1 Transformations

Chapter 1

Transformations

[T 1 a

WRIGHT STATE Department of Computer Science and Engineering -1

1 Transformations

Chapter 1

Transformations are used within the entire viewing
pipeline:

— Projection from world to view coordinate system
— View modifications:

e Panning

e ZOOMINg

e Rotation

WRIGHT STATE Department of Computer Science and Engineering 12

1 Transformations

Chapter 1

Transformations can also be used for creating animations
to better illustrate the 3D configuration of a model:

WRIGHT STATE Department of Computer Science and Engineering 13

Chapter 1

1 Transformations

Spaces and Transformations

Left-handed v. right handed
Homogeneous coordinates:

4x4 transformation matrix (TM)

Concatenating TMs

Basic transformations (TMs)

Display pipeline

S

x y z 1

WRIGHT STATE Department of Computer Science and Engineering 4

1 Transformations

Chapter 1 Display

Object space to world space " I

World space to eye space (TM) -

Perspective (TM)
Clipping
\Perspective Divide
Image space to display space (TM) -

WRIGHT STATE Department of Computer Science and Engineering 1-5

UNIVERSITY

1 Transformations

Chapter 1
Representing an orientation

Example: fixed angles - rotate around global axes

v
Orientation: (@ 8)

P'=R,(7)R, (F)R ()P

WRIGHT STATE Department of Computer Science and Engineering

1-6

1 Transformations

Chapter 1
Working with fixed angles and

Rotation Matrices (RMs)

Orthonormalizing a RM

Y
Extracing fixed angles from an orientation
z v Extracing fixed angles from a RM
X
Making a RM from fixed angles
X
Z Making a RM from

transformed unit coordinate
system (TUCS)

WRIGHT STATE Department of Computer Science and Engineering 7

1 Transformations

Chapter 1
Transformations in pipeline

object -> world: often rigid transforms

world -> eye: rigid transforms

perspective matrix: uses 4" component of homo. coords
perspective divide: divide by homo. component

Image -> screen: 2D map to screen coordinates
Clipping: procedure that considers view frustum

(rigid transformations preserve angles and distances)

WRIGHT STATE Department of Computer Science and Engineering x

1 Transformations

Chapter 1
Error considerations

Accumulated round-off error - transform data:
transform world data by delta RM
update RM by delta RM; apply to object data
update angle; form RM; apply to object data
orthonormalization
rotation matrix: orthogonal, unit-length columns
iterate update by taking cross product of 2 vectors
scale to unit length
considerations of scale
miles-to-inches can exeed single precision arithmetic

WRIGHT STATE Department of Computer Science and Engineering -9

1 Transformations

Chapter 1

Orientation Representation

Rotation matrix

Fixed angles: rotate about global coordinate system
Euler angles: rotate about local coordinate system
Axis-angle: arbitrary axis and angle

Quaternions: mathematically handy axis-angle 4-tuple
Exponential map: 3-tuple version of quaternions

WRIGHT STATE Department of Computer Science and Engineering 110

1 Transformations

Chapter 1
Transformation Matrix

'a b ¢ d
e f g h
i ko

'm n o p

- el

WRIGHT STATE Department of Computer Science and Engineering

1 Transformations

Chapter 1
Transformation Matrix

o X Q O
—

- el

WRIGHT STATE Department of Computer Science and Engineering

1 Transformations

Chapter 1
1 0 0
0 cos(a) —sin(a)
0 sin(a) cos(a)
0 o0 0
Rotation cos() 0 sin(p)
Matrices () © oos(s)
0 0 0
(cos(y) —sin(y) O
sin(y) cos(y) 0
0 0 1
0 0 0

b e

WRIGHT STATE Department of Computer Science and Engineering

1-13

1 Transformations

Chapter 1

Fixed Angles

(@ p 7) = P=R,()R,(H)R,(a)P

Fixed order: e.g., X, VY, z; also could be x, y, X
Global axes

[T 1 a

WRIGHT STATE Department of Computer Science and Engineering 114

1 Transformations

Chapter 1
Gimbal Lock Fixed angle: e.g., X, VY, z
(0 0 0 0 9 0)
Y Y
X X
Z Z

e .-

WRIGHT STATE Department of Computer Science and Engineering 115

1 Transformations

Chapter 1
Gimbal Lock

Fixed order of rotations: x,Vy, z

© %0 0) What do these epsilon rotations do?
! (0£¢ 90 0)
(0 90+¢ 0)
X (0 90 0z¢)
Z

WRIGHT STATE Department of Computer Science and Engineering 1-16

1 Transformations

Chapter 1

Gimbal Lock
(0 9% o) (90 0 90)

