
3-1Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

Chapter 3

Illumination Models and Surface-Rendering Methods

3-2Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.1 Overview
For a realistic display of a scene the lighting effects
should appear naturally. An illumination model, also
called a lighting model, is used to compute the color of
an illuminated position on the surface of an object. The
shader model then determines when this color
information is computed by applying the illumination
model to identify the pixel colors for all projected positions
in the scene. Different approaches are available that
calculate the color for each pixel individually or interpolate
between pixels in the vicinity. This chapter will introduce
the basic concepts that are necessary for achieving
different lighting effects.

3-3Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.1 Overview
Using correct lighting improves the three-dimensional
impression.

3-4Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.1 Overview
In particular, this chapter covers the following:
• Light sources
• Shading models
• Polygon rendering methods
• Ray-tracing methods
• Radiosity lighting model
• Texture mapping
• OpenGL illumination and surface-rendering
• OpenGL texture functions

3-5Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Light Sources
Often in computer graphics, light sources are assumed as
simple points. This is basically due to the fact that it is
easier to do all the necessary lighting computations with
point light sources.

Diverging ray paths from
a point light source

3-6Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Light Sources
Radial intensity attenuation
As the radial intensity from a light source travels outwards
its amplitude at any distance dl from the source is
attenuated quadratically:

For light sources, that are located very far away from the
objects of the scene it is safe to assume that there is no
attenuation, i.e. fRadAtten = 1.0.

2
210

1)(
ll

lRadAtten dadaa
df

++
=

3-7Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

θl

3.2 Light Sources
Directional light sources
By limited the direction of the light source, directional light
sources, or spotlights, can be created. Then, only objects
that divert at a maximal angle θl are lit by the light source.

light direction vector L
(normalized)

3-8Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

θl

3.2 Light Sources
Directional light sources (continued)
To determine if an object is lit by the light source, we
need to compare the angle between the light direction
vector and the vector to the object, e.g. its vertices.

objectα
Vo

Assuming that 0<θl≤90º we
can check if an object is lit
by comparing the angles:

cos α = L·Vo ≥ cos θl

L

3-9Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Light Sources
Directional light sources (continued)
In analogy to radial attenuation, we can introduce an
attenuating effect for spotlights as well based on the
angle:

1.0 if source is not a spotlight
fAngAtten = 0.0 object is outside the spotlight

(L·Vo)
al otherwise

3-10Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Illumination model
For determining the intensity (color) of a pixel, which
results from the projection of an object (for example a
polygon), illumination models are used.
An illumination model describes how to compute a
intensity (color) of a point within the scene depending on
the incoming light from different light sources. The
computation is usually done in object space.
In many illumination models, the intensity (color) of a
point depends on the incoming direct light from light
sources and indirect light approximating reflection of light
from surrounding objects.

3-11Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Shading model
Two different approaches for applying the illumination
model are possible to determine all pixels of the resulting
image. The illumination model can be applied to

– Each projected position individually
– Certain projected position; the pixels in between are then

interpolated
→ interpolating shading techniques, e.g. flat shading,

Gouraud shading, or Phong shading

3-12Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Interpolating shading techniques

world coordinates screen coordinates

illumination model:
The intensity of a point on a
surface of an object is computed

interpolating shading algorithm:
Interpolates pixel intensities by
interpolating intensities of
poylgon vertices

3-13Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Interpolating shading techniques (continued)
Does this state a problem?
• Lighting of the scene is done in

object space (world coordinates
• Interpolation of intensity values

is done in image space
• Projections generally are not affine transformations
→ By using an interpolating scheme (e.g. linear

interpolation) we use “incorrect” ratios with respect to
the world coordinate system

Despite being mathematically incorrect, this shading
model achieves fast and acceptable results

world
coordinates

screen
coordinates

3-14Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Geometry

P point on the object’s surface
N surface normal vector at P, normalized
L vector pointing from P towards a point light source, normalized
V vector pointing from P towards the view point (eye), normalized
φi, θI (local) spherical coordinates (of L and V)

P

„phi“

„theta“

3-15Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Specular Reflection
R vector of the reflected ray, normalized

We obtain:
L and R are located in the same
Plane and θ = θin = θref

N

L Rθ θ R2

R1

LNNL

LR

RRR

−⋅⋅=

−=

+=

)(2

2
2

12

3-16Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
We first consider the most common illumination model:
the Phong illumination model.
Careful: this model is based on empirical results without

any physical meaning but with good and
practical results!

