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Chapter 3

Illumination Models and Surface-Rendering Methods
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3.1 Overview
For a realistic display of a scene the lighting effects 
should appear naturally. An illumination model, also 
called a lighting model, is used to compute the color of 
an illuminated position on the surface of an object. The 
shader model then determines when this color 
information is computed by applying the illumination 
model to identify the pixel colors for all projected positions 
in the scene. Different approaches are available that 
calculate the color for each pixel individually or interpolate 
between pixels in the vicinity. This chapter will introduce 
the basic concepts that are necessary for achieving 
different lighting effects.
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3.1 Overview
Using correct lighting improves the three-dimensional 
impression.
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3.1 Overview
In particular, this chapter covers the following:
• Light sources
• Shading models
• Polygon rendering methods
• Ray-tracing methods
• Radiosity lighting model
• Texture mapping
• OpenGL illumination and surface-rendering 
• OpenGL texture functions
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3.2 Light Sources
Often in computer graphics, light sources are assumed as 
simple points. This is basically due to the fact that it is 
easier to do all the necessary lighting computations with 
point light sources.

Diverging ray paths from 
a point light source
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3.2 Light Sources
Radial intensity attenuation
As the radial intensity from a light source travels outwards 
its amplitude at any distance dl from the source is 
attenuated quadratically:

For light sources, that are located very far away from the 
objects of the scene it is safe to assume that there is no 
attenuation, i.e. fRadAtten = 1.0.
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θl

3.2 Light Sources
Directional light sources
By limited the direction of the light source, directional light 
sources, or spotlights, can be created. Then, only objects 
that divert at a maximal angle θl are lit by the light source.

light direction vector L
(normalized)
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θl

3.2 Light Sources
Directional light sources (continued)
To determine if an object is lit by the light source, we 
need to compare the angle between the light direction 
vector and the vector to the object, e.g. its vertices.

objectα
Vo

Assuming that 0<θl≤90º we 
can check if an object is lit 
by comparing the angles:

cos α = L·Vo ≥ cos θl

L
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3.2 Light Sources
Directional light sources (continued)
In analogy to radial attenuation, we can introduce an 
attenuating effect for spotlights as well based on the 
angle:

1.0 if source is not a spotlight
fAngAtten = 0.0 object is outside the spotlight

(L·Vo)
al otherwise
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3.2 Shading model
Illumination model
For determining the intensity (color) of a pixel, which 
results from the projection of an object (for example a 
polygon), illumination models are used.
An illumination model describes how to compute a 
intensity (color) of a point within the scene depending on 
the incoming light from different light sources. The 
computation is usually done in object space.
In many illumination models, the intensity (color) of a 
point depends on the incoming direct light from light 
sources and indirect light approximating reflection of light 
from surrounding objects.
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3.2 Shading model
Shading model
Two different approaches for applying the illumination 
model are possible to determine all pixels of the resulting 
image. The illumination model can be applied to

– Each projected position individually
– Certain projected position; the pixels in between are then 

interpolated
→ interpolating shading techniques, e.g. flat shading, 

Gouraud shading, or Phong shading
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3.2 Shading model
Interpolating shading techniques

world coordinates screen coordinates

illumination model:
The intensity of a point on a 
surface of an object is computed

interpolating shading algorithm:
Interpolates pixel intensities by 
interpolating intensities of 
poylgon vertices
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3.2 Shading model
Interpolating shading techniques (continued)
Does this state a problem?
• Lighting of the scene is done in

object space (world coordinates
• Interpolation of intensity values

is done in image space
• Projections generally are not affine transformations
→ By using an interpolating scheme (e.g. linear 

interpolation) we use “incorrect” ratios with respect to 
the world coordinate system

Despite being mathematically incorrect, this shading 
model achieves fast and acceptable results

world 
coordinates

screen 
coordinates
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3.2 Shading model
Geometry

P point on the object’s surface
N surface normal vector at P, normalized
L vector pointing from P towards a point light source, normalized
V vector pointing from P towards the view point (eye), normalized
φi, θI (local) spherical coordinates (of L and V)

P

„phi“

„theta“
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3.2 Shading model
Specular Reflection
R vector of the reflected ray, normalized

We obtain:
L and R are located in the same
Plane and θ = θin = θref
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3.2 Shading model
We first consider the most common illumination model: 
the Phong illumination model.
Careful: this model is based on empirical results without 

any physical meaning but with good and 
practical results!