Y Y

Z Z

Interpolating FA representations does not
produce intuitive rotation because of
gimbal lock

WRIGHT STATE Department of Computer Science and Engineering 17

1 Transformations

Chapter 1

Gimbal Lock

Two or more axis align resulting in a loss
degrees of freedom.

of rotation

»—-:R_—"“t w—"_"_- ﬁ

WRIGHT STATE Department of Computer Science and Engineering 1-18

UNIVERSITY

1 Transformations

Chapter 1
Euler Angles Y

(@ B 7)

Prescribed order: e.g., X,y, zor x, Yy, X
Rotate around (rotated) local axes >

Note: fixed angles are same as Euler angles
applied in reverse order and vice versa

(@ B y) = P=R(R,(AR()P

WRIGHT STATE Department of Computer Science and Engineering

1-19

1 Transformations

Chapter 1

Roll, pitch, and yaw (Euler angles)

The orientation of, for example, a space shuttle in space is defined as
its attitude. Orbiter attitudes are specified using values for pitch,
yaw, and roll. These are with respect to the local object’s coordinate
system and therefore represent Euler angles

Taw

¥ [Y

4

4 b=

http://liftoff. msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

WRIGHT STATE Department of Computer Science and Engineering 1-20

1 Transformations

Chapter 1
AXis-Angle

o A

o (x y z)]

Rotate about given axis
Euler’'s Rotation Theorem (orientation can be derived

from another by a single rotation about an axis)
Fairly easy to interpolate between orientations
Difficult to concatenate rotations

WRIGHT STATE Department of Computer Science and Engineering 121

1 Transformations

Chapter 1
AXis-angle to rotation matrix

Concatenate the following:
Rotate A around z to x-z plane
Rotate A’ around y to x-axis
Rotate theta around x

Undo rotation around y-axis
Undo rotation around z-axis

WRIGHT STATE Department of Computer Science and Engineering 122

1 Transformations

Chapter 1
AXis-angle to rotation matrix

aa aa aa
~ X X Xy X Z
A=laa aa a a

y X y oy y z

aa ad a d
Z X Z Yy 7 1

0 —a a
* Z y
A = 0 —a
Z X
—a a 0
N y X _
Rot(e y) = A+ cos(@)(I — A) +sin(6)A

WRIGHT STATE Department of Computer Science and Engineering 123

1 Transformations

Chapter 1

Quaternions

A quaternion is a four-tuple of real numbers, [s, x, y, z] or,
equivalently [s, v/, consisting of a scalar, s, and a three-
dimensional vector, v.

The quaternion is an alternative to the axis and angle
representation in that it contains the same information in
a different, nut mathematically convenient, form.

Importantly, it is a form that can be interpolated as well as
used in concatenating a series of rotations into a single
representation. The axis and angle information of a
guaternion can be viewed as an orientation of an object.

WRIGHT STATE Department of Computer Science and Engineering 124

1 Transformations

Chapter 1
Quaternion

0 . 0
Rot, A):{cos(ij sm(E)*A}

Same as axis-angle, but different form
Still rotate about given axis
Mathematically convenient form

q: [S V] Note: in this form v is a scaled
' version of the given axis of
rotation, A

e -

WRIGHT STATE Department of Computer Science and Engineering 1-25

1 Transformations

Chapter 1
Quaternion Arithmetic

Addition [s,+s, v, +v,]|=1[s, v]+][s, v,]

Multiplication

0,0, =[S,S, =V, -V, SV, + SV, +V, XV,]

Inner Product d,:-9, =S;S, +V; -V,

Length HqH =./q-0

WRIGHT STATE Department of Computer Science and Engineering 1-26

1 Transformations

Chapter 1
Quaternion Arithmetic
Inverse q‘l — H 12 [S —V]
g

Unit quaternion g=

WRIGHT STATE Department of Computer Science and Engineering

1 Transformations

Chapter 1

Quaternion Represention

Rotating a vector using quaternions:

Vector 0 v]

Transform V'= Rth (V) = C]VGI_1

WRIGHT STATE Department of Computer Science and Engineering

1-28

1 Transformations

Chapter 1
Quaternion Geometric Operations

Rot, (v) = Rot_; (v)

Rot, (v) = Rot,, (V)

v" = Rot, (Rot (v)) = Rot (V)

v"=Rot_.(Rot,(v))=q " (qvq ")q =V

WRIGHT STATE Department of Computer Science and Engineering

1 Transformations

Chapter 1
Unit Quaternion Conversions

1-2y2 272 2xy-—2s7 2XZ — 28y

Rot, 2Xy—2sz 1-2x°-2z° 2yz-—2sX

s v]

2XZ — 23y 2yz —2sx 1-2x°-2y?