The model simulates the following physical reflective
properties:

a) Perfect/full specular reflection
A light ray is completely reflected without any
scattering according to the laws of reflection.
Surface: ideal mirror (does not exist in reality)

3-17Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Simulated physical reflective properties (con-
tinued)

b) Partly specular reflection
The light ray is split up so that a reflective conus
occurs with the full specular reflection as its main
extent.
Surface: imperfect mirror, rough surface; a surface
element is composed of microscopically small
ideal mirrors which are leveled slightly differently.

3-18Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Simulated physical reflective properties (con-
tinued)

c) Perfect/full diffuse reflection
The light ray is perfectly scattered, i.e. with the
same intensity in all direction
Surface: ideal, matt surface (does not exist in
reality); approximates e.g. fine layer of powder

The Phong illumination model then composes the
reflected light linearly out of these three components:
reflected light = diffuse component + specular component

+ ambient light

3-19Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model

3-20Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Ambient light
The ambient component is usually defined as constant
and simulates the global and indirect lighting. This is
necessary because some objects are not hit by any light
rays and would end up as being black. In reality, these
objects would be lit by indirect light reflected by
surrounding objects. Hence, ambient light is just a mean
to cope for the missing indirect lighting.
What kind of surfaces can be simulated with this model?
The linear combination of different components (diffuse
and specular) resemble, for example, polished surfaces.

3-21Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Polished surfaces

3-22Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
The mathematical model (without color information)

I = kdId + ksIs + kaIa

The physical properties of the surface are determined by
the ratios between the different components. The
constants always add up to one:

kd + ks + ka = 1

Diffuse reflection, i.e. the term kdId

Id = Ii⋅cos (θ) with
Ii intensity of the incoming light
θ angle between normal N and light vector L

3-23Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Diffuse reflection (continued)

Id = Ii (L⋅ N)
The diffuse component of the
Phong model emulates
Lambert’s cosine law:
Ideal diffuse (matt) surfaces
reflect the light at an intensity (in
all directions equally) identical to
the cosine between surface
normal and light vector

3-24Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Specular reflection
From a physical point of view, the specular reflection
forms an image of the light source “smeared” across the
surface. This is usually called a highlight.
A highlight can only be seen by the viewer if her/his
viewing direction V is close to the direction of the
reflection R. This can be simulated by:
Is = Ii cosn (Ω) with
Ω angle between V and R
n simulates degree of perfection of the surface

(n→∞ simulates a perfect mirror, i.e. only reflects in
direction of R)

3-25Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Specular reflection (continued)

Is = Ii (R·V)n

Comments:
For different L we always get
(except its direction R) the same
reflection cone.
This does not concur with the real
relation between reflection and
direction of the light vector.
Major drawback of this model!

3-26Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Entire mathematical model in detail:

I = kdId + ksIs + kaIa

= Ii (kd (L⋅ N) + ks(R·V)n) + kaIa

As a 2-D section:

ambient

diffuse

specular

3-27Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Example:

ka,kd constant
increasing ks

increasing n

3-28Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Comment:
If the view point is sufficiently, e.g. infinitely, far away
from the light source we can replace the reflection vector
R by a constant vector H: H = (L+V)/║L+V║.

Then we can use N·H instead of
R·V, which differs from R·V but has
“similar” properties.
Hence, we get:

I = Ii (kd (L⋅ N) + ks(N·H)n) + kaIa

3-29Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
The mathematical model: (including color)

Ir = Ii (kdr (L⋅ N) + ksr(N·H)n) + karIa

Ig = Ii (kdg (L⋅ N) + ksg(N·H)n) + kagIa

Ib = Ii (kdb (L⋅ N) + ksb(N·H)n) + kabIa

where
kdr, kdg, kdb model the color of the object
ksr, ksg, ksb model the color of the light source

