
1-1Department of Computer Science and Engineering

1 Transformations

Chapter 1

Transformations

1-2Department of Computer Science and Engineering

1 Transformations

Chapter 1
Transformations are used within the entire viewing
pipeline:

– Projection from world to view coordinate system
– View modifications:

• Panning
• Zooming
• Rotation

1-3Department of Computer Science and Engineering

1 Transformations

Chapter 1
Transformations can also be used for creating animations
to better illustrate the 3D configuration of a model:

1-4Department of Computer Science and Engineering

1 Transformations

Spaces and Transformations

Left-handed v. right handed
Homogeneous coordinates:
4x4 transformation matrix (TM)
Concatenating TMs
Basic transformations (TMs)
Display pipeline

[]1zyx

Chapter 1

1-5Department of Computer Science and Engineering

1 Transformations

Display
PipelineObject Space

Data

World Space
Data

Eye Space Data

Image Space
Data

Display Space
Data

Object space to world space
(TM)

World space to eye space (TM)

Perspective (TM)
Clipping
Perspective Divide

Image space to display space (TM)

Chapter 1

1-6Department of Computer Science and Engineering

1 Transformations

Representing an orientation

Example: fixed angles - rotate around global axes

X

Y

Z

Orientation:

PRRRP xyz)()()(' αβγ=

()γβα

Chapter 1

1-7Department of Computer Science and Engineering

1 Transformations

Working with fixed angles and
Rotation Matrices (RMs)

Extracing fixed angles from an orientation

Extracing fixed angles from a RM

Making a RM from fixed angles

Orthonormalizing a RM

Making a RM from
transformed unit coordinate
system (TUCS)

X

Y

Z

X

YZ

Chapter 1

1-8Department of Computer Science and Engineering

1 Transformations

Transformations in pipeline

object -> world: often rigid transforms
world -> eye: rigid transforms
perspective matrix: uses 4th component of homo. coords
perspective divide: divide by homo. component
image -> screen: 2D map to screen coordinates
Clipping: procedure that considers view frustum

(rigid transformations preserve angles and distances)

Chapter 1

1-9Department of Computer Science and Engineering

1 Transformations

Error considerations
Chapter 1

Accumulated round-off error - transform data:
transform world data by delta RM
update RM by delta RM; apply to object data
update angle; form RM; apply to object data

orthonormalization
rotation matrix: orthogonal, unit-length columns
iterate update by taking cross product of 2 vectors
scale to unit length

considerations of scale
miles-to-inches can exeed single precision arithmetic

1-10Department of Computer Science and Engineering

1 Transformations

Orientation Representation

Rotation matrix
Fixed angles: rotate about global coordinate system
Euler angles: rotate about local coordinate system
Axis-angle: arbitrary axis and angle
Quaternions: mathematically handy axis-angle 4-tuple
Exponential map: 3-tuple version of quaternions

Chapter 1

1-11Department of Computer Science and Engineering

1 Transformations

Transformation Matrix
Chapter 1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ponm
lkji
hgfe
dcba

1-12Department of Computer Science and Engineering

1 Transformations

Transformation Matrix
Chapter 1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
z

y

x

tkji
tgfe
tcba

1-13Department of Computer Science and Engineering

1 Transformations

Rotation
Matrices

() ()
() ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

γγ
γγ

() ()

() ()
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

ββ

ββ

() ()
() ()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

αα
αα

Chapter 1

1-14Department of Computer Science and Engineering

1 Transformations

Fixed Angles

()γβα

Fixed order: e.g., x, y, z; also could be x, y, x
Global axes

X

Y

Z

PRRRP xyz)()()(' αβγ=

Chapter 1

1-15Department of Computer Science and Engineering

1 Transformations

Gimbal Lock
()0900

X

Y

Z

Fixed angle: e.g., x, y, z

()000

X

Y

Z

Chapter 1

1-16Department of Computer Science and Engineering

1 Transformations

Gimbal Lock

()0900
Fixed order of rotations: x, y, z

X

Y

Z

()0900 ε±

What do these epsilon rotations do?