0 = 2cos *(s)

Axis-Angle (x,y,2) = V||

WRIGHT STATE Department of Computer Science and Engineering

1 Transformations

Chapter 1

Rotations using Quaternions

Hence, a rotation of angle 6 around the axis (X, Y, z) can
be described using the following quaternion:

[cos (6/2), sin (6/2)(X, Y, 2)]

WRIGHT STATE Department of Computer Science and Engineering 131

1 Transformations

Chapter 1
Quaternions

Avoids gimbal lock

Easy to rotate a point

Easy to convert to a rotation matrix

Easy to concatenate — quaternion multiply

Easy to interpolate — interpolate 4-tuples

How about smoothly (in both space and time) interpolate?

WRIGHT STATE Department of Computer Science and Engineering 1-32

1 Transformations

Chapter 1
Viewing in OpenGL

As seen before, viewing and projections is achieved by
transforming from the world coordinate system to the
display coordinate system using matrix multiplication.
Hence, OpenGL provides several functions for modifying
matrices.

Since OpenGL is a state machine, it has two different
matrix stacks that can change the view onto a scene
(set of objects). The first one is the projection stack, while
the other one is the modelview stack. The projection
transformation is responsible for the projection just like a
lens for a camera. This transformation also determines
the type of projection (e.g. perspective or orthographic).

WRIGHT STATE Department of Computer Science and Engineering 1-33

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

The modelview transformation combines the view
transformation and the model transformation onto the
same stack. The view transformation indicates the shape
of the available screen (width, height, ratio). The model
transformation facilitates the change of the entire scene
as a whole before mapping it onto the projection plane.
For example, the model transformation can be used to
rotate the entire scene or zoom in or out.

WRIGHT STATE Department of Computer Science and Engineering 134

1 Transformations

Chapter 1

With a Camera

With a Computer

Viewing in OpenGL (continued)

OpenGL mainly follows the
analogy to a camera when
creating an image on the
display.

tripod

wiewing

positioning the viewing volume
in the world

modeling

positioningthe models
in thé world

projection

determining shape of viewing volume

photograph

wiewport

WRIGHT STATE

Department of Computer Science and Engineering 1-35

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

To specify which stack you want to modify, OpenGL
provides a method:

glMatrixMode (GLenum mode) ;

The mode passed onto this function as the only argument
can be specified as GL._MODELVIEW or GL_ PROJECTION.
This then changes the state of OpenGL, so that all
following matrix commands change that specific matrix
only.

OpenGL uses homogenous coordinates to represent
maitrices, i.e. all matrices are 4x4 matrices.

WRIGHT STATE Department of Computer Science and Engineering 1-36

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

To Initialize a matrix stack with the identity matrix, the
following functions can be used:

glLoadIdentity () ;

This then initializes the current matrix stack with the
matrix 1 0 0 O

0O 1 0 O
0O 0 1 O
0O 0 0 1

Usually, this function is used before any other matrix
modification, since it just overwrites the current matrix.

WRIGHT STATE Department of Computer Science and Engineering 137

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

Alternatively, you initialize the matrix with a specific
matrix that was calculated before. The following functions
overwrites the current matrix stack with the given matrix:

float mf[l6];
double md[1l6];

glLoadMatrixf (mf);

glLoadMatrixd (md) ; m,_ mg my, mg,

The elements of the matrices are My Mg My My,

specified as shown on the right: m; m;, My My
m m m m

D
0 0]

12

WRIGHT STATE Department of Computer Science and Engineering 1-38

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

To multiply a matrix onto the current one the following
functions are useful:

glMatrixMultf (m) ;
glMatrixMultd (m) ;

The matrix is specified exactly the same as for the
function glLoadMatrix.

Note that OpenGL multiplies the new matrix M to the
current one ¢ from the right, i.e. after applying the
function glMatrixMult the matrix on the current stack

will be C-M.

WRIGHT STATE Department of Computer Science and Engineering 1-39

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

OpenGL also provides function for the basic types of
transformation, I.e. translation, rotation, and scaling. The
function

glTranslatef (GLfloat x,
GLfloat v,

GLfloat z);

multiplies a translation matrix onto the
current matrix stack using the translation
vector (x, y, z).

WRIGHT STATE Department of Computer Science and Engineering 140

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

The function
glRotatef (GLfloat angl
GLfloat x,

-

GLfloat v,
GLfloat z); .

multiplies a rotational matrix onto the current matrix stack,

WRIGHT STATE Department of Computer Science and Engineering 141

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

while the function
glScalef (GLfloat x,
GLfloat v,

GLfloat z);

-

appends a scaling matrix to the
matrix stack.

