ2=1), such that the 
Bézier spline has the given points as end points.
(i) b0 = p0, b3 = p1, b6 = p2

b0

b1

b2
b3 b4

b5

b6p0

p1

p2
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(ii) Pick the additional degrees of freedom, i.e. b1 and b5

(iii) Determine the de Boor points d0, d1, and d2 using the 
system of linear equations:
3b1 = 2d0 + d1

6b3 = d0 + 4d1 + d2

3b5 = d1 + 2d2

(iv) Using previous equations 1) and 3), calculate the 
missing Bézier points b2 and b4.
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Comment:
The choice of the degrees of freedom, i.e. 
the derivatives at the two end points of the 
curve, influences the curve globally.
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B-splines
Motivation:
We would like a spline curve that has two advantages 
over Bézier splines:

1) Control points should have only local influence on 
the resulting curve

2) A continuous transition should be guarantied 
automatically without having to place the control 
points accordingly.

Idea: find a new set of basis functions.
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For a control polygon described by points d0,…,dn, define 
blending functions as new basis functions. First, we need 
to define a knot vector:

(u0, ..,un+m); ui≤ui+1

Then, the new basis functions are recursively defined as:
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Based on these blending functions a B-spline curve of 
degree m-1 (order m) with control points d0,…,dn,, where 
n>m is defined as:
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1.6 Spline Representations
Comments:
1) The knot vector can have individual knots with 

multiplicity greater than one, i.e. the same value can 
appear more than once.

2) The resulting B-spline has degree m-1 is Cm-2

continuous. At knots with multiplicity M this reduces to 
Cm-1-M continuity.

3) If n=m-1 and a knot vector with multiplicity m at both 
ends these blending functions resemble the Bernstein 
polynomials.
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4) Each section of the B-spline (between two successive 

knot values) is influenced by m control points.
5) Any control point can affect the shape of at most m

curve sections.
6) For any um-1≤ u≤un+1, the sum of all blending functions 

equal to one: ∑Bk,m(u)=1. Hence, B-splines fulfill the 
convex hull property just like Bézier splines.

7) The B-spline is called uniform if the knot values are 
spaced uniformly, i.e. equidistant (except multiplicities 
at both ends of the know vector). Otherwise we speak 
of a nonuniform B-spline.
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Why multiple knot values?
As noted before, the multiplicity of a knot value reduces 
the continuity accordingly. Hence, it allows you to create 
design features, such as cusps.
In addition, often times multiplicity m is desired at both 
ends of the knot vector. To see why, we should take a 
closer look at the resulting blending functions:
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Effect of multiplicity of m at both ends of knot vector
Since the blending functions at the ends of the interval 
equals to one, the resulting B-spline curve interpolates 
the two end points of the control polygon. Otherwise the 
B-spline would stop before reaching the end points of the 
control polygon.
This feature is usually only desired for “open” B-splines. 
With periodic B-splines, mostly this multiplicity at the end 
of the knot vector is not used to achieve Cm-2 continuity at 
the end points of the control polygon
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Knot insertion
Sometimes it is useful to be able to insert an additional 
knot into the knot vector without changing the shape of 
the curve.
First, we have to identify in which segment the new knot t
is located in, i.e. t∈[uk,uk+1). This means that the point X(t)
lies in the convex hull defined by the points dk,…,dk-m. 
Consequently, we have to find new control points that 
replace dk-1,…,dk-m+1 without changing the shape of the 
curve.
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The new points can be computed easily using the 
formula:
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The new B-spline then has the knot vector 
u0,…,uk,t,uk+1,…,un+m and the control polygon consists of 
the points d0,…,dk-m,qk-m+1,…,qk,dk,…,dn resulting in the 
following replacement scheme:

Note: p = m; pi = di
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Example:
Let (u0,…,u11) be a knot vector defined as (0, 0, 0, 0, 0.2, 
0.4, 0.6, 0.8, 1, 1, 1, 1).  We would like to insert an 
additional knot at t=0.5 which lies in the interval [u5,u6). 
Hence, the affected control points are d5, d4, d3, and d2. 
Then, the new control points are determined:
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And the new control points are:

The new control polygon consist of the points d0, d1, d2, q3, 
q4, q5, d5, d6, and d7 with knot vector (0, 0, 0, 0, 0.2, 0.4, 0.5, 
0.6, 0.8, 1, 1, 1, 1).
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For example, the B-spline could look like this before 
insertion of the new knot:
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After inserting the new knot:
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Displaying B-spline curves
Usually, B-splines curves are approximated with line 
segments for display purposes. Obviously, the number of 
points that are used for the approximation has great 
influence on the quality of the resulting visualization of the 
curve. We could use the control polygon as an 
approximation; however, this is often times too coarse. 
Sub-division techniques can lead to better results. 
Therefore, the control polygon is sub-divided by adding 
additional points in order to get a better representation. 
Fortunately, we can exploit some properties of B-splines 
for sub-dividing the control polygon.
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Displaying B-spline curves (continued)
First, we convert the B-spline into a Bézier spline. This 
can be achieved by inserting knots so that every knot has 
multiplicity m-1. Then, the blending functions of the B-
spline resemble the Bernstein polynomials so that the 
control polygon has the Bézier points as vertices. This 
already represents a finer approximation since several 
points were added to the control polygon. If a finer 
representation is necessary, we can further add points by 
using the de Casteljau algorithm as we saw earlier.
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Displaying B-splines with OpenGL
OpenGL already provides a methodology for rendering B-
splines:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();

gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotvector, 
stride, *controlPoints, order, 
GL_MAP1_VERTEX_3);

gluEndCurve ();
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Comment:
OpenGL automatically determines the necessary 
discretization of the B-spline, i.e. the number of line 
segments needed for the approximation. The 
approximation depends on the viewing distance. This 
means the closer the camera moves to the B-spline the 
more points are used and vice versa. Caution: if you use 
display lists to generate B-splines OpenGL cannot 
regenerate the approximation since it is already stored in 
the display list. Therefore, the approximation is no longer 
adapted automatically.
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Demonstration
Behavior of a uniform B-spline curve
http://www.cs.biu.ac.il/~zultia/applets/CAGD/UBS%20dra
w2/UBsDraw.htm
http://www.ibiblio.org/e-notes/Splines/Basis.htm

http://www.cs.biu.ac.il/~zultia/applets/CAGD/UBS draw2/UBsDraw.htm
http://www.cs.biu.ac.il/~zultia/applets/CAGD/UBS draw2/UBsDraw.htm
http://www.ibiblio.org/e-notes/Splines/Basis.htm
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Rational B-splines
Regular B-splines cannot be used to exactly represent 
conic sections. This includes circle, ellipse, and parabola. 
Since these types of curves are common in designs, we 
would like to be able to model those type of curves 
exactly, i.e. without any approximation errors. Therefore, 
we define rational B-splines similar to B-splines:
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Comments:
1) The ωi are weights that can be used to manipulate the 

resulting curve. For ωi =1 we get a regular B-spline.
2) By increasing the weight ωi we can pull the curve 

towards the control point di. Decreasing the weight 
pushes the curve away from di.

3) Using a nonuniform knot vector results in the so called 
NURBS curve (nonuniform rational B-spline).
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Conic sections
If we define a cubic rational B-spline as

We can obtain various conic sections with the following 
values for the parameter r:

r > ½: hyperbolic section
r = ½: parabolic section
r < ½: ellipse section
r = 0: straight-line segment
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Displaying NURBS with OpenGL
OpenGL already provides a methodology for rendering 
NURBS:

GLUnurbsObj *curveName;

curveName = gluNewNurbsRenderer ();

gluBeginCurve (curveName);

gluNurbsCurve (curveName, nknots, *knotvector, 
stride, *controlPoints, order, 
GL_MAP1_VERTEX_4);

gluEndCurve ();

The vertices have the weights as their fourth component.
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Often surfaces based on the tensor product are used. 
Tensor product surfaces are parametric surfaces which 
are defined by two one-dimensional curve representa-
tions.

parametric curve                parametric surface
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To construct a 3-D surface we often base the surfaces on 
several curves. First, we evaluate the curves with respect 
to the parameter s:

The resulting coefficients cj(s) are then used to determine 
a curve on the surface using the second parameter t:

Of course, we can also switch the parameters s and t and 
evaluate using the parameter t first.
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Lagrange surfaces
An interpolating surface based on a given set of 
coefficients cij can be constructed using the tensor 
product of the Lagrange polynomials:
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Lagrange surface
Example (m=3, n=2):
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Hermite surfaces
Using the cubic Hermite polynomials as basis 
polynomials, we can interpolate the points and first 
derivates of the surface at two nodes:
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Hermite surfaces
If the surface is defined using the tensor product of cubic 
Hermite polynomials, the resulting surface then 
interpolates the interpolation points at the corners, its 
partial derivatives . vectors twist and f,
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Hermite-Lagrange tensor product
If only the derivatives in one direction are known, i.e. of 
one set of curves, a tensor product of Hermite and 
Lagrange polynomials can be used.

