
4-1Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

Chapter 4

Interactive Input Methods and Graphical User 
Interfaces



4-2Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.1 Overview
In order to be able to interact with the graphical image 
input methods are required. These can be used to just 
change the location and orientation of the camera, or to 
change specific settings of the rendering itself.
Different devices are more suitable for changing some 
settings then others. In this chapter we will specify 
different types of these devices and discuss their 
advantages.



4-3Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Input methods can be classified using the following 
categories:

– Locator
– Stroke
– String
– Valuator
– Choice
– Pick



4-4Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Locator
A device that allows the user to specify one coordinate 
position. Different methods can be used, such as a 
mouse cursor, where a location is chosen by clicking a 
button, or a cursor that is moved using different keys on 
the keyboard. Touch screens can also be used as 
locators; the user specifies the location by inducing force 
onto the desired coordinate on the screen.



4-5Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Stroke
A device that allows the user to specify a set of 
coordinate positions. The positions can be specified, for 
example, by dragging the mouse across the screen while 
a mouse button is kept pressed. On release, a second 
coordinate can be used to define a rectangular area using 
the first coordinate in addition.



4-6Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
String
A device that allows the user to specify text input. A text 
input widget in combination with the keyboard is used to 
input the text. Also, virtual keyboards displayed on the 
screen where the characters can be picked using the 
mouse can be used if keyboards are not available to the 
application.



4-7Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Valuator
A device that allows the user to specify a scalar value. 
Similar to string inputs, numeric values can be specified 
using the keyboard. Often, up-down-arrows are added to 
increase or decrease the current value. Rotary devices, 
such as wheels can also be used for specifying numerical 
values. Often times, it is useful to limit the range of the 
numerical value depending on the value.



4-8Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Choice
A device that allows the user to specify a menu option. 
Typical choice devices are menus or radio buttons which 
provide various options the user can choose from. For 
radio buttons, often only one option can be chosen at a 
time. Once another option is picked, the previous one 
gets cleared.



4-9Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Pick
A device that allows the user to specify a component of a 
picture. Similar to locator devices, a coordinate is 
specified using the mouse or other cursor input devices 
and then back-projected into the scene to determine the 
selected 3-D object. It is often useful to allow a certain 
“error tolerance” so that an object is picked even though 
the user did not exactly onto the object but close enough 
next to it. Also, highlighting objects within the scene can 
be used to traverse through a list of objects that fulfill the 
proximity criterion.



4-10Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Pick (continued)
Certain applications do not allow the use of mouse or 
keyboard. In particular, 3-D environments, where the user 
roams freely within the scene, mouse or keyboard would 
unnecessarily bind the user to a certain location. Other 
input methods are required in these cases, such as a 
wireless gamepad or a 3-D stylus, that is tracked to 
identify its 3-D location.



4-11Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Pick (continued)



4-12Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.2 Input methods
Pick (continued)
PHANTOM Omni from SensAble

Usually, these devices come with their own API.



4-13Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.3 Mouse Control
On a desktop computer, the mouse can be used to 
manipulate the viewing direction or pick objects. By 
clicking a mouse button followed by dragging, the camera 
can be moved closer or further away from the scene 
(zooming) or moved within a plane parallel to the scene 
(panning). The rotation of the camera can be mapped 
directly to the mouse movement resulting in a rotation in 
x- and y-direction with respect to the local viewing 
coordinate system. Better results for rotating the camera 
can be achieved by using a virtual trackball.



4-14Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.3 Mouse Control
Virtual trackball
The idea is to project mouse movement on an 
hypothetical sphere filling the 3D window and to apply the 
rotation resulting from the sphere being manipulated 
when the mouse button is pressed to the object. 

Rotate 
around z-
axis

Rotate in x-
and y-
direction



4-15Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.3 Mouse Control
GLUT
Mouse input can be implemented using GLUT. Callback 
functions are used by GLUT to allow application 
dependent input.
The following callback function indicates a pressed 
mouse button:
void mouseFcn (Glint button, Glint action, 

Glint x, Glint y);

glutMouseFunc (mouseFcn);

Valid mouse buttons (action) are GLUT_LEFT_BUTTON, 
GLUT_RIGHT_BUTTON, and GLUT_MIDDLE_BUTTON.



4-16Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.3 Mouse Control
GLUT (continued)
Mouse motion can be tracked while a mouse button is 
pressed by registering the following callback:
void fcnDoSomething (Glint x, Glint y);

glutMotionFunc (fcnDoSomething);

If mouse movement is to be tracked without any mouse 
button pressed the following callback can be used:
void fcnDoSomethingElse(Glint x, Glint y);

glutPassiveMotionFunc(fcnDoSomeThingElse);

Note: OpenGL counts from the bottom line so that the y 
coordinate is reversed!