(for white light: ksr,= ksg,= ksb

kar, kag, kab model the color of the background light

3-30Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Comments:
Main deficiencies of the model:
– Two-way reflections and mirroring of surfaces are

described insufficiently by the ambient term
– Surfaces appear like plastic, for example, metal

cannot be modeled exactly
→ physically based shading models, that try to

simulate the BRDFs (reflection function, see next
slide) correctly

3-31Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
BRDF (bi-directional reflection distribution function):
In general, the reflected light emitted from a point on a
surface can be described by a BRDF. The name BRDF
specifically stresses the dependence of the light reflected
in an arbitrary direction on the direction of the incoming
light.
If all directions L and V are
known, the correlation between
intensities are described by a
BRDF:

f(θin,Φin,θref,Φref) = f(L,V)

3-32Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
BRDF (continued)
In practice, incoming light enters from more than one
direction at a specific point on the surface.
The entire reflected light then has to be computed by
integrating across the hemisphere to cover for all possible
directions of incoming light.
Questions:

– How to determine BRDFs?
→ e.g. measuring, modeling

– What resolution is necessary to represent BRDFs?
→ heuristics if there are no closed form representations

– How can BRDFs be stored and processed efficiently?
→ e.g. matrices

3-33Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
BRDF (continued)
Representation of BRDFs for two different directions of
incoming light (modeled after Blinn (1977):

3-34Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Disadvantages of “entirely” local shading models:
• Represent ideal case of a single object in a scene that

is lit by a single point light source
• Only consider direct lighting
• Interaction with other objects is not modeled (i.e. no

indirect lighting, no shadows)
→ global shading techniques

3-35Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
How can the evaluation of a specific illumination model
for an object be used to determine the light intensities of
the points on the object’s surface?

Weltkoordinaten Bildschirmkoordinaten

There is a difference between (three-
dimensional) object space and (two-
dimensional) image space!

we assume a polygonal object
representation consisting of several faces

world coordinates image coordinates

3-36Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Flat shading
For each polygon/face, the illumination model is applied
exactly once for a designated point on the surface. The
resulting intensity is then used for all other points on that
surface.
The illumination model requires a
polygon normal or surface normal
in object space.
(for example N1, N2, N3, N4, …)
As designated point, often the
center of gravity or, for simplicity
reasons, one of the vertices is used.

3-37Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Flat shading (continued)
Comments:
• Simple, cost-effective method;

interpolation is not necessary
• Edges within polygonal networks

remain visible, i.e. faces are
visible; non-continuous intensity
distribution across edges

• Can be used for pre-views,
sketches, visualization of the
polygonal resolution.

3-38Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Gouraud and Phong shading
Both methods use interpolation techniques in order to smooth out or
eliminate the visibility of the (virtual) edges.
(the polygonal network represents an approximation of a curved
surface)

For the illumination model, the normal
vectors at the shared vertices of the
polygons are used (e.g. NA,…)
A vertex normal can be derived from
the (weighted) average of the normal
vectors of the attached polygons or
determined from the object originally
represented by the polygonal
network.

3-39Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Gouraud and Phong shading (continued)
Both methods use (bi-)linear interpolation in the image
space:
Values inside (and on the edge of) a polygon are
computed from the values at the

P1(x1,y1)

P2(x2,y2)

P3(x3,y3)

P4(x4,y4)

Pb(xb,ys)Pa(xa,ys)

Ps(xs,ys)

vertices (generally determined in
object space) by using linear
interpolation within the image space.
Efficient implementation work
incrementally following the scan line.

3-40Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Gouraud and Phong shading (continued)
1. Determine values V(P1), V(P2), V(P3), V(P4)
2. Determine the intersections Pa, Pb between

scan-line and edges of the polygon
3. Determine V(Pa) and V(Pb):

4. Determine V(Ps):

P1(x1,y1)

P2(x2,y2)

P3(x3,y3)

P4(x4,y4)

Pb(xb,ys)Pa(xa,ys)

Ps(xs,ys)

()))(())((1)(
asbsba

ab
s

xxPVxxPV
xx

PV −+−
−

=

()

()))(())((1)(

))(())((1)(

1441
14

1221
12

yyPVyyPV
yy

PV

yyPVyyPV
yy

PV

ssb

ssa

−+−
−

=

−+−
−

=

3-41Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Gouraud shading
The illumination model is only used for evaluating the
intensities at the vertices of the polygons using the
normal vectors of those vertices.
Using interpolation, the intensity values at the (projected)
points inside the polygon are computed.