The interpolation of derivatives and maybe also the twist 
vectors is particularly useful if several patches are 
supposed to build a single smooth surface.
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Basis transformation
Similar to polynomial curves, we can transform the 
polynomial representation from one basis to another. This 
is especially useful if the data is supposed to be 
exchanged between different software systems.
Special basis polynomials, such as Bernstein polynomials 
or B-splines, allow a closer correlation between 
coefficients (control points) and the surface geometry. 
Hence, these basis polynomials are more versatile. 
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Bézier tensor product
The tensor product of two Bézier curves results in a 
Bézier surface representation. Similar to the previous 
approaches, we define a set of curves Xj defined by the 
control points bij:

This set of curves then gives us control points bj=Xj(s)
which we can use to define a Bézier curve with a second 
parameter t:
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Example (m=3, n=2):

b00

b30

b20

X0(s)
b10

b01

b21 b31

X1(s)
b11

b02

b22

X2(s)

b12
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Example (m=3, n=2):

b0=X0(s)

b1=X1(s)

b2=X2(s)

X(s,t)

Boundary curve

No surface curve

(only determines   
control points)
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Bézier tensor product
We can also construct a set of curves Xi(t) first, and then 
compute the control points for the curve parameterized by 
s. Only the curves at the edge of surface are curves on 
the surfaces. All other curves of the set are not 
necessarily surface curves, i.e. part of the surface.
For m=n, the resulting surface is called bilinear, 
biquadratic, or bicubic, etc. The monomial basis of a 
bilinear surface consists of the polynomials {1, s, t, st}. For 
the quadratic case the monomial basis is {1, s, t, st, s2, t2, 
st2, s2t2}.
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Bézier tensor product
Increasing the degree of the surface or subdividing the 
surface (along one direction) can be achieved by applying 
the respective algorithm to the row or column of the 
coefficient matrix.
For evaluating the Bézier tensor product efficiently, the de 
Casteljau algorithm can be applied once for each 
parameter. It does not make any difference if the 
algorithm is applied first to parameter t or s.



1-179Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
De Casteljau algorithm for surfaces

Example (m=n=2):
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The partial derivatives

( ) ( )

.  :surface

 theof vector normal  theneed also  wetion,trianglula
ingapproximatan  using e.g. surface,  therenderingFor 

           
:algorithmCasteljau  de  theusing determined be alsocan 

)()(),(

)()(),(

1,
00

1,
01

,1
00

,1
10

0 0
,,

0 0
,,

ts

ts

nmnm
t

nmnm
s

m

i

n

j
njmiijt

m

i

n

j
njmiijs

XX
XXN

bbnXbbmX

tBsBb
t
XtsX

tBsBb
s
XtsX

×
×

=

−=−=

′=
∂
∂

=

′=
∂
∂

=

−−−−

= =

= =

∑∑

∑∑



1-181Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Partial derivatives
Another option for computing the partial derivatives is to 
represent the derivatives as a Bézier surface on its own 
using the control points
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For a more generic intervall [a,b]×[c,d] we get:
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Properties of Bézier surfaces
1) The surface segment lies in the convex hull of the 

defining net of control points (due to the successive 
convex-combinations of the de Casteljau algorithm)

2) The Bézier point bij has the greatest influence on the 
segment at (s,t)=(i/m, i/n) (pseudo-local control)

3) The corners of the net of control points and the 
corners of the Bézier segment are identical, i.e. the 
they are interpolated.

