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Animation
Chapter 2

Animator specified
interpolation
key frame

Algorithmically controlled
Physics-based
Behavioral

Data-driven
motion capture
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Motivation
Common problem: given a set of points
Smoothly (in time and space) move an 
object through the set of points

Example additional temporal constraints:
From zero velocity at first point, 
smoothly accelerate until time t1, hold a 
constant velocity until time t2, then 
smoothly decelerate to a stop at the last 
point at time t3

Chapter 2
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Motivation – solution steps
Chapter 2

1. Construct a space curve that 
interpolates the given points 
with piecewise first order 
continuity

2. Construct an arc-length-
parametric-value function for the 
curve

3. Construct time-arc-length 
function according to given 
constraints

p=P(U(S(t)))

p=P(u)

u=U(s)

s=S(t)
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Interpolating function

Interpolation v. approximation 
Complexity: cubic
Continuity: first degree (tangential), i.e. C2

Local v. global control: local
Information requirements: tangents needed?

Chapter 2
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Interpolation v. Approximation

Chapter 2
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Complexity
Low complexity

reduced computational cost

Minimal requirement: 
CUBIC polynomial

Point of Inflection
Can match arbitrary tangents 

at end points

Chapter 2
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ContinuityChapter 2
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Local v. Global Control
Chapter 2
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Information requirements
just the points

tangents

interior control points

just beginning and 
ending tangents

Chapter 2
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Curve Formulations

Piecewise cubic polynomials
Hermite
Catmull-Rom
Blended Parabolas
Bezier
B-spline
Tension-Continuity-Bias
4-Point Form

Lagrange Polynomial

Chapter 2
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Lagrange 
Polynomial

∏
≠
= −

−
=

x

jk
k kj

k
jj xx

xxyxP
1

)(

Chapter 2



1-13Department of Computer Science and Engineering

2 Interpolation Techniques

Polynomial Curve Formulations
Need to match real-world data v. design from scratch
Information requirements: just points? tangents?
Qualities of final curve?
Intuitive enough?
Other shape controls?
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Geometric 
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matrix

Blending
Functions

Algebraic 
coefficient 
matrix
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Hermite
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Cubic Bezier
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Interior control points 
play the same role as the 
tangents of the Hermite
formulation

Chapter 2
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Blended Parabolas/Catmull-Rom*
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* End conditions are handled differently
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Controlling Motion 
along p=P(u) 

Step 2. Reparameterization by arc length

Step 3. Speed control

u = U(s)       where s is distance along the curve

s = ease(t)       where t is time
for example, ease-in / ease-out

Chapter 2



1-18Department of Computer Science and Engineering

2 Interpolation Techniques

Reparameterizing by Arc Length

Analytic
Forward differencing

Supersampling
Adaptive approach

Numerically
Adaptive Gaussian

Chapter 2
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Reparameterizing by 
Arc Length - analytic
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Can’t always be solved analytically for our curves 
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Reparameterizing by Arc 
Length - supersample

1.Calculate a bunch of points at small increments in u
2.Compute summed linear distances as approximation 

to arc length
3.Build table of (parametric value, arc length) pairs

Notes
1.Often useful to normalize total distance to 1.0
2.Often useful to normalize parametric value 

for multi-segment curve to 1.0

Chapter 2
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index u Arc Length

0 0.00 0.000

1 0.05 0.080

2 0.10 0.150

3 0.15 0.230

... ... ...

20 1.00 1.000

Build 
table of 
approx. 
lengths

Chapter 2
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Adaptive Approach
How fine to sample?

Compare successive 
approximations and 
see if they agree 
within some tolerance

Test can fail – subdivide to 
predefined level, then start 
testing

Chapter 2
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Reparameterizing by Arc 
Length - quadrature
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Reduce the number of evaluations using 
Gaussian quadrature

Can also take adaptive approach here
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Reparameterizing by Arc Length

Analytic
Forward differencing

Supersampling
Adaptive approach

Numerically
Adaptive Gaussian

Sufficient for many problems

Chapter 2
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Speed Control

Time-distance function
Ease-in

Cubic polynomial
Sinusoidal segment
Segmented sinusoidal
Constant acceleration

General distance-time functions

time

distance

Chapter 2
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Time Distance Function

s = S(t)

s

t

S

Chapter 2
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Ease-in/Ease-out Function

s = S(t)

s

t

S

0.0
0.0

1.0

1.0

Normalize distance and time to 1.0 to facilitate reuse

Chapter 2
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Ease-in: Sinusoidal