The model simulates the following physical reflective 
properties:

a) Perfect/full specular reflection
A light ray is completely reflected without any 
scattering according to the laws of reflection.
Surface: ideal mirror (does not exist in reality)
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3.2 Shading model
Simulated physical reflective properties (con-
tinued)

b) Partly specular reflection
The light ray is split up so that a reflective conus
occurs with the full specular reflection as its main 
extent.
Surface: imperfect mirror, rough surface; a surface 
element is composed of microscopically small 
ideal mirrors which are leveled slightly differently.
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3.2 Shading model
Simulated physical reflective properties (con-
tinued)

c) Perfect/full diffuse reflection
The light ray is perfectly scattered, i.e. with the 
same intensity in all direction
Surface: ideal, matt surface (does not exist in 
reality); approximates e.g. fine layer of powder

The Phong illumination model then composes the 
reflected light linearly out of these three components:
reflected light = diffuse component + specular component 

+ ambient light
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3.2 Shading model
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3.2 Shading model
Ambient light
The ambient component is usually defined as constant 
and simulates the global and indirect lighting. This is 
necessary because some objects are not hit by any light 
rays and would end up as being black. In reality, these 
objects would be lit by indirect light reflected by 
surrounding objects. Hence, ambient light is just a mean 
to cope for the missing indirect lighting.
What kind of surfaces can be simulated with this model?
The linear combination of different components (diffuse 
and specular) resemble, for example, polished surfaces.
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3.2 Shading model
Polished surfaces
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3.2 Shading model
The mathematical model (without color information)

I = kdId + ksIs + kaIa

The physical properties of the surface are determined by 
the ratios between the different components. The 
constants always add up to one:

kd + ks + ka = 1

Diffuse reflection, i.e. the term kdId

Id = Ii⋅cos (θ) with
Ii intensity of the incoming light
θ angle between normal N and light vector L
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3.2 Shading model
Diffuse reflection (continued)

Id = Ii (L⋅ N)
The diffuse component of the 
Phong model emulates 
Lambert’s cosine law:
Ideal diffuse (matt) surfaces 
reflect the light at an intensity (in 
all directions equally) identical to 
the cosine between surface 
normal and light vector 
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3.2 Shading model
Specular reflection
From a physical point of view, the specular reflection 
forms an image of the light source “smeared” across the 
surface. This is usually called a highlight.
A highlight can only be seen by the viewer if her/his 
viewing direction V is close to the direction of the 
reflection R. This can be simulated by:
Is = Ii cosn (Ω) with
Ω angle between V and R
n simulates degree of perfection of the surface

(n→∞ simulates a perfect mirror, i.e. only reflects in 
direction of R)



3-25Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Specular reflection (continued)

Is = Ii (R·V)n

Comments:
For different L we always get 
(except its direction R) the same 
reflection cone.
This does not concur with the real 
relation between reflection and 
direction of the light vector.
Major drawback of this model!
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3.2 Shading model
Entire mathematical model in detail:

I = kdId + ksIs + kaIa

= Ii (kd (L⋅ N) + ks(R·V)n) + kaIa

As a 2-D section:

ambient

diffuse

specular
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3.2 Shading model
Example:

ka,kd constant
increasing ks

increasing n



3-28Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.2 Shading model
Comment:
If the view point is sufficiently, e.g. infinitely, far away 
from the light source we can replace the reflection vector 
R by a constant vector H: H = (L+V)/║L+V║.

Then we can use N·H instead of 
R·V, which differs from R·V but has 
“similar” properties.
Hence, we get:

I = Ii (kd (L⋅ N) + ks(N·H)n) + kaIa
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3.2 Shading model
The mathematical model: (including color)

Ir = Ii (kdr (L⋅ N) + ksr(N·H)n) + karIa

Ig = Ii (kdg (L⋅ N) + ksg(N·H)n) + kagIa

Ib = Ii (kdb (L⋅ N) + ksb(N·H)n) + kabIa

where
kdr, kdg, kdb model the color of the object
ksr, ksg, ksb model the color of the light source