4) The control points on the edge of the net are the 
Bézier  points of the edge of the Bézier segment.
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Surface curves of the type X(s,t0) or X(s0,t) (s0, t0 constant) 
are called iso-parameter lines and are polynomials of 
degree m or n, respectively. This is not true for diagonal 
surface curves X(at+b,ct+d) (a,b,c,d constant) which 
generally are polynomials of degree m+n.
Using the de Casteljau algorithm, we can sub-divide an 
iso-parameter line in sub-segments. Continuing this sub-
division process in both parameter direction results in a 
series of Bézier nets that converges towards the Bézier 
surface. This fact can be used, for example, for 
determining the intersection of two surfaces using this 
series as approximation.
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Example: bicubic Bézier surface
Similar to Hermite surface, the inner control points of the 
boundary curves ○ define the partial derivatives in the 
corners ●. The inner control points □ determine the twist 
vectors.
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b30

b03

b33
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Example (continued):
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The twist vector
The twist vector Xst describes the twist of the patch, e.g. 
how much two parallel straight edges are rotated against 
each other.

Surface with zero twist Surface with constant twist
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Spline surfaces

Spline surfaces are composed of several patches 
(surface segments). At the boundaries certain conditions 
for a smooth and continuous transition need to be 
observed.
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1.7 Surface Representations
Spline surfaces
Let us consider two patches
a with (s,t)∈[s0,s1]×[t0,t1] and
b with (s,t)∈[s0,s1]×[t0,t1].

For Ck continuity, the first k partial derivatives of a and b
along the common boundary at s1 have to be equal:
C0: a(s1, t) = b(s1, t), t∈[t0, t1]
C1: as(s1, t) = bs(s1, t) , t∈[t0, t1]
C2: ass(s1, t) = bss(s1, t) , t∈[t0, t1]
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1.7 Surface Representations
Spline surfaces
If Bézier surfaces are used as patches a and b then the 
condition for a Ck continuous transition is identical with 
the conditions for the individual curves when looking at 
the individual cells of the Bézier net.
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1.7 Surface Representations
Spline surfaces

For a C0 continuous transition it is required that am,i=b0,i
(i=0,…,n).
For a C1 continuous transition we get the additional 
condition: )(1)(1
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1.7 Surface Representations
Spline surfaces
For C2 continuity the following additional equation needs 
to be fulfilled:

If one patch, for example a, is given then the neighboring 
control points of the next patch b can be derived from 
these equations. The rows of the control net of the patch 
a can be interpreted as control polygons of a Bézier curve 
so that the next points of the control net can be 
determined accordingly.
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1.7 Surface Representations
Spline surfaces
The new control points can be found, for example, by 
evaluating using the de Casteljau algorithm at s2, i.e. 
outside of the interval Δs0. In analogy to sub-dividing a 
Bézier curve we can extend it. For a Ck continuous 
transition we need the new points b0,i,…,bk,i.

Δs 0
:  Δ

s 1
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1.7 Surface Representations
Example:
Determination of the eight neighboring points to achieve 
C2 continuity of a bicubic Bézier patch.

Step 1: rows Step 2: columns



1-195Department of Computer Science and Engineering

1 Three-Dimensional Object Representations

1.7 Surface Representations
Interpolating using Bézier surfaces
Let pij be a set of given points that are to be interpolated 
at the parameter values (si, tj). (the parameterization is 
given by two vectors and not an arbitrary matrix of 
nodes.)
In order to determine an interpolating Bézier surface

we can use the algorithm for curves.
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1.7 Surface Representations
Interpolating using Bézier surfaces

Bicubic interpolating surface
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1.7 Surface Representations
Interpolating using Bézier surfaces
First, we generate a set of interpolating curves

The inner Bézier points are determined using a system of 
linear equations (which uses the same matrix for each j).
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1.7 Surface Representations
Interpolating using Bézier surfaces
Then, the points aij are interpolated row-wise in order to 
determine the Bézier points bij of the surface:

The surface described by the Bézier points bij then 
interpolates the points pij.
Proof:
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1.7 Surface Representations
Trimming
In some cases, it is necessary to bound the area on 
which a free-form surface is defined, e.g. by choosing a 
boundary curve (trimming curve) in order to limit (trim) 
the surface:

Trimmed free-form surface
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1.6 Spline Representations
Displaying B-spline surfaces with OpenGL
OpenGL already provides a methodology for rendering B-
spline surfaces:

GLUnurbsObj *surfName;

surfName = gluNewNurbsRenderer ();

gluBeginSurface (surfName);

gluNurbsSurface (surfName, nuknots, 
*uknotvector, nvknots, 
*vknotvector, ustride, vstride,    
controlPoints, udegree, 
vdegree, GL_MAP2_VERTEX_3);

gluEndSurface (surfName);
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1.6 Spline Representations
Trimming a B-spline surface with OpenGL
OpenGL already provides a methodology for trimming B-
spline surfaces:

GLUnurbsObj *surfName;

gluBeginTrim (surfName);

gluPw1Curve (surfName, npts, *curvepts, stride,  
GL_MAP1_TRIM_2);

gluEndTrim (surfName);
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1.7 Surface Representations
Scalar fields
Instead of using three-dimensional control points for 
defining a free-form surface, we can use scalar valued 
“points” (ordinates). The resulting one-dimensional 
surface function can then be visualized as a graph on top 
of the defining area. Surfaces that are defined in such a 
way are called scalar fields (in an analog way, 3-D 
functions can be interpreted as vector fields).
One-dimensional spline surfaces are often used for 
representing geographical height fields (terrain models):
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1.7 Surface Representations
Scalar fields

Crater lake terrain model. Source: U.S. Geological Survey
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1.7 Surface Representations
Iso-curves
The height curves of 
a scalar field f, i.e. 
f(x,y) constant, are 
called iso-curves. 
Iso-curves are 
algebraic or implicit 
curves, respectively.

Iso-lines of a bilinear spline surface,
Lawrence Livermore National Laboratory
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1.7 Surface Representations
Iso-surfaces
In analogy to iso-cruves we can define iso-surfaces by 
using three-dimensional scalar fields. For an iso-value c, 
the corresponding iso-surface is defined as the set of all 
points with f(x,y,z)=c.
Tri-variate functions (i.e. functions with three arguments, 
“volumes”) can be defined as tensor product. Often 
times, tri-linear volumes are used:
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1.7 Surface Representations
Iso-surfaces

Iso-surface of a three-dimensional density function,
Lawrence Livermore National Laboratory
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1.7 Surface Representations
Deformation
Deformation, e.g. of a 2-D image, can be by displacing 
control points of a regular grid structure. The surface 
defined by the displaced control net then maps the 
domain onto itself: (x’,y’)=f(x,y).
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1.7 Surface Representations
Morphing
Deformations are used, for example, to cross-fade from 
one image to another one (image morphing).
Let m1(x,y) and m2(x,y) be two images. We then look for a 
function

m(t,x,y), t∈[0,1]
that fades continuously from m1 to m2 in such a way that 
m(0,x,y)=m1(x,y) and m(1,x,y)=m2(x,y).
The simple approach, m=(1-t)·m1 + t·m2, would not 
consider the contours of the image properly. Therefore, it 
is necessary to work with deformations.
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1.7 Surface Representations
Morphing
First, a deformation f2(x,y) is defined manually which 
maps previously picked points within m1 onto m2. While 
moving the geometry, i.e. f(t,x,y)=(1-t)·(x,y)+t ·f2(x,y), the 
color values of the images are “blended” accordingly.

[S. Lee, et al., Image morphing using deformation techniques, 1996]
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1.7 Surface Representations
Morphing
In the same way, three-dimensional objects can be cross-
faded, e.g. using B-spline volumes, which are called free-
form deformations (FFDs).

3D Morphing, Stanford University
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1.8 Space Partitioning
For representing an object using space subdivision 
techniques the object space is split up into several 
smaller elements. For each element, we store if this 
specific element is covered by the object.
Standard approach:

– Space is divided by a regular equidistant grid, resulting in a 
grid where each cell has exact identical geometry.

– In 3-D space, we get cube-shaped cells, which are called 
voxels (volume element).
→ The name is in analogy to pixel (picture element) in 2-D
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1.8 Space Partitioning
Example: volumetric image of a CT-scanned object
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1.8 Space Partitioning
Advantages:

– It can be determined very easily if a given point is part of the
object or not.

– It can be checked easily if two objects are connected or 
attached to each other.

– The representation of an object is unique.

Disadvantages:
– There cannot be any cells that are only partly filled.
– Objects can generally be represented approximately.
– For a resolution of n voxels in each dimension we need n3

voxels to represent the object. Therefore, it requires a lot of 
memory → save space using octrees.
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1.8 Space Partitioning
Octrees
An octree is a hierarchical data structure for storing an 
irregular, i.e. not equidistant, sub-division of a 3-D space.
Idea:

– The initial element is a cube which covers the entire object 
space. The element can have two states: covered or 
uncovered.