()0900 ε±

()ε±0900

Chapter 1

1-17Department of Computer Science and Engineering

1 Transformations

Gimbal Lock
()0900

X

Y

Z

()90090

X

Y

Z

Interpolating FA representations does not
produce intuitive rotation because of
gimbal lock

Chapter 1

1-18Department of Computer Science and Engineering

1 Transformations

Gimbal Lock
Two or more axis align resulting in a loss of rotation
degrees of freedom.

Chapter 1

1-19Department of Computer Science and Engineering

1 Transformations

Euler Angles
()γβα

Prescribed order: e.g., x, y, z or x, y, x
Rotate around (rotated) local axes

X

Y

Z

Note: fixed angles are same as Euler angles
applied in reverse order and vice versa

()γβα PRRRP zyx)()()(' γβα=

Chapter 1

1-20Department of Computer Science and Engineering

1 Transformations

Roll, pitch, and yaw (Euler angles)
The orientation of, for example, a space shuttle in space is defined as
its attitude. Orbiter attitudes are specified using values for pitch,
yaw, and roll. These are with respect to the local object’s coordinate
system and therefore represent Euler angles

http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

Chapter 1

1-21Department of Computer Science and Engineering

1 Transformations

Axis-Angle
[]

()[]zyx
A

θ
θ

Rotate about given axis
Euler’s Rotation Theorem (orientation can be derived

from another by a single rotation about an axis)
Fairly easy to interpolate between orientations
Difficult to concatenate rotations

X

Y

Z

A Q

Chapter 1

1-22Department of Computer Science and Engineering

1 Transformations

Axis-angle to rotation matrix

X

Y

Z

A Q Concatenate the following:
Rotate A around z to x-z plane
Rotate A’ around y to x-axis
Rotate theta around x
Undo rotation around y-axis
Undo rotation around z-axis

Chapter 1

1-23Department of Computer Science and Engineering

1 Transformations

Axis-angle to rotation matrix

()
*

)(

*

)sin()ˆ)(cos(ˆ

0
0

0

ˆ

AAIARot

aa
aa

aa
A

aaaaaa
aaaaaa
aaaaaa

A

zyx

xy

xz

yz

zzyzxz

zyyyxy

zxyxxx

θθθ +−+=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

X

Y

Z

A
Q

P

P’

Chapter 1

1-24Department of Computer Science and Engineering

1 Transformations

Chapter 1
Quaternions
A quaternion is a four-tuple of real numbers, [s, x, y, z] or,
equivalently [s, v], consisting of a scalar, s, and a three-
dimensional vector, v.
The quaternion is an alternative to the axis and angle
representation in that it contains the same information in
a different, nut mathematically convenient, form.
Importantly, it is a form that can be interpolated as well as
used in concatenating a series of rotations into a single
representation. The axis and angle information of a
quaternion can be viewed as an orientation of an object.

1-25Department of Computer Science and Engineering

1 Transformations

Quaternion

() ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛= ARot A *)

2
sin(

2
cos θθ

θ

Same as axis-angle, but different form
Still rotate about given axis
Mathematically convenient form

X

Y

Z

[]vs:q Note: in this form v is a scaled
version of the given axis of
rotation, A

A Q

Chapter 1

1-26Department of Computer Science and Engineering

1 Transformations

Quaternion Arithmetic
Addition

Multiplication

Length

Inner Product

[] [] []22112121 vsvsvvss +=++

[]212112212121 vvvsvsvvssqq ×++⋅−=

212121 vvssqq ⋅+=⋅

qqq ⋅=

Chapter 1

1-27Department of Computer Science and Engineering

1 Transformations

Quaternion Arithmetic
Inverse []vsq

q
−=−

2

11

()[]000111 == −− qqqq

() 111 −−− = pqpq

Unit quaternion 2ˆ
q

qq =

Chapter 1

1-28Department of Computer Science and Engineering

1 Transformations

Quaternion Represention

Vector

Transform

[]v0

1)(' −== qvqvRotv q

Chapter 1

Rotating a vector using quaternions:

1-29Department of Computer Science and Engineering

1 Transformations

Quaternion Geometric Operations

)())((vRotvRotRotv qppq ==′′

)()(vRotvRot qq −=

vqqvqqvRotRotv qq ===′′ −−
−)())((11
1

)()(vRotvRot kqq =

Chapter 1

1-30Department of Computer Science and Engineering

1 Transformations

Unit Quaternion Conversions

[]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−−
−−−−
−−−−

=
22

22

22

2212222
2222122
2222221

yxsxyzsyxz
sxyzzxszxy
syxzszxyzy

Rot vs

vvzyx
s
/),,(
)(cos2 1

=

= −θ
Axis-Angle

Chapter 1

1-31Department of Computer Science and Engineering

1 Transformations

Chapter 1
Rotations using Quaternions
Hence, a rotation of angle θ around the axis (x, y, z) can
be described using the following quaternion:

[cos (θ/2), sin (θ/2)(x, y, z)]

1-32Department of Computer Science and Engineering

1 Transformations

Quaternions
Chapter 1

Avoids gimbal lock
Easy to rotate a point
Easy to convert to a rotation matrix
Easy to concatenate – quaternion multiply
Easy to interpolate – interpolate 4-tuples
How about smoothly (in both space and time) interpolate?

1-33Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL
As seen before, viewing and projections is achieved by
transforming from the world coordinate system to the
display coordinate system using matrix multiplication.
Hence, OpenGL provides several functions for modifying
matrices.
Since OpenGL is a state machine, it has two different
matrix stacks that can change the view onto a scene
(set of objects). The first one is the projection stack, while
the other one is the modelview stack. The projection
transformation is responsible for the projection just like a
lens for a camera. This transformation also determines
the type of projection (e.g. perspective or orthographic).

Chapter 1

1-34Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
The modelview transformation combines the view
transformation and the model transformation onto the
same stack. The view transformation indicates the shape
of the available screen (width, height, ratio). The model
transformation facilitates the change of the entire scene
as a whole before mapping it onto the projection plane.
For example, the model transformation can be used to
rotate the entire scene or zoom in or out.

Chapter 1

1-35Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
OpenGL mainly follows the
analogy to a camera when
creating an image on the
display.

Chapter 1

1-36Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
To specify which stack you want to modify, OpenGL
provides a method:

glMatrixMode (GLenum mode);

The mode passed onto this function as the only argument
can be specified as GL_MODELVIEW or GL_PROJECTION.
This then changes the state of OpenGL, so that all
following matrix commands change that specific matrix
only.
OpenGL uses homogenous coordinates to represent
matrices, i.e. all matrices are 4x4 matrices.

Chapter 1

1-37Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
To initialize a matrix stack with the identity matrix, the
following functions can be used:

glLoadIdentity ();

This then initializes the current matrix stack with the
matrix

Usually, this function is used before any other matrix
modification, since it just overwrites the current matrix.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

1000
0100
0010
0001

Chapter 1

1-38Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
Alternatively, you initialize the matrix with a specific
matrix that was calculated before. The following functions
overwrites the current matrix stack with the given matrix:

float mf[16];

double md[16];

glLoadMatrixf (mf);

glLoadMatrixd (md);

The elements of the matrices are
specified as shown on the right:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

161284

151173

141062

13951

mmmm
mmmm
mmmm
mmmm

Chapter 1

1-39Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
To multiply a matrix onto the current one the following
functions are useful:

glMatrixMultf (m);

glMatrixMultd (m);

The matrix is specified exactly the same as for the
function glLoadMatrix.
Note that OpenGL multiplies the new matrix M to the
current one C from the right, i.e. after applying the
function glMatrixMult the matrix on the current stack
will be C·M.

Chapter 1

1-40Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
OpenGL also provides function for the basic types of
transformation, i.e. translation, rotation, and scaling. The
function

glTranslatef (GLfloat x,

GLfloat y,

GLfloat z);

multiplies a translation matrix onto the
current matrix stack using the translation
vector (x, y, z).