(for white light: ksr,= ksg,= ksb

kar, kag, kab model the color of the background light
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3.2 Shading model
Comments:
Main deficiencies of the model:
– Two-way reflections and mirroring of surfaces are 

described insufficiently by the ambient term
– Surfaces appear like plastic, for example, metal 

cannot be modeled exactly
→ physically based shading models, that try to   

simulate the BRDFs (reflection function, see next 
slide) correctly
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3.2 Shading model
BRDF (bi-directional reflection distribution function):
In general, the reflected light emitted from a point on a 
surface can be described by a BRDF. The name BRDF 
specifically stresses the dependence of the light reflected 
in an arbitrary direction on the direction of the incoming 
light.
If all directions L and V are 
known, the correlation between 
intensities are described by a 
BRDF:

f(θin,Φin,θref,Φref) = f(L,V)
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3.2 Shading model
BRDF (continued)
In practice, incoming light enters from more than one 
direction at a specific point on the surface.
The entire reflected light then has to be computed by 
integrating across the hemisphere to cover for all possible 
directions of incoming light.
Questions:

– How to determine BRDFs?
→ e.g. measuring, modeling

– What resolution is necessary to represent BRDFs?
→ heuristics if there are no closed form representations

– How can BRDFs be stored and processed efficiently?
→ e.g. matrices
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3.2 Shading model
BRDF (continued)
Representation of BRDFs for two different directions of 
incoming light (modeled after Blinn (1977):
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3.2 Shading model
Disadvantages of “entirely” local shading models:
• Represent ideal case of a single object in a scene that 

is lit by a single point light source
• Only consider direct lighting
• Interaction with other objects is not modeled (i.e. no 

indirect lighting, no shadows)
→ global shading techniques



3-35Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
How can the evaluation of a specific illumination model 
for an object be used to determine the light intensities of 
the points on the object’s surface?

Weltkoordinaten Bildschirmkoordinaten

There is a difference between (three-
dimensional) object space and (two-
dimensional) image space!

we assume a polygonal object 
representation consisting of several faces

world coordinates image coordinates
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3.3 Polygon rendering methods
Flat shading
For each polygon/face, the illumination model is applied 
exactly once for a designated point on the surface. The 
resulting intensity is then used for all other points on that 
surface.
The illumination model requires a 
polygon normal or surface normal 
in object space.
(for example N1, N2, N3, N4, …)
As designated point, often the 
center of gravity or, for simplicity
reasons, one of the vertices is used.
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3.3 Polygon rendering methods
Flat shading (continued)
Comments:
• Simple, cost-effective method; 

interpolation is not necessary
• Edges within polygonal networks 

remain visible, i.e. faces are 
visible; non-continuous intensity 
distribution across edges

• Can be used for pre-views, 
sketches, visualization of the 
polygonal resolution.
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3.3 Polygon rendering methods
Gouraud and Phong shading
Both methods use interpolation techniques in order to smooth out or 
eliminate the visibility of the (virtual) edges.
(the polygonal network represents an approximation of a curved 
surface)

For the illumination model, the normal 
vectors at the shared vertices of the 
polygons are used (e.g. NA,…)
A vertex normal can be derived from 
the (weighted) average of the normal 
vectors of the attached polygons or 
determined from the object originally 
represented by the polygonal 
network.
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3.3 Polygon rendering methods
Gouraud and Phong shading (continued)
Both methods use (bi-)linear interpolation in the image 
space:
Values inside (and on the edge of) a polygon are 
computed from the values at the

P1(x1,y1)

P2(x2,y2)

P3(x3,y3)

P4(x4,y4)

Pb(xb,ys)Pa(xa,ys)

Ps(xs,ys)

vertices (generally determined in 
object space) by using linear 
interpolation within the image space.
Efficient implementation work 
incrementally following the scan line.
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3.3 Polygon rendering methods
Gouraud and Phong shading (continued)
1. Determine values  V(P1), V(P2), V(P3), V(P4)
2. Determine the intersections Pa, Pb between 

scan-line and edges of the polygon
3. Determine V(Pa) and V(Pb):

4. Determine V(Ps):

P1(x1,y1)

P2(x2,y2)

P3(x3,y3)

P4(x4,y4)

Pb(xb,ys)Pa(xa,ys)

Ps(xs,ys)
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3.3 Polygon rendering methods
Gouraud shading
The illumination model is only used for evaluating the 
intensities at the vertices of the polygons using the 
normal vectors of those vertices.
Using interpolation, the intensity values at the (projected) 
points inside the polygon are computed.
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3.3 Polygon rendering methods
Gouraud shading (continued)
• Edges of the polygonal network are 

smoothed and the intensity 
distribution across the edge is 
continuous, however not necessarily 
smooth.