3-42Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Gouraud shading (continued)
• Edges of the polygonal network are

smoothed and the intensity
distribution across the edge is
continuous, however not necessarily
smooth.

• Method cannot generate highlights
appropriately: these can only occur if
the view vector is very close to the
direction of reflection; however, the
illumination model is only evaluated
at the vertices and hence may miss
the highlights

3-43Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Gouraud shading (continued)
• Highlights are either skipped or

appear shaped like a polygon
(instead of round)

• Often used: combination of Gouraud
shading and exclusively diffuse
reflective component

Comment:
Gouraud shading is one of the
standard shading methods used by
today’s graphics hardware

3-44Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Phong shading
The illumination model is evaluated for every projected
point of the polygonal surface. The surface normal at
each projected point is computed by interpolating the
normals at the vertices.

3-45Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Phong shading
• Intensity distribution across the edges of

the polygon network is continuous and
smooth; the appearance of curved
surfaces is approximated very well using
the interpolated normal vectors

• Much more computational effort required
compared to Gouraud shading.

• Highlights are represented adequately.
Comment:

Phong shading is supported by
current high-end graphics hardware.

3-46Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Flat, Gouraud and Phong shading in comparison

3-47Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Comments:
What do we need to do to ensure that polygon edges that
are explicitly supposed to appear as edges when using
Gouraud or Phong shading?
– Vertices of the polygon that are part of such feature

edges have to be stored separately and with
different normal vectors.

– Strong connection and dependence between
shading method and polygonization or triangulation
of the object (feature recognition)

3-48Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Before the perceived images are transmitted to the brain,
the cells in the human eye pre-process the intensity
values.
How do the light receptors in the eye react to different
light intensities?

Lechner’s law
The relation between the light entering the eye and the
light intensity perceived by the eye is not linear but
approximately logarithmic.

3-49Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Lechner’s law (continued)

Implication:
Small changes to the
intensity in dark areas are
perceived better than the
exact same change in
intensity in brighter areas.

3-50Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Lechner’s law (continued)
Intensity progression / color progression

Intensity increase of equidistant steps
of 12.5% with respect to incoming light
(0% to 100%

– Jump in intensities in darker
areas appears significantly larger
than in lighter areas

– Great difference between
perceived jumps in intensities

Increase in intensities in equidistant
steps with respect to perceived
intensities

– Perception of almost equidistant
jumps in intensity

3-51Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Mach band effect
The interaction of the light receptors in the human eye
emphasize “sharp” changes in intensity.
As soon as the eye detects such changes in incoming
intensity, it adds overshoot and undershoot to the
received intensity which amplify the difference.
This sub-conscious mechanism of highlighting edges
between different intensities helps our visual perception
to automatically sharpen contours (edge detection).

3-52Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Mach band effect (continued)
Example:

3-53Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Mach band effect (continued)
When rendering, the automatic detection of changes in intensity of
the human eye is rather disturbing and can only be reduced by
generating transitions between different intensities as smooth as
possible.
Flat shading:

non-continuous transitions in intensity, very strong Mach band
effect

Gouraud shading:
continuous change in intensity; nevertheless still Mach band
effects depending on the polyonization

Phong shading:
smooth transition between intensities reduce Mach band effect
significantly

3-54Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Mach band effect (continued)
Mach band effect occurring
when using Gouraud shading

3-55Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Principle
• Backward ray-tracing: since most light rays do not hit

the eye it requires less computational effort to trace
the light rays backwards starting at the eye and then
end at the individual light sources and other surfaces.

• The rays are traced for every pixel within the image
place into the scene; at every intersection with an
object, the direct (local model) as well as the reflected
and refracted light components are determined.

• The resulting bifurcations of the rays implicitly describe
a tree.

• Ray-tracing is specifically suitable for modeling of
directed light (many mirror-like or transparent objects)

3-56Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing

Opaque Object

Pixel

Semi-transparent object

Eye

Light

Initial Ray

Light Rays /
Shadow Rays

3-57Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Recursively tracing of rays

3-58Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Recursively tracing rays (continued)
Refraction occurs at the common boundary between
media with different densities, e.g. air and water. The
angle of refraction β’ is proportional to the angle of
incidence β. If the ray enters a more dense medium the
angle is going to decrease.
Surfaces can (partly) reflect
and refract at the same time.
However, if the angle of
refraction β’ is greater than 90°
the ray is only reflected.