( ) 2/)12/sin()( +−== ππtteases

Chapter 2
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Ease-in: Piecewise Sinusoidal
Chapter 2
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Ease-in: Piecewise Sinusoidal
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Provides linear (constant velocity) middle segment
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Ease-in: Single Cubic

23 32)( ttteases +−==

Chapter 2

Drawback: no segment of constant speed
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Ease-in: Constant Acceleration
Chapter 2
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Ease-in: Constant Acceleration
Chapter 2
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Ease-in: Constant Acceleration
Chapter 2



1-35Department of Computer Science and Engineering

2 Interpolation Techniques

Ease-in: Constant Acceleration
Chapter 2

Integration of acceleration gives us desired function:
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Arbitrary Speed Control
Chapter 2

Animators can work in:
Distance-time space curves
Velocity-time space curves
Acceleration-time space curves
Set time-distance constraints
etc.
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Curve fitting to distance-time pairs
Chapter 2

Alternative: specify speed of camera at key points
This may result in undesirable spikes to stay 
within total distance (or even negative speed)
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Working with
time-distance 
curves

Chapter 2

Define a curve to 
parameterize according 
to distance which 
sometimes can be more 
intuitive
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Interpolating distance-time pairs
Chapter 2
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Chapter 2

Now that we have the camera path defined:

Is this all we need?

Looking at the function gluLookAt already tells us that we 
need more information in form of the up vector and the 
view direction or center point
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Frenet Frame – control orientation
Chapter 2

Local coordinate system for the animated object

For a camera, we also need to specify the 
orientation, i.e. view direction and up vector
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Frenet Frame 
tangent & curvature vector

Chapter 2
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Frenet Frame 
tangent & curvature vector
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Frenet Frame 
tangent & curvature vector
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Frenet Frame
local coordinate system

• Directly control 
orientation of 
object/camera

• Use for direction and 
bank into turn, 
especially for ground-
planar curves (e.g. 
roads)

Chapter 2
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Frenet Frame - undefined
Chapter 2

Solution: interpolate between known vectors
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Frenet Frame - discontinuity
Chapter 2

Problem: second derivative switches direction, hence 
flipping the camera around

In some applications, e.g. driving along a road, it may be 
more practical to just look farther ahead on the curve.
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Other ways to control orientation

Use point P(s+ds) for direction

Use auxiliary curve to define direction or up vector

Chapter 2
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Direction & Up vector

Direction vector
(view direction)

w

u=w x y-axis

v = u x w
To keep ‘head up’, use y-
axis to compute up vector 
v perpendicular to direction 
vector

Chapter 2
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Chapter 2

If an initial up vector is provided you can adjust the local 
coordinate system with every change of position:

u = w x vold

v = u x w
This leads to an updated up vector v and avoids 
unintentional flipping of the camera.

Direction & Up vector
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Orientation interpolation
Preliminary note:
1. Remember that
2. Affects of scale are divided out by the inverse 

appearing in quaternion rotation
3. When interpolating quaternions, use UNIT 

quaternions – otherwise magnitudes can 
interfere with spacing of results of interpolation

4. Unit quaternions can be interpreted as points on 
a 4-D unit sphere

)()( vRotvRot kqq ≡

Chapter 2
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Orientation interpolation

2 problems analogous to issues when interpolating 
positions:

1. How to take equi-distant steps along orientation 
path?

2. How to pass through orientations smoothly (1st

order continuous)
3. And another particular to quaternions: with dual 

unit quaternion representations, which to use?