• Method cannot generate highlights 
appropriately: these can only occur if 
the view vector is very close to the 
direction of reflection; however, the 
illumination model is only evaluated 
at the vertices and hence may miss 
the highlights
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3.3 Polygon rendering methods
Gouraud shading (continued)
• Highlights are either skipped or 

appear shaped like a polygon 
(instead of round)

• Often used: combination of Gouraud
shading and exclusively diffuse 
reflective component

Comment:
Gouraud shading is one of the 
standard shading methods used by 
today’s graphics hardware
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3.3 Polygon rendering methods
Phong shading
The illumination model is evaluated for every projected 
point of the polygonal surface. The surface normal at 
each projected point is computed by interpolating the 
normals at the vertices.
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3.3 Polygon rendering methods
Phong shading
• Intensity distribution across the edges of 

the polygon network is continuous and 
smooth; the appearance of curved 
surfaces is approximated very well using 
the interpolated normal vectors

• Much more computational effort required 
compared to Gouraud shading.

• Highlights are represented adequately.
Comment:

Phong shading is supported by 
current high-end graphics hardware.
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3.3 Polygon rendering methods
Flat, Gouraud and Phong shading in comparison
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3.3 Polygon rendering methods
Comments:
What do we need to do to ensure that polygon edges that 
are explicitly supposed to appear as edges when using 
Gouraud or Phong shading?
– Vertices of the polygon that are part of such feature 

edges have to be stored separately and with 
different normal vectors.

– Strong connection and dependence between 
shading method and polygonization or triangulation 
of the object (feature recognition)
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3.3 Polygon rendering methods
Before the perceived images are transmitted to the brain, 
the cells in the human eye pre-process the intensity 
values.
How do the light receptors in the eye react to different 
light intensities?

Lechner’s law
The relation between the light entering the eye and the 
light intensity perceived by the eye is not linear but 
approximately logarithmic.
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3.3 Polygon rendering methods
Lechner’s law (continued)

Implication:
Small changes to the 
intensity in dark areas are 
perceived better than the 
exact same change in 
intensity in brighter areas.
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3.3 Polygon rendering methods
Lechner’s law (continued)
Intensity progression / color progression

Intensity increase of equidistant steps 
of 12.5% with respect to incoming light 
(0% to 100%

– Jump in intensities in darker 
areas appears significantly larger
than in lighter areas

– Great difference between 
perceived jumps in intensities

Increase in intensities in equidistant 
steps with respect to perceived 
intensities

– Perception of almost equidistant 
jumps in intensity

 



3-51Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Mach band effect
The interaction of the light receptors in the human eye 
emphasize “sharp” changes in intensity.
As soon as the eye detects such changes in incoming 
intensity, it adds overshoot and undershoot to the 
received intensity which amplify the difference.
This sub-conscious mechanism of highlighting edges 
between different intensities helps our visual perception 
to automatically sharpen contours (edge detection).
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3.3 Polygon rendering methods
Mach band effect (continued)
Example:



3-53Department of Computer Science and Engineering

3 Illumination Models and Surface-Rendering Methods

3.3 Polygon rendering methods
Mach band effect (continued)
When rendering, the automatic detection of changes in intensity of 
the human eye is rather disturbing and can only be reduced by 
generating transitions between different intensities as smooth as 
possible.
Flat shading:

non-continuous transitions in intensity, very strong Mach band 
effect

Gouraud shading:
continuous change in intensity; nevertheless still Mach band 
effects depending on the polyonization

Phong shading:
smooth transition between intensities reduce Mach band effect 
significantly
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3.3 Polygon rendering methods
Mach band effect (continued)
Mach band effect occurring
when using Gouraud shading
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3.4 Ray-tracing
Principle
• Backward ray-tracing: since most light rays do not hit 

the eye it requires less computational effort to trace 
the light rays backwards starting at the eye and then 
end at the individual light sources and other surfaces.

• The rays are traced for every pixel within the image 
place into the scene; at every intersection with an 
object, the direct (local model) as well as the reflected 
and refracted light components are determined.