4-17Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.4 Keyboard Control
In GLUT, a callback function can be registered that is 
called whenever a key is pressed on the keyboard. For 
standard keys, the following can be used:
void keyFcn(GLubyte key, Glint x, Glint y)

glutKeyboardFunc(keyFcn);

In addition to the pressed key, the current mouse position 
in screen coordinates is given.
The parameter key is assigned a character value or the 
corresponding ASCII code.



4-18Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.4 Keyboard Control
For special keys, such as cursor or function keys, a 
different callback has to be registered:
void specialKeyFcn (Glint specialKey, 

Glint x, Glint y);

glutSpecialFunc (specialKeyFcn);

The parameter specialKey is assigned symbolic 
constants defined by GLUT depending on the pressed 
key. Valid constants, for example, are:
GLUT_KEY_F1 through GLUT_KEY_F12, 
GLUT_KEY_UP, GLUT_KEY_RIGHT, 
GLUT_KEY_PAGE_DOWN, GLUT_KEY_HOME



4-19Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
In OpenGL, we can interactively select objects by 
pointing to screen positions. However, the picking 
operations in OpenGL are not straightforward. Basically, 
picking is performed by using a designated pick window 
to form a revised view volume and then previously 
defined identifiers for those objects that intersect the 
revised view volume are stored in a pick-buffer array.
Thus, the following steps need to be taken in order to use 
OpenGL:

– Create and display a scene.
– Pick a screen position and, within the mouse 

callback function, do the following:



4-20Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
– Set up a pick buffer.
– Activate the picking operations (selection mode).
– Initialize an ID name stack for object identifiers.
– Save the current projection and model-view matrices.
– Specify a pick window for the mouse input.
– Assign identifiers to objects and reprocess the scene using the 

revised view volume (pick information is then stored in the pick
buffer)

– Restore the original projection and model-view matrices.
– Determine the number of objects that have been picked, and 

return to the normal rendering mode
– Process the pick information



4-21Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
Set up a pick buffer
Set up the pick buffer to provide an array where the 
picked object identifiers will be stored
GLint pickBufferSize;

GLuint pickBuffer[pickBufferSize];

glSelectBuffer(pickBufferSize,pickBuffer);

The glSelectBuffer function must be invoked before 
the OpenGL picking operations (selection mode) are 
activated.



4-22Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
Set up a pick buffer (continued)
In the pick buffer, the following information is stored:
• The stack position of the object, which is the number 

of identifiers in the name stack up to and including the 
position of the picked object.

• The minimum depth of the picked object
• The maximum depth of the picked object
• The list of identifiers in the name stack from the first 

(bottom) identifier o the identifier for the picked object.



4-23Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
Activate the picking operations (selection mode)
The OpenGL picking operations are activated with
glRenderMode (GL_SELECT);

We can switch back to normal rendering once we are 
done picking objects using the paramter GL_RENDER:
nPicks = glRenderMode (GL_RENDER);

The function glRenderMode also gives us the number of 
picked objects as a side effect.



4-24Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
Initialize an ID name stack for object identifiers
The ID name stack is initialized by issuing the command
glInitName ();

The ID stack is initially empty, and this stack can only be 
used in selection mode. To place an unsigned integer 
value on the stack, thus naming the next object within the 
scene, we can invoke the following function:
GLuint id

glPushName (id);



4-25Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
Specify a pick window for the mouse input
A pick window within a selected viewport is defined using 
the following GLU function:
gluPickMatrix (xPick, yPick,

widthPick, heightPick, 
vpArray);

The parameters xPick and yPick give the screen-
coordinate location for the center of the pick window, 
while widthPick and heightPick define its 
dimensions. The parameter vpArray designates an 
integer array containing the coordinate position and size 
for the current viewport.



4-26Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.5 OpenGL Picking
Process the pick information
The picked objects can be processed by traversing the pick buffer:
GLuint objID, *ptr = pickBuffer;
for (int j=0; j<nPicks; j++) {

objID = *ptr;
printf (“stack position = %d\n”, objID);
ptr++
printf (“min depth = %f, “, (float)*ptr++));
printf (“max depth = %f\n“, (float)*ptr++));
printf (“stack IDs are: “);
for (int k=0; k<objID; k++)

printf (“ %d “, *ptr++)
printf (“\n”);

}



4-27Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
OpenGL Menu Functions
Simple pop-up menus can be created using GLUT 
directly. Various functions are available for setting up and 
accessing a variety of menus and associated sub-menus. 
The GLUT menu commands are placed in the procedure 
main along with other GLUT functions.
GLUT menus use a callback function for one entire menu. 
To identify the selected menu item, all menu items are 
provided with an identifier. This identifier is then passed 
to the callback function.