3-59Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Examples:

3-60Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Recursively tracing rays (continued)
The ray is “terminated” if
– The reflected or refracted ray does not intersect any

more objects.
– A maximal depth of the tree is reached.
– The contribution in intensity (color) value of a

continued ray becomes too low.
Comment:
The computational effort of this approach depends
heavily on the complexity of the scene. Space sub-
division techniques, such as octrees, can result in
significant speed-ups when using ray-tracing.

3-61Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Shadows
• Follow a ray from every

intersection with an
object to all light
sources.

• If one of those rays has
to pass through an
object on its way to the
light source then the
point of intersection is
not lit by this light
source, hence it is in its
shadow.

3-62Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Shadows (continued)

3-63Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Distributed ray-tracing
In reality, there is no perfect mirror, since no mirror is
absolutely planar and reflects purely (100%).
Distributed ray-tracing allows the generation of realistic
blur effects for ray-tracing. Instead of using a single
reflected ray several rays are traced and the resulting
intensities averaged.

3-64Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Distributed ray-tracing (continued)
Most of those rays follow more or less the reflected
direction while a few brake with this behavior resulting in
a bulb-shaped distribution.

3-65Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Distributed ray-tracing (continued)
Similarly, a refracted ray is spread out using the same
pattern.

Using a stochastic distribution across all possible
directions of reflection and refraction and then averaging,
we get a realistic approximation.

3-66Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Distributed ray-tracing – larger light sources
An additional increase in “realism” can be achieved by
allowing light sources not to be just point-shaped. A
larger light emitting surface area can be modeled, for
example, by using numerous point-shaped light sources.

By deploying suitable stochastic distributions of rays,
realistic soft-shadows can be achieved.

3-67Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Distributed ray-tracing – modeling apertures
Photorealistic images result from simulation of the
aperture of a camera.

An object outside the focal plane appears blurry. This can
be achieved by correctly calculating the refraction of the
lens using a stochastic distribution of the rays across the
surface of the lens.

blurry surface

focal planeimage plane

3-68Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Adaptive super-sampling
In order to avoid aliasing artifacts, several rays can be
traced through a single pixel and the results averaged.

Example: four rays
traced that cross each
vertex and the center
of the pixel

3-69Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Stochastic ray-tracing
Instead of using a fixed distribution we can use stochastic
methods, for example, random points for super-sampling:

3-70Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.4 Ray-tracing
Properties

+ The physical properties of lighting is modeled very well
+ Very suitable for high reflective surface, such as mirrors
+ The visibility problem is solved automatically
+ Great realism

− Not quite suitable for diffuse reflection
− High computation effort required
− Computation of the intersections expensive
− Sensitive to numerical errors

3-71Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Radiosity techniques compute the energy transfer
based on diffuse radiation between different surface
components (e.g. polygons, triangles, …) of a scene. By
incorporating diffuse reflections from all different objects
within the scene, we get a quite different effect in terms of
ambient lighting. This can be particularly important, for
example for interior designers.
The correlation between different objects are described
by integral equations, which are approximated to find the
solution. The total emitted energy (radiosity) is then used
as input for the rendering method. In order to integrate
specular reflection, radiosity can be combined with ray-
tracing.

3-72Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
• Radiosity incorporates the propagation of light while

observing the energetic equilibrium in a closed system.
• For each surface, the emitted and reflected amount of

light is considered at all other surfaces.
• For computing the amount of incoming light at a

surface we need:
– The complete geometric information of the

configuration of all emitting, reflecting, and
transparent objects.

– The characteristics with respect to their light
emitting properties of all objects.

3-73Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Let S be a three-dimensional scene consisting of different
surface elements

S = { Si }.
and E the emitted power per surface

E(x) [W/m2]
in every point x of S. The surfaces with E(x) ≠ 0 are light
sources.
We then are interested in the radiosity function

B(x) [W/m2]
which defines the (diffuse) reflected energy per surface.
This can then be used to determine color values and
render the scene.