• The resulting bifurcations of the rays implicitly describe 
a tree.

• Ray-tracing is specifically suitable for modeling of 
directed light (many mirror-like or transparent objects)
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3.4 Ray-tracing

Opaque Object

Pixel

Semi-transparent object

Eye

Light

Initial Ray

Light Rays / 
Shadow Rays
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3.4 Ray-tracing
Recursively tracing of rays
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3.4 Ray-tracing
Recursively tracing rays (continued)
Refraction occurs at the common boundary between 
media with different densities, e.g. air and water. The 
angle of refraction β’ is proportional to the angle of 
incidence β. If the ray enters a more dense medium the 
angle is going to decrease.
Surfaces can (partly) reflect 
and refract at the same time. 
However, if the angle of 
refraction β’ is greater than 90°
the ray is only reflected.
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3.4 Ray-tracing
Examples:
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3.4 Ray-tracing
Recursively tracing rays (continued)
The ray is “terminated” if
– The reflected or refracted ray does not intersect any 

more objects.
– A maximal depth of the tree is reached.
– The contribution in intensity (color) value of a 

continued ray becomes too low.
Comment:
The computational effort of this approach depends 
heavily on the complexity of the scene. Space sub-
division techniques, such as octrees, can result in 
significant speed-ups when using ray-tracing.
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3.4 Ray-tracing
Shadows
• Follow a ray from every 

intersection with an 
object to all light 
sources.

• If one of those rays has 
to pass through an 
object on its way to the 
light source then the 
point of intersection is 
not lit by this light 
source, hence it is in its 
shadow.
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3.4 Ray-tracing
Shadows (continued)
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3.4 Ray-tracing
Distributed ray-tracing
In reality, there is no perfect mirror, since no mirror is 
absolutely planar and reflects purely (100%).
Distributed ray-tracing allows the generation of realistic 
blur effects for ray-tracing. Instead of using a single 
reflected ray several rays are traced and the resulting 
intensities averaged.
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3.4 Ray-tracing
Distributed ray-tracing (continued)
Most of those rays follow more or less the reflected 
direction while a few brake with this behavior resulting in 
a bulb-shaped distribution.
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3.4 Ray-tracing
Distributed ray-tracing (continued)
Similarly, a refracted ray is spread out using the same 
pattern.

Using a stochastic distribution across all possible 
directions of reflection and refraction and then averaging, 
we get a realistic approximation.
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3.4 Ray-tracing
Distributed ray-tracing – larger light sources
An additional increase in “realism” can be achieved by 
allowing light sources not to be just point-shaped. A 
larger light emitting surface area can be modeled, for 
example, by using numerous point-shaped light sources.

By deploying suitable stochastic distributions of rays, 
realistic soft-shadows can be achieved.
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3.4 Ray-tracing
Distributed ray-tracing – modeling apertures
Photorealistic images result from simulation of the 
aperture of a camera.

An object outside the focal plane appears blurry. This can 
be achieved by correctly calculating the refraction of the 
lens using a stochastic distribution of the rays across the 
surface of the lens.

blurry surface

focal planeimage plane
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3.4 Ray-tracing
Adaptive super-sampling
In order to avoid aliasing artifacts, several rays can be 
traced through a single pixel and the results averaged.

Example: four rays 
traced that cross each 
vertex and the center
of the pixel
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3.4 Ray-tracing
Stochastic ray-tracing
Instead of using a fixed distribution we can use stochastic 
methods, for example, random points for super-sampling:
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3.4 Ray-tracing
Properties

+ The physical properties of lighting is modeled very well
+ Very suitable for high reflective surface, such as mirrors
+ The visibility problem is solved automatically
+ Great realism

− Not quite suitable for diffuse reflection
− High computation effort required
− Computation of the intersections expensive
− Sensitive to numerical errors
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3.5 Radiosity
Radiosity techniques compute the energy transfer
based on diffuse radiation between different surface 
components (e.g. polygons, triangles, …) of a scene. By 
incorporating diffuse reflections from all different objects 
within the scene, we get a quite different effect in terms of 
ambient lighting. This can be particularly important, for 
example for interior designers.
The correlation between different objects are described 
by integral equations, which are approximated to find the 
solution. The total emitted energy (radiosity) is then used 
as input for the rendering method. In order to integrate 
specular reflection, radiosity can be combined with ray-
tracing.
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3.5 Radiosity
• Radiosity incorporates the propagation of light while 

observing the energetic equilibrium in a closed system.
• For each surface, the emitted and reflected amount of 

light is considered at all other surfaces.
• For computing the amount of incoming light at a 

surface we need:
– The complete geometric information of the 

configuration of all emitting, reflecting, and 
transparent objects.