4-28Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Creating a GLUT Menu
A pop-up menu is created with the statement:
void menuFcn (Glint menuItemNumber);

glutCreateMenu (menuFcn);

Once the menu is created, we can add menu entries:
char *title;

GLint identifier;

glutAddMenuEntry (title, identifier);

To attach the menu to a certain mouse button issue:
glutAttachMenu (button);



4-29Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Creating a GLUT Menu
A pop-up menu is created with the statement:
void menuFcn (Glint menuItemNumber);

glutCreateMenu (menuFcn);

Once the menu is created, we can add menu entries:
char *title;

GLint identifier;

glutAddMenuEntry (title, identifier);

To attach the menu to a certain mouse button issue:
glutAttachMenu (button);



4-30Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Creating and managing multiple GLUT menus
The function glutCreateMenu returns an identifier itself 
that can be used to reference the created menu:
GLint menuID = glutCreateMenu (menuFcn);

To activate a menu for the current display window, we 
use the statement:
glutSetMenu (menuID);

This menu then becomes the current menu, which will 
pop up in the display window when the mouse button that 
has been attached to that menu us pressed.



4-31Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Creating GLUT submenus
A submenu can be associated with a menu just like a regular menu
item. First, the submenu is created just like a regular menu and its 
identifier stored. Then, the submenu can be attached to another 
menu:
GLint submenuID = glutCreateMenu (submenuFcn);

glutAddMenuEntry (“(Red)”, 1);

glutAddMenuEntry (“Yellow”, 2);

glutCreateMenu (menuFcn);

glutAddMenuEntry (“Wire”, 1);

glutAddMenuEntry (“(Solid)”, 2);

glutAddSubMenu (“Torus Colour”, submenuID);



4-32Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Example



4-33Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
GLUI user interface library (by Paul Rademacher)
GLUI is a GLUT-based C++ user interface library which 
provides controls such as buttons, checkboxes, radio 
buttons, and spinners to OpenGL applications. It is 
window-system independent, relying on GLUT to handle 
all system-dependent issues, such as window and mouse 
management. GLUI can be used to easily add a user 
interface to an existing OpenGL application.
You can find documentation and the source code here:
http://www.cs.unc.edu/~rademach/glui/



4-34Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Examples



4-35Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Usage for standalone GLUI windows
Integrating GLUI with a new or existing GLUT application is very
straightforward. The steps that need to be taken in order to create a 
user interface are:
1. Add the GLUI library to the link line (e.g., glui32.lib for Windows). 

The proper order in which to add libraries is: GLUI, GLUT, GLU, 
OpenGL.

2. Include the file glui.h in all sources that will use the GLUI 
library.

3. Create your regular GLUT windows and popup menus as usual. 
Make sure to store the window id of your main graphics window, 
so GLUI windows can later send it redisplay events:
int window_id = glutCreateWindow("Main window");



4-36Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Usage for standalone GLUI windows (continued)
4. Register your GLUT callbacks as usual (except the Idle 

callback, discussed below).
5. Register your GLUT idle callback (if any) with 

GLUI_Master (a global object which is already 
declared), to enable GLUI windows to take advantage 
of idle events without interfering with your application's 
idle events. If you do not have an idle callback, pass in 
NULL.
GLUI_Master.set_glutIdleFunc(myGlutIdle);

or
GLUI_Master.set_glutIdleFunc(NULL);



4-37Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Usage for standalone GLUI windows (continued)
6. In your idle callback, explicitly set the current GLUT window 

before rendering or posting a redisplay event. Otherwise the 
redisplay may accidentally be sent to a GLUI window.
void myGlutIdle (void) {

glutSetWindow (main_window);
glutPostRedisplay ();

}

7. Create a new GLUI window using
GLUI *glui
= GLUI_Master.create_glui("name", flags, x, y);

Note that flags, x, and y are optional arguments. If they are not 
specified, default values will be used. GLUI provides default 
values for arguments whenever possible.



4-38Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Usage for standalone GLUI windows (continued)
8. Add controls to the GLUI window. For example, we can add a 

checkbox and a quit button with:
glui->add_checkbox("Lighting", &lighting);

glui->add_button("Quit", QUIT_ID, callback_func);

9. Let each GLUI window you've created know where its main 
graphics window is:
glui->set_main_gfx_window (window_id);

10. Invoke the standard GLUT main event loop, just as in any GLUT 
application:
glutMainLoop ();



4-39Department of Computer Science and Engineering

4 Interactive Input Methods and Graphical User Interfaces

4.6 User Interfaces
Usage for GLUI subwindows
Adding GLUI subwindows is slightly more complicated 
than adding standalone GLUI windows. Since the 
graphics application and GLUI share window space, a 
little extra work is required to ensure that they cooperate 
appropriately.
This is particularly the case for existing OpenGL 
applicartions.
See the GLUI documentation for details:
http://www.cs.unc.edu/~rademach/glui/src/release/glui_m
anual_v2_beta.pdf


	Chapter 4
	4.1 Overview
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.2 Input methods
	4.3 Mouse Control
	4.3 Mouse Control
	4.3 Mouse Control
	4.3 Mouse Control
	4.4 Keyboard Control
	4.4 Keyboard Control
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.5 OpenGL Picking
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces
	4.6 User Interfaces