3-74Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Energy transport

xx

yy

θθxx θθyy

Attenuation

Normalization

Angle of incidence and
reflection

Reflectivity of the surface S at x

∫+=
S

dyyByxFxxExB)(),()()()(ρ

]1,0[)(∈xρ

Visibility (0 or 1)

2

coscos
),(),(

yx
yxVyxF yx

−
=

π

θθ

3-75Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
If the equation describing the energy transport is
discretized, for example using the B-spline basis
functions to express the functions E(x) and B(x)

we can derive from the integral equation

a system of linear equations

∑∑ ==
i

ii
i

ii xBbxBxBexE)()()()(

∫+=
S

dyyByxFxxExB)(),()()()(ρ

∑+=
j

jijiii bfeb ρ

3-76Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
The coefficients ei of the emitting function E(x) and the
reflectivity coefficients ρi of the individual surfaces
segments Si are known. The ρi describe the material
properties, which determine which part of the
orthogonally incoming light is reflected.
The form factors fij determine the portion of the energy
that is transported from Sj to Si and depend only on the
geometry of the scene. The form factors can be
computed using numerical integration across the
hemisphere observing the size, direction, and mutual
visibility of the surface segments Sj and Si.

3-77Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Computation of the form factors using numerical
integration for a differential surface dAi:

Hemisphere, Nusselt ´81 Hemicube, Cohen ´85

3-78Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Computation of the form factors
The form factors between the differential surfaces dAi and
dAj of the surface segments Sj and Si result in:

vij: visibility
(1 if dA j visible from dAi, 0 otherwise)
The form factors of Sj to Si equal to

j
ji

ijij dA
r

vdF 2

coscos
⋅

=
π

θθ

∫ ∫ ⋅
=

i jS S
ij

ji
ijij dAdA

r
vf 2

coscos
π

θθ

3-79Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
The resulting system of linear equations can then be
described as:

Or in matrix form:

This system is usually solved separately for the different
frequencies of light (e.g. RGB).

∑ =−
j

ijijii ebfb ρ

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−
−−−

nnnnnnnnn

n

n

e

e
e

b

b
b

fff

fff
fff

MM

L

MOMM

L

L

2

1

2

1

21

22222212

11121111

1

1
1

ρρρ

ρρρ
ρρρ

3-80Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Rendering a scene
• Computation of the radiosity values bi for all surface

segments Si

• Projection of the scene and determination of the visibility
• Computation of the color values for each pixel
Comments:
• For different views, only the steps two and three need to be

repeated
• Step three can be accelerated by interpolating along scan-

lines
• For step one, the form factors fij need to be calculated

before the system of linear equations can be solved.

3-81Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.5 Radiosity
Sub-division of a scene
The finer the sub-division of the scene into surface segments the
better the results. However, the number of form factors increase
quadratically and the size of the system of linear equations increases
linearly with an increasing number of surface segments.
In addition, approximation of the integral equation using the system
of linear equations only works for constant radiosity per surface
segment. Sub-division is required for critical (non-constant) areas.

3-82Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Motivation
So far, all surfaces (polygonal objects or free-form
surfaces) were modeled as idealized, smooth objects – in
contrast to real-world surfaces with lots of detail.
The explicit modeling of surface details is too costly for
rendering and is therefore simulated using different
mapping techniques.
In the beginning, plain texture mapping [Catmull 1974]
was introduced, which projected two-dimensional
structures and patterns (textures, consisting of texture
elements, texels) onto the surfaces of the objects.
Several variations were then developed on top of this
technique.

3-83Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Principle

3-84Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Comments:
• We usually distinguish between two different

approaches: forward and inverse mapping
• In practice, it proved useful to split up the mapping

process into two steps (for example for the forward
mapping):
1. First, the texture is projected onto an interim object

using a simple mapping → “s-mapping”
Rectangles, cubes, cylinders, or spheres are often
used

2. Then, the texture is mapped onto the object that is
to be texturized → “o-mapping”

3-85Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Example: interim objects

3-86Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Example: interim objects

Planar Cylinder
Sphere

3-87Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Approaches to o-mapping

1. Reflective ray 2. Objekt center

3. Normal vektor 4. Normal of interim
object

3-88Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Inverse mapping using interim objects

Image plane

Object space

Interim object

Texture plane

3-89Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
When using free-form surfaces (Bézier splines, B-
splines), we can use the parameterization of the surface
instead of mapping to an interim object. The parameter of
a point on the surface is then also a texture coordinate.
For triangulated surfaces, we usually define a texture
coordinate for every vertex in addition to the normal
vector (color information is not necessary in this case
since it is overwritten by the texture). During rasterization
of the triangles, a texture coordinate is computed for
every pixel using linear interpolation (OpenGL does this
automatically).
Modern graphics hardware often store textures in
graphics memory for faster access.