Chapter 1

1-41Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
The function

glRotatef (GLfloat angle,

GLfloat x,

GLfloat y,

GLfloat z);

multiplies a rotational matrix onto the current matrix stack,

Chapter 1

1-42Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
while the function

glScalef (GLfloat x,

GLfloat y,

GLfloat z);

appends a scaling matrix to the
matrix stack.

Chapter 1

1-43Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
Note, that the corresponding functions that accept
double values are also available. These use – according
to the usual OpenGL convention – the suffix d instead of
f to indicate the data type.

Using these matrix functions, both the projection as well
as the modelview matrices can be specified.
OpenGL, however, provides some functions that are
more convenient and intuitive.

Chapter 1

1-44Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
The function gluLookAt can be used to specify the camera location
and orientation:
void gluLookAt (GLdouble eyex,

GLdouble eyey,

GLdouble eyez,

GLdouble centerx,

GLdouble centery,

GLdouble centerz,

GLdouble upx,

GLdouble upy,

GLdouble upz);

Chapter 1

1-45Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL (continued)
The arguments for the function gluLookAt specify the
view coordinate with respect to the camera. The location
of the camera or eye defines the origin, while the center
point determines the direction the camera is pointing at.
Hence, eye-center determines the z-
axis. The vector up identifies the y-
axis, while the x-axis is orthogonal to
the y- and z-axis.
The default it gluLookAt (0.0,
0.0, 0.0, 0.0, 0.0, -100.0,
0.0, 1.0, 0.0);

Chapter 1

1-46Department of Computer Science and Engineering

1 Transformations

Projections in OpenGL
OpenGL provides built-in functions for perspective and
orthogonal projections. These can be applied directly
after changing the state to make the projection matrix the
current matrix stack and initializaing:

glMatrixMode (GL_PROJECTION);

glLoadIdentity ();

Chapter 1

1-47Department of Computer Science and Engineering

1 Transformations

Projections in OpenGL (continued)
Using the function glFrustum, the view frustum can be
declared using a perspective projection (all arguments
are of the type GLdouble):

glFrustum (left, right,
bottom, top,
near, far);

Chapter 1

1-48Department of Computer Science and Engineering

1 Transformations

Projections in OpenGL (continued)
Sometimes it is more convenient to specify the view
frustum following the camera analogy more closely (all
arguments are of type GLdouble):

gluPerspective (fovy, aspect,
near, far);

Chapter 1

1-49Department of Computer Science and Engineering

1 Transformations

Projections in OpenGL (continued)
If an orthogonal projection is desired, the following
method can be used (all arguments are of type
GLdouble):

glOrtho (left, right,
bottom, top,
near, far);

Chapter 1

1-50Department of Computer Science and Engineering

1 Transformations

Projections in OpenGL (continued)
For a 2-D projection it does not make any difference if a
perspective or orthogonal projection is used since the
scene with all the objects does not have any depth.
Hence, there is only one function provided by OpenGL for
a 2-D projection (all arguments are of type GLdouble):

glOrtho2D (left, right,
bottom, top);

Chapter 1

1-51Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL
The last step of the process of creating an image on a
computer display is the viewport transformation. Recalling
the camera analogy, the viewport transformation
corresponds to the stage where the size of the developed
photography is chosen. The viewport is measured in
window coordinates. By default, OpenGL uses the entire
window provided. The following functions allows you to
reduce the size of the image (all arguments are of type
GLint):
void glViewport (x, y, width, height);

Chapter 1

1-52Department of Computer Science and Engineering

1 Transformations

Viewing in OpenGL
The aspect ratio of a viewport should generally equal the
aspect ratio of the viewing volume. If the two ratios are
different, the projected image will be distorted as it's
mapped to the viewport. Note that subsequent changes
to the size of the
window don't explicitly
affect the viewport. Your
application should
detect window resize
events and modify the
viewport and projection
appropriately.

Chapter 1

	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1
	Chapter 1