Quaternions can be interpolated to produce in-
between orientations:

21)1( kqqkq +−=

Chapter 2
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Dual 
representation

Dual unit quaternion 
representations

)()( vRotvRot kqq =

Chapter 2

For Interpolation between q1 and q2, compute cosine 
between q1 and q2 and between q1 and –q2; choose 
smallest angle
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Interpolating quaternions

Linearly interpolating unit quaternions: not equally spaced

Unit quaternions form set of points on 4D sphere

Chapter 2
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Interpolating quaternions in 
great arc => equal spacing

Chapter 2
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Interpolating quaternions

2121 sin
sin

sin
)1sin(),,(slerp ququuqq

θ
θ

θ
θ

+
−

=

‘slerp’, sphereical linear interpolation is a function of 
• the beginning quaternion orientation, q1
• the ending quaternion orientation, q2
• the interpolant, u (interpolation parameter)

Note: resulting quaternions may have to be normalized

θcos21 =⋅qqwhere

Chapter 2
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Smooth Orientation interpolation
When interpolating between series of 
orientations, slerping suffers from the same 
problem as linear interpolation between points in 
Euclidean space.
Interpolate along great arc (in 4-space) using 
cubic Bezier on sphere

1. Select representation to use from duals
2. Construct interior control points for cubic 

Bezier
3. use deCasteljau construction of cubic 

Bezier

Chapter 2
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Smooth quaternion interpolation

How to smoothly 
interpolate through 
orientations q1, q2, 
q3,…qn

Similar to first order 
continuity desires 
with positional 
interpolation

Chapter 2

Bezier interpolation –
geometric construction
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Bezier interpolation
Chapter 2
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Bezier interpolation
Construct interior 
control points

pn-1

pn

pn+1

pn+2
an

tn

pn-1

pn

pn+1

pn+2
an

bn

Chapter 2

Create interior control points an based on pn-1, pn, and 
pn+1: an = 0.5 * (pn + (pn – pn-1) + pn+1)

Compute remaining interior points bn using an and pn:  
bn = pn + (pn – an)
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Bezier interpolation
Construct interior 
control points

pn-1

pn

pn+1

pn+2
an

tn+1

an+1bn+1

p2

p1

p0

a0

Chapter 2

At the end points, we do not have the previous control 
points: a0 = p1 + (p1 – p2)

This then defines cubic Bezier segments consisting of 
the control points pn, an ,bn+1, pn+1.
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Quaternion operators

Similar to forming a vector 
between 2 points, form the 
rotation between 2 
orientations

Given 2 orientations, form 
result of applying rotation 
between the two to 2nd

orientation

q1

q2

q1

q2

qd

double(q1, q2)

bisect(q1, q2) qb

Chapter 2
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Quaternion operators

pqqpqpdouble −⋅= )(2),(

Bisect 2 orientations:
21

21
21 ),(bisect

qq
qqqq

+
+

=

p q

Chapter 2
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Bezier interpolation

Need quaternion-friendly 
operators to form interior 
control points

Chapter 2
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Bezier interpolation
Construct interior 
control points

)),,(double(bisect 11 +−= nnnn qqqa

),( nnn qadoubleb =

Bezier segment:
qn, an, bn+1, qn+1

pn-1

pn

pn+1

pn+2
an

tn

pn-1

pn

pn+1

pn+2
an

bn

pn-1

pn

pn+1

pn+2
an

tn+1

an+1bn+1

Chapter 2
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Bezier construction using 
quaternion operators

Need quaternion-friendly operations to 
interpolate cubic Bezier curve using 
‘quaternion’ points

de Casteljau geometric construction algorithm

Chapter 2
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Bezier construction using 
quaternion operators

t1=slerp(qn, an,1/3)
t2=slerp(an, bn+1,1/3)
t3=slerp(bn+1, 
qn+1,1/3)

t12=slerp(t1, t2,1/3)
t23=slerp(t12, 
t23,1/3)

q=slerp(t12, 
t23,1/3)

Chapter 2
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Working with paths
Chapter 2

For cases in which the points making up a path are 
generated by a digitizing process, the resulting curve 
can be too jerky because of noise or imprecision. To 
remove the jerkiness, the coordinate values of the 
data can be smoothed by one of several approaches:

Smoothing a path
Determining a path along a surface
Finding downhill direction
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Smoothing data
Chapter 2

Averaging adjacent points:
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Smoothing data (result)
Chapter 2
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Smoothing data
Chapter 2

Use the surrounding four points to compute a cubic 
polynomial. Compute estimated point and average with 
actual point:
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Smoothing data
Chapter 2

1. Average Pi-1 and Pi+1

2. Add 1/6 of the vector from Pi-2 to Pi-1

3. Add 1/6 of the vector from Pi+2 to Pi+1 to get the 
new estimated point
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Smoothing data
Chapter 2