– The characteristics with respect to their light 
emitting properties of all objects.
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3.5 Radiosity
Let S be a three-dimensional scene consisting of different 
surface elements

S = { Si }.
and E the emitted power per surface

E(x) [ W/m2]
in every point x of S. The surfaces with E(x) ≠ 0 are light 
sources.
We then are interested in the radiosity function

B(x) [W/m2]
which defines the (diffuse) reflected energy per surface. 
This can then be used to determine color values and 
render the scene.
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3.5 Radiosity
Energy transport
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3.5 Radiosity
If the equation describing the energy transport is 
discretized, for example using the B-spline basis 
functions to express the functions E(x) and B(x)

we can derive from the integral equation

a system of linear equations
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3.5 Radiosity
The coefficients ei of the emitting function E(x) and the 
reflectivity coefficients ρi of the individual surfaces 
segments Si are known. The ρi describe the material 
properties, which determine which part of the 
orthogonally incoming light is reflected.
The form factors fij determine the portion of the energy 
that is transported from Sj to Si and depend only on the 
geometry of the scene. The form factors can be 
computed using numerical integration across the 
hemisphere observing the size, direction, and mutual 
visibility of the surface segments Sj and Si.
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3.5 Radiosity
Computation of the form factors using numerical 
integration for a differential surface dAi:

Hemisphere, Nusselt ´81 Hemicube, Cohen ´85
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3.5 Radiosity
Computation of the form factors
The form factors between the differential surfaces dAi and 
dAj of the surface segments Sj and Si result in:

vij: visibility
(1 if dA j visible from dAi, 0 otherwise)
The form factors of Sj to Si equal to
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3.5 Radiosity
The resulting system of linear equations can then be 
described as:

Or in matrix form:

This system is usually solved separately for the different 
frequencies of light (e.g. RGB).
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3.5 Radiosity
Rendering a scene
• Computation of the radiosity values bi for all surface 

segments Si

• Projection of the scene and determination of the visibility
• Computation of the color values for each pixel
Comments:
• For different views, only the steps two and three need to be 

repeated
• Step three can be accelerated by interpolating along scan-

lines
• For step one, the form factors fij need to be calculated 

before the system of linear equations can be solved.
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3.5 Radiosity
Sub-division of a scene
The finer the sub-division of the scene into surface segments the 
better the results. However, the number of form factors increase
quadratically and the size of the system of linear equations increases 
linearly with an increasing number of surface segments.
In addition, approximation of the integral equation using the system 
of linear equations only works for constant radiosity per surface 
segment. Sub-division is required for critical (non-constant) areas.
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3.6 Texture mapping
Motivation
So far, all surfaces (polygonal objects or free-form 
surfaces) were modeled as idealized, smooth objects – in 
contrast to real-world surfaces with lots of detail.
The explicit modeling of surface details is too costly for 
rendering and is therefore simulated using different 
mapping techniques.
In the beginning, plain texture mapping [Catmull 1974] 
was introduced, which projected two-dimensional 
structures and patterns (textures, consisting of texture 
elements, texels) onto the surfaces of the objects. 
Several variations were then developed on top of this 
technique.
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3.6 Texture mapping
Principle
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3.6 Texture mapping
Comments:
• We usually distinguish between two different 

approaches: forward and inverse mapping
• In practice, it proved useful to split up the mapping 

process into two steps (for example for the forward 
mapping):
1. First, the texture is projected onto an interim object 

using a simple mapping → “s-mapping”
Rectangles, cubes, cylinders, or spheres are often 
used

2. Then, the texture is mapped onto the object that is 
to be texturized → “o-mapping”
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3.6 Texture mapping
Example: interim objects
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3.6 Texture mapping
Example: interim objects

Planar Cylinder
Sphere
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3.6 Texture mapping
Approaches to o-mapping