– In case an element is partly covered, it is 
sub-divided into eight equally sized sub-
elements.

– The coverage of each element is checked 
recursively until a desired resolution is 
achieved.
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1.8 Space Partitioning
Octrees (continued)
In an octree, each node (element) that is not a leaf has 
eight successors (sub-elements).
The root of the tree represents the initial cube. For each 
sub-division a fixed numbering scheme is used for the 
sub-elements when inserting a new node as a child.
Each leaf stores the state of 
its corresponding (sub-) 
cube.
Each inner node represents 
a partly covered cube.
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1.8 Space Partitioning
Octrees (continued)
Example: representation of a 3-D object using an octree
a) Object embedded into initial cube.
b) Representation of the object using a maximal sub-

division of two.
c) Corresponding octree data structure

(a) (b) (c)
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1.8 Space Partitioning
Octrees (continued)
Octrees can not only be used for representing 3-D 
objects. A very common use of octrees is the sub-division 
of a 3-D scene.

– Here, the individual objects are represented by standard data 
structures, e.g. polygons.

– The state of the cells of the octree is then extended to a data 
structure that stores a list of objects, e.g. polygons, which are 
contained by the cell.

This results in a significant performance increase for 
algorithms that work on the individual areas of the object 
space locally (e.g. ray tracing).
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1.8 Space Partitioning
Quadtrees
The principle of sub-dividing the 3-D space can be 
generalized to an n-dimensional space.
For the case n=2 we get the sub-division of a 2-D plane 
resulting in a quadtree, where each inner node of the tree 
has exactly four children.
Historically, quadtrees are the older data structures. They 
were used initially in the late 60’s of the last century. 
Octrees were derived from quadtrees and used since the 
late 70’s, early 80’s of the last century.
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1.8 Space Partitioning

(a) (b)

Quadtrees (continued)
Example: sub-division of a 2-D space using a quadtree.
a) Sub-division of the 2-D space until each cell containes

maximally one object.
b) Corresponding data structure.
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1.8 Space Partitioning
Binary space-partitioning (BSP trees)
Octrees and quadtrees both sub-divide at each level 
equally in each dimension, i.e. at the center.
A BSP tree offers an alternative representation where an 
element can be sub-divided into two sub-elements at an 
arbitrary (hyper-)plane

– If one sub-element is defined as part of the inside while the 
other sub-element is defined as the outside, a convex 
polyhedron can be represented by using properly chosen 
planes limiting the volume.

– By uniting convex interior areas, arbitrary concave polyhedra 
with holes can be defined.
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1.8 Space Partitioning
BSP trees (continued)
In the realm of computer graphics, BSP trees are often 
used for determining the visibility of an object.
Idea:

– BSP trees can – similar to octrees and quadtrees – be used for 
sub-dividing a 3-D scene (see next example). Here, the 
objects are not bound to a particular rasterization.

– The object space is to be sub-divided recursively in such a 
way, that each area contains at most one object.

– Using the locations of those areas relatively to the view point,
the objects can be sorted according to the viewing distance 
(depth) easily, i.e. it can be determined which objects are 
completely invisible.
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1.8 Space Partitioning
BSP trees (continued)
Example: sub-division of a 2-D scene
a) Using a quadtree
b) Using a BSP tree

(a) (b)
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1.8 Space Partitioning
Principal Component Analysis (PCA)
An ideal choice of dividing planes for a BSP tree is 
offered by the principal component analysis (PCA). Let 
us assume that a complex scene is given by a point cloud

Pi∈IR3 (i=1,…,n)
(for example object centers or vertices of polygons).
PCA defines an orthogonal coordinate system e1, e2, e3
which orientation corresponds to the one of the point 
cloud.
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1.8 Space Partitioning
Principal Component Analysis (continued)
Now, we choose the average of all points as the center of 
the coordinate system:

B has the real eigenvalues λ1, λ2, λ3 and eigenvectors e1, 
e2, e3, i.e. λi·ei = B·ei. The eigenvectors in combination with 
the center c form the coordinate system we are looking 
for. The extent of the point cloud in direction of ei is 
proportional to √λi.
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