3-90Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Aliasing
Texture mapping is very sensitive to aliasing artifacts:
• A pixel in image space can cover an area of several

texels.
• On the other hand, a texel of the texture can cover

more than one pixel in the resulting image.
• Textures are often patched together periodically, in

order to cover a larger area. If the sampling rate is to
low aliasing artifacts occur.

→ Oversampling, filtering, interpolation (instead of
sampling), level-of-detail

3-91Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Bump mapping
Texture mapping simulates a textured but planar/smooth
surface.
In order to simulate a “rougher” surface and make it
appear “more” three-dimensional, bump mapping does
not change the surface geometry itself but changes the
normal vectors that are used by the lighting model:
Simulation of surface bumps on top of planar surfaces by
changing the normal vectors.

3-92Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Bump mapping

a smooth planar
surface appears
evenly bright

an arched surface appears
darker when facing away
from the viewer

Bright
Dark
Incoming light
reflected light

3-93Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Bump mapping
The change ΔN of the normal vector N is done in a
procedural fashion or by using a texture map. This
change can, for example, be described by a gray-level
texture. The gradient of this texture (interpreted as a
scalar field) then gives us the amount and direction of the
change ΔN.
This way, regular structures (e.g. a golf ball) as well as
irregular structures (e.g. bark) can be simulated.
When looking at an object that uses bump mapping, it is,
however, often noticeable that the surface itself is planar.

3-94Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Bump mapping
Examples:

3-95Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Displacement mapping
On top of the surface, a height-field is used, which moves
the points of the surface in direction of the normal vector.
This technique also changes the shape of the surface
making it no longer planar.

3-96Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Opacity mapping / transparency mapping
Using opacity mapping, the alpha-value of a transparent
surface can be changed locally. The object, for which
opacity mapping is used, can be changed according to
the used texture in its entirety or only locally.

3-97Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Procedural mapping
An algorithmic description, which simulates bumps or
unevenness, is used to change the surface of an object.
This is often used, for example, for 3-D textures.

3-98Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
3-D (texture) mapping
Instead of a 2-D image, a 3-D texture (volumetric image)
is used and usually mapped onto a series of planes.

wood grain marble

3-99Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Environment mapping
Environment mapping simulates realistic mirroring effects
of the (virtual or physical) environment surrounding the
object. This way, a complex surrounding can be
integrated as a photo-realistic image, without explicitly
modeling the surrounding.
An interim objects (sphere,
cube) is used to project the
environment on.
Nowadays, this is
supported by current
graphics hardware.

environment texture

viewer

3-100Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Environment mapping
Examples:

3-101Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Environment mapping
Examples:

3-102Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Chrome / reflection mapping
An arbitrary two-dimensional pattern is mapped onto a
reflecting surface. The texture itself stays fixed at a
certain location in 3-D space. Often blurriness is used to
achieve more realistic effects.

3-103Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Example: chrome / reflection mapping + ray-tracing

3-104Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.6 Texture mapping
Comments:
Different types of mapping techniques can be combined
and applied to the same surface. This is supported in
most commercial rendering and animation tools.
Most of these techniques can be implemented on the
graphics hardware (after appropriate pre-processing)
achieving rendering in real-time.
See, for example, NVIDIA’s FX Composer:
http://developer.nvidia.com/object/fx_composer_home.html

3-105Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.7 OpenGL illumination and surface rendering
Light sources
OpenGL supports up toe eight light source (GL_LIGHT0
through GL_LIGHT7). To enable lighting you need to
issue:

glEnable (GL_LIGHTING)

Each light source can be enabled using, for example:
glEnable (GL_LIGHT0)

Properties of light sources can be changed using the
command:

glLight* (lightName, lightProperty,
propertyValue);