Average estimated point with original data point:
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Smoothing data
Chapter 2

At the end points, there are not enough data points so 
that we have to use a quadratic curve to determine the 
estimated point: P1` = P2 + (1/3)(P0 – P3)
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Smoothing data
Chapter 2

Cubic smoothing with 
parabolic end 
condition

Cubic smoothing 
without parabolic end 
condition

Similarly, the end points can be smoothed using 
parabolic interpolation: P0` = P3 + 3(P1 – P2)
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Smoothing data
Chapter 2

When the data to be smoothed can be viewed as a 
value of a function yi= f(xi), the data can be smoothed 
by convolution:
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Smoothing data
Chapter 2

Thus, the data is interpreted as discrete data points 
comparable to a 1-D image:
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Chapter 2
Mathematically, convolution is an integral that expresses 
the amount of overlap of one function g as it is shifted 
over another function f. It therefore "blends" one function 
with another:

∫ −=∗
t

dtgftgf
0

)()()]([ τττ
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Smoothing data
Chapter 2

Different filter kernels can then be applied:
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Smoothing data
Chapter 2
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Smoothing data
Chapter 2
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Chapter 2
Path finding
If one object is to move across the surface of another 
object, then a path across the surface must be 
determined. If start and destination points are known, it 
can be computationally expensive to find the shortest 
path between the points. However, it is not often 
necessary to find the absolute shortest path. Various 
alternatives exist for determining suboptimal, yet more-or-
less direct paths.
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Chapter 2
Path finding
An easy way to determine a path along a polygonal 
surface mesh is to determine a plane that contains the 
two points and is generally perpendicular t the surface.
Generally perpendicular can be defined, for example, as 
the average of the two vertex normals that the path is 
being formed between. The intersection of the plane with 
the faces making up the surface mesh will define a path 
between the two points.



1-84Department of Computer Science and Engineering

2 Interpolation Techniques

Path finding
Chapter 2

This approach results in a reasonable path which is 
not necessarily the shortest path. Example: sphere.
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Chapter 2
Path finding – downhill
If a path downhill from an initial point on the surface is 
desired, then the surface normal and global up vector can 
be used to determine the downhill vector. The cross 
product of the normal and global up vector defines a 
vector that lies on the surface perpendicular to the 
downhill direction. So the cross product of this vector and 
the normal vector defines the downhill (and uphill) vector 
on a plane. This same approach works with curved 
surfaces to produce the instantaneous downhill vector.
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Path finding - downhill
Chapter 2
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Chapter 2
Interpolation-Based Animation
The techniques described so far describe the basics of 
interpolating values. The remainder of this chapter 
addresses how to use those basics to facilitate the 
production of computer animation. Procedures and 
algorithms are used in which the animator has very 
specific expectations about the motion that will be 
produced on a frame-by-frame basis.
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Interpolation based animation
Chapter 2

Key-frame systems – in general

Interpolating shapes
Deforming a single shape
3D interpolation between two shapes
Morphing – deforming an image
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Keyframing – interpolating values
Chapter 2
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Keyframing
In computer animation, the term key frame has been 
generalized to apply to any variable whose value is set at 
specific key frames and from which values for the 
intermediate frames are interpolated according to some 
prescribed procedure (interpolation scheme can include 
points, tangents, …). These variables have been referred 
to as articulation variables (avars) and the systems to 
track based.

Chapter 2
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Keyframing curves
Chapter 2

Point-by-point correspondence information is usually not 
known, and even if it is, the resulting interpolation is not 
necessarily what the user wants. The best one can expect is 
for the curve-to-curve correspondence to be given. The 
problem is, given two arbitrary curves in key frames, to 
interpolate a curve as it “should” appear in intermediate 
frames. For example, observe the egg splatting against the 
wall:
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Time-Curve interpolation

Implement using surface patch technology

Chapter 2
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Time-Curve interpolation

Establish point correspondence

Chapter 2
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Time-Curve interpolation

Define time – space-curve “patches”

Interpolate in one dimension for curve (spatially)
Interpolate in other dimension temporally

Chapter 2
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Object interpolation
Chapter 2