WRIGHT STATE Department of Computer Science and Engineering 142

1 Transformations

Chapter 1
Viewing in OpenGL (continued)

Note, that the corresponding functions that accept
double values are also available. These use — according

to the usual OpenGL convention — the suffix d instead of
f to indicate the data type.

Using these matrix functions, both the projection as well
as the modelview matrices can be specified.

OpenGL, however, provides some functions that are
more convenient and intuitive.

WRIGHT STATE Department of Computer Science and Engineering 143

Chapter 1

1 Transformations

Viewing in OpenGL (continued)
The function gluLookAt can be used to specify the camera location

and orientation:

voilid gluLookAt (GLdouble evex,

GLdouble eyey,
GLdouble evyez,
GLdouble centerx,
GLdouble centery,
GLdouble centerz,
GLdouble upx,
GLdouble upy,
GLdouble upz) ;

i

—

WRIGHT STATE

Department of Computer Science and Engineering

1-44

1 Transformations

Chapter 1

Viewing in OpenGL (continued)
The arguments for the function gluLookAt specify the

view coordinate with respect to the camera. The location
of the camera or eye defines the origin, while the center
point determines the direction the camera is pointing at.

Hence, eye-center determines the z-
axis. The vector up identifies the y- .
axis, while the x-axis is orthogonal to A x‘é?%
the y- and z-axis. I~

The default it gluLookaAt (0.0, -
.0, 0.0, 0.0, 0.0, -100.0, Z |
0.0, 1.0, 0.0); i

WRIGHT STATE Department of Computer Science and Engineering 145

1 Transformations

Chapter 1

Projections in OpenGL

OpenGL provides built-in functions for perspective and
orthogonal projections. These can be applied directly
after changing the state to make the projection matrix the
current matrix stack and initializaing:

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

WRIGHT STATE Department of Computer Science and Engineering 1-46

1 Transformations

Chapter 1

Projections in OpenGL (continued)
Using the function gl Frustum, the view frustum can be

declared using a perspective projection (all arguments
are of the type GLdouble):

glFrustum (left, right,
bottom, top,

near, far);

WRIGHT STATE Department of Computer Science and Engineering 147

1 Transformations

Chapter 1

Projections in OpenGL (continued)

Sometimes it is more convenient to specify the view
frustum following the camera analogy more closely (all
arguments are of type GLdouble):

gluPerspective (fovy, aspect,
near, far);

=W
gepact = 5

T

-] =

near

A
Y

far

WRIGHT STATE Department of Computer Science and Engineering 148

1 Transformations

Chapter 1

Projections in OpenGL (continued)

If an orthogonal projection is desired, the following

method can be used (all arguments are of type
GLdouble):

glOrtho (left, right,
bottom, top,
-C—-\rt?.&\

near, gxraxrj;
Ieﬂ——gh

-

toward
the *L right

viewpaoint
5 viewing volu me
bottom

near far

WRIGHT STATE Department of Computer Science and Engineering 149

1 Transformations

Chapter 1

Projections in OpenGL (continued)

For a 2-D projection it does not make any difference if a
perspective or orthogonal projection is used since the
scene with all the objects does not have any depth.
Hence, there is only one function provided by OpenGL for
a 2-D projection (all arguments are of type GLdouble):
glOrtho2D (left, right,
bottom, top);

WRIGHT STATE Department of Computer Science and Engineering 1-50

1 Transformations

Chapter 1
Viewing in OpenGL

The last step of the process of creating an image on a
computer display is the viewport transformation. Recalling
the camera analogy, the viewport transformation
corresponds to the stage where the size of the developed
photography is chosen. The viewport is measured in
window coordinates. By default, OpenGL uses the entire
window provided. The following functions allows you to
reduce the size of the image (all arguments are of type
GLint):

vold glViewport (x, vy, width, height) ;

WRIGHT STATE Department of Computer Science and Engineering 1-51

1 Transformations

Chapter 1
Viewing in OpenGL

The aspect ratio of a viewport should generally equal the
aspect ratio of the viewing volume. If the two ratios are
different, the projected image will be distorted as it's

mapped to the viewport. Note that subsequent changes
to the size of the

window don't explicitly
affect the viewport. Your
application should

detect window resize g) --Tfr
events and modify the /lr 3 \’ﬂ“r M h
viewport and projection &;&JJ JL—_&%&?J
appropriately. wnistored aistortod

WRIGHT STATE Department of Computer Science and Engineering 162

	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1