3-106Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.7 OpenGL illumination and surface rendering
Properties
Different properties are available:
Location:

GLfloat position [] = { 0.0, 0.0, 0.0 };

glLightfv (GL_LIGHT0, GL_POSITION, position);

Color:
GLfloat color [] = { 1.0, 1.0, 1.0 };

glLightfv (GL_LIGHT0, GL_AMBIENT, color);

glLightfv (GL_LIGHT0, GL_DIFFUSE, color);

glLightfv (GL_LIGHT0, GL_SPECULAR, color);

3-107Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.7 OpenGL illumination and surface rendering
Attenuation:

glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION,
1.5);

glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION,
0.75);

glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION,
0.4);

Spot lights:
GLfloat direction [] = { 1.0, 0.0, 0.0 };

glLightfv (GL_LIGHT0, GL_SPOT_DIRECTION,
direction);

glLightf (GL_LIGHT0, GL_SPOT_CUTOFF, 30.0);

glLightf (GL_LIGHT0, GL_SPOT_EXPONENT, 2.5);

3-108Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.7 OpenGL illumination and surface rendering
Material properties
Different kind of materials can be generated with regard to, for
example, their shininess using glMaterial*:

GLfloat diffuse []

= { 0.2, 0.4, 0.9, 1.0 };

GLfloat specular []

= { 1.0, 1.0, 1.0, 1.0 };

glMaterialfv (GL_FRONT_AND_BACK,
GL_AMBIENT_AND_DIFFUSE, diffuse);

glMaterialfv (GL_FRONT_AND_BACK,
GL_SPECULAR, specular);

glMaterialf (GL_FRONT_AND_BACK, GL_SHININESS,
25.0);

3-109Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.7 OpenGL illumination and surface rendering
Normal vectors
Normal vectors can be provided by using the command
glNormal*:

GLfloat normal [] = { 1.0, 1.0, 1.0 };

GLfloat vertex [] = { 2.0, 1.0, 3.0 };

glNormal3fv (normal);

glVertex3fv (vertex);

Make sure that the normal vector is provided before the
vertex since OpenGL is a state machine!
If your normal vectors are not normalized OpenGL can do
that for you if you issue:

glEnable (GL_NORMALIZE);

3-110Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.8 OpenGL texture functions
Creating the texture and copy it to the graphics memory:

GLuint image [];

unsigned int width = 256, height = 256;

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA,
width, height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, image);

Enable textures:
glEnable (GL_TEXTURE_2D);

If you use OpenGL prior to version 2.0 width and height
have to be powers of two!

3-111Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.8 OpenGL texture functions
Texture coordinates
Provide a texture coordinate for every vertex of you polygonal mesh:

GLfloat texcoord = { 1.0, 1.0 };

GLfloat vertex = { 2.0, 1.0, 3.0 };

glTexCoord2fv (texcoord);

glVertex3fv (vertex);

Again, provide the texture coordinate before the vertex!
When using vertex arrays, texture coordinates can also be provided
as a single array:

GLfloat texcoordarray;

glEnableClientState (GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer (nCoords, GLfloat, 0,
texcoordarray);

3-112Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.8 OpenGL texture functions
Naming textures
If you use more than one texture you need to provide
names in order to be able to switch between the provided
textures.

GLuint texname;

glGenTextures (1, &texname);

Then, you can change between them using these names:
glBindTextures (GL_TEXTURE_2D, texname);

Remember, OpenGL is a state machine so it will use this
texture from now on for every texture related commands!

	Chapter 3
	3.1 Overview
	3.1 Overview
	3.1 Overview
	3.2 Light Sources
	3.2 Light Sources
	3.2 Light Sources
	3.2 Light Sources
	3.2 Light Sources
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.2 Shading model
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.3 Polygon rendering methods
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.4 Ray-tracing
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.5 Radiosity
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.6 Texture mapping
	3.7 OpenGL illumination and surface rendering
	3.7 OpenGL illumination and surface rendering
	3.7 OpenGL illumination and surface rendering
	3.7 OpenGL illumination and surface rendering
	3.7 OpenGL illumination and surface rendering
	3.8 OpenGL texture functions
	3.8 OpenGL texture functions
	3.8 OpenGL texture functions