1. Reflective ray 2. Objekt center

3. Normal vektor 4. Normal of interim 
object
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3.6 Texture mapping
Inverse mapping using interim objects

Image plane

Object space

Interim object

Texture plane
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3.6 Texture mapping
When using free-form surfaces (Bézier splines, B-
splines), we can use the parameterization of the surface 
instead of mapping to an interim object. The parameter of 
a point on the surface is then also a texture coordinate.
For triangulated surfaces, we usually define a texture 
coordinate for every vertex in addition to the normal 
vector (color information is not necessary in this case 
since it is overwritten by the texture). During rasterization
of the triangles, a texture coordinate is computed for 
every pixel using linear interpolation (OpenGL does this 
automatically).
Modern graphics hardware often store textures in 
graphics memory for faster access.
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3.6 Texture mapping
Aliasing
Texture mapping is very sensitive to aliasing artifacts:
• A pixel in image space can cover an area of several 

texels.
• On the other hand, a texel of the texture can cover 

more than one pixel in the resulting image.
• Textures are often patched together periodically, in 

order to cover a larger area. If the sampling rate is to 
low aliasing artifacts occur.

→ Oversampling, filtering, interpolation (instead of   
sampling), level-of-detail
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3.6 Texture mapping
Bump mapping
Texture mapping simulates a textured but planar/smooth 
surface.
In order to simulate a “rougher” surface and make it 
appear “more” three-dimensional, bump mapping does 
not change the surface geometry itself but changes the 
normal vectors that are used by the lighting model:
Simulation of surface bumps on top of planar surfaces by 
changing the normal vectors.
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3.6 Texture mapping
Bump mapping

a smooth planar 
surface appears 
evenly bright

an arched surface appears 
darker when facing away 
from the viewer

Bright
Dark
Incoming light
reflected light
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3.6 Texture mapping
Bump mapping
The change ΔN of the normal vector N is done in a 
procedural fashion or by using a texture map. This 
change can, for example, be described by a gray-level 
texture. The gradient of this texture (interpreted as a 
scalar field) then gives us the amount and direction of the 
change ΔN.
This way, regular structures (e.g. a golf ball) as well as 
irregular structures (e.g. bark) can be simulated.
When looking at an object that uses bump mapping, it is, 
however, often noticeable that the surface itself is planar.
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3.6 Texture mapping
Bump mapping
Examples:
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3.6 Texture mapping
Displacement mapping
On top of the surface, a height-field is used, which moves 
the points of the surface in direction of the normal vector. 
This technique also changes the shape of the surface 
making it no longer planar.
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3.6 Texture mapping
Opacity mapping / transparency mapping
Using opacity mapping, the alpha-value of a transparent 
surface can be changed locally. The object, for which 
opacity mapping is used, can be changed according to 
the used texture in its entirety or only locally.
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3.6 Texture mapping
Procedural mapping
An algorithmic description, which simulates bumps or 
unevenness, is used to change the surface of an object. 
This is often used, for example, for 3-D textures.
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3.6 Texture mapping
3-D (texture) mapping
Instead of a 2-D image, a 3-D texture (volumetric image) 
is used and usually mapped onto a series of planes.

wood grain marble
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3.6 Texture mapping
Environment mapping
Environment mapping simulates realistic mirroring effects 
of the (virtual or physical) environment surrounding the 
object. This way, a complex surrounding can be 
integrated as a photo-realistic image, without explicitly 
modeling the surrounding.
An interim objects (sphere, 
cube) is used to project the 
environment on.
Nowadays, this is 
supported by current 
graphics hardware.

environment texture

viewer
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3.6 Texture mapping
Environment mapping
Examples:
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3.6 Texture mapping
Environment mapping
Examples:
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3.6 Texture mapping
Chrome / reflection mapping
An arbitrary two-dimensional pattern is mapped onto a 
reflecting surface. The texture itself stays fixed at a 
certain location in 3-D space. Often blurriness is used to 
achieve more realistic effects.
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3.6 Texture mapping
Example: chrome / reflection mapping + ray-tracing
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3.6 Texture mapping
Comments:
Different types of mapping techniques can be combined 
and applied to the same surface. This is supported in 
most commercial rendering and animation tools.
Most of these techniques can be implemented on the 
graphics hardware (after appropriate pre-processing) 
achieving rendering in real-time.
See, for example, NVIDIA’s FX Composer:
http://developer.nvidia.com/object/fx_composer_home.html
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3.7 OpenGL illumination and surface rendering
Light sources
OpenGL supports up toe eight light source (GL_LIGHT0
through GL_LIGHT7). To enable lighting you need to 
issue:

glEnable (GL_LIGHTING)

Each light source can be enabled using, for example:
glEnable (GL_LIGHT0)

Properties of light sources can be changed using the 
command:

glLight* (lightName, lightProperty, 
propertyValue);
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3.7 OpenGL illumination and surface rendering
Properties
Different properties are available:
Location:

GLfloat position [] = { 0.0, 0.0, 0.0 };

glLightfv (GL_LIGHT0, GL_POSITION, position);

Color:
GLfloat color [] = { 1.0, 1.0, 1.0 };

glLightfv (GL_LIGHT0, GL_AMBIENT, color);

glLightfv (GL_LIGHT0, GL_DIFFUSE, color);

glLightfv (GL_LIGHT0, GL_SPECULAR, color);
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3.7 OpenGL illumination and surface rendering
Attenuation:

glLightf (GL_LIGHT0, GL_CONSTANT_ATTENUATION, 
1.5);

glLightf (GL_LIGHT0, GL_LINEAR_ATTENUATION, 
0.75);

glLightf (GL_LIGHT0, GL_QUADRATIC_ATTENUATION, 
0.4);

Spot lights:
GLfloat direction [] = { 1.0, 0.0, 0.0 };

glLightfv (GL_LIGHT0, GL_SPOT_DIRECTION, 
direction);

glLightf (GL_LIGHT0, GL_SPOT_CUTOFF, 30.0);

glLightf (GL_LIGHT0, GL_SPOT_EXPONENT, 2.5);
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3.7 OpenGL illumination and surface rendering
Material properties
Different kind of materials can be generated with regard to, for
example, their shininess using glMaterial*:

GLfloat diffuse []

= { 0.2, 0.4, 0.9, 1.0 };

GLfloat specular []

= { 1.0, 1.0, 1.0, 1.0 };

glMaterialfv (GL_FRONT_AND_BACK, 
GL_AMBIENT_AND_DIFFUSE, diffuse);

glMaterialfv (GL_FRONT_AND_BACK, 
GL_SPECULAR, specular);

glMaterialf (GL_FRONT_AND_BACK, GL_SHININESS, 
25.0);
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3.7 OpenGL illumination and surface rendering
Normal vectors
Normal vectors can be provided by using the command 
glNormal*:

GLfloat normal [] = { 1.0, 1.0, 1.0 };

GLfloat vertex [] = { 2.0, 1.0, 3.0 };

glNormal3fv (normal);

glVertex3fv (vertex);

Make sure that the normal vector is provided before the 
vertex since OpenGL is a state machine!
If your normal vectors are not normalized OpenGL can do 
that for you if you issue:

glEnable (GL_NORMALIZE);
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3.8 OpenGL texture functions
Creating the texture and copy it to the graphics memory:

GLuint image [];

unsigned int width = 256, height = 256;

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA, 
width, height, 0, GL_RGBA, 
GL_UNSIGNED_BYTE, image);

Enable textures:
glEnable (GL_TEXTURE_2D);

If you use OpenGL prior to version 2.0 width and height 
have to be powers of two!
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3.8 OpenGL texture functions
Texture coordinates
Provide a texture coordinate for every vertex of you polygonal mesh:

GLfloat texcoord = { 1.0, 1.0 };

GLfloat vertex = { 2.0, 1.0, 3.0 };

glTexCoord2fv (texcoord);

glVertex3fv (vertex);

Again, provide the texture coordinate before the vertex!
When using vertex arrays, texture coordinates can also be provided 
as a single array:

GLfloat texcoordarray;

glEnableClientState (GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer (nCoords, GLfloat, 0, 
texcoordarray);
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3.8 OpenGL texture functions
Naming textures
If you use more than one texture you need to provide 
names in order to be able to switch between the provided 
textures.

GLuint texname;

glGenTextures (1, &texname);

Then, you can change between them using these names:
glBindTextures (GL_TEXTURE_2D, texname);

Remember, OpenGL is a state machine so it will use this 
texture from now on for every texture related commands!
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