1. Modify shape of object interpolate 
vertices of different shapes

Correspondence problem
Interpolation problem

2. Interpolate one object into second 
object

3. Interpolate one image into second 
image
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Chapter 2
Deforming Objects
Deforming an object shape and transforming one shape 
into another is a visually powerful animation technique. It 
adds the notion of malleability and density. Flexible body 
animation makes the objects in an animation seem much 
more expressive and alive. There are physically based 
approaches that simulate the reaction of objects 
undergoing forces. However, many animators want more 
precise control over the shape on an object than that 
provided by simulations and/or do not want the 
computational expense of the simulating physical 
process.
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Chapter 2
Deforming Objects
Instead, the animator may want to deform the object 
directly and define key shapes. Shape definitions that 
share the same edge connectivity can be interpolated on 
a vertex-to-vertex basis in order to smoothly change from 
one shape to the other. A sequence of key shapes can be 
interpolated over time to produce flexible body animation. 
Multivariate interpolation can be used to blend among a 
number of different shapes. The various shapes are 
referred to as blend shapes or morph targets and is a 
commonly used technique in facial animation.
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Object Modification

Vertex 
warping

2D grid-based deforming

Skeletal bending

Free Form Deformations

Modify the vertices directly

OR

Modify the space the 
vertices lie in

Global transforms

Chapter 2

Different techniques are available
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Warping
A particularly simple way to modify the shape of an object 
is to displace one or more of its vertices. To do this on a 
per-vertex basis can be tedious for a large number of 
vertices. Simply grouping a number of vertices together 
and displacing them uniformly can be effective in 
modifying the shape of an object but is too restrictive in 
the shapes that can easily be created. An effective 
improvement is to allow the user to displace a vertex (the 
seed vertex) or group of vertices of the object and 
propagate the displacement to adjacent vertices along  
the surface while attenuating the amount of displacement.
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Warping

Chapter 2

Displacement 
can be 
attenuated as a 
function of 
distance between 
seed vertex and 
vertex to be 
displace.



1-101Department of Computer Science and Engineering

2 Interpolation Techniques
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Warping
Attenuation is typically a function of the distance metric. 
The minimum of connecting edges is used for the 
distance metric and the user specifies the maximum 
range of effect to be vertices within n edges of the seed 
vertex. A scale factor is applied to the displacement 
vector according to the user-selected integer value of k as 
shown on the next slide.
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Power functions
For attenuating warping effects
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Warping
These attenuation functions are easy to compute and 
provide sufficient flexibility for many desired effects. 
When k equals zero it corresponds to a linear attenuation, 
while values of k less than zero create a more elastic 
impression. Values of k greater than zero create the 
effect of more rigid displacements.
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2D grid-based deforming
The local coordinate system is a two-dimensional grid in 
which an object is placed. The grid is initially aligned 
with the global axes so that the mapping from local to 
global coordinates consists of a scale and a translate.

Chapter 2



1-105Department of Computer Science and Engineering

2 Interpolation Techniques

2D grid-based deforming
Chapter 2

The grid is then distorted by the user moving the vertices 
of the grid so that the local space is distorted. The 
vertices of the object are then relocated in the distorted 
grid by bilinear interpolation relative to the cell of the grid 
in which the vertex is located.
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2D grid-based deforming
Chapter 2

Once this is done for all vertices of the object, the object 
is distorted according to the distortion of the local grid. 
For the objects that contain hundreds of thousands of 
vertices, the grid distortion is much more efficient than 
individually repositioning each vertex. In addition, it is 
more intuitive for the user to specify a deformation.
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Polyline Deformation
Polyline deformation is similar to the grid approach in that the object 
vertices are mapped to the polyline, the polyline is then modified by 
the user, and the object vertices are then mapped to the same 
relative location on the polyline.
The mapping to the polyline is performed by first locating the most 
relevant line segment for each object vertex. To do this, intersecting 
lines are formed at the junction of adjacent segments, and 
perpendicular lines are formed at the extreme ends of the polyline. 
These lines will be referred to as boundary lines; each polyline 
segment has two boundary lines. For each object, the closest 
polyline segment that contains the object vertex between its 
boundary lines is selected.
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2D Polyline Deformation
Chapter 2

Polyline drawn through object; bisectors and 
perpendiculars are drawn as dashed lines.
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2D skeleton-based bending
Chapter 2

Next, each object is mapped to its corresponding polyline segment. 
A line segment is constructed through the object vertex parallel to 
the polyline segment and between the boundary lines. For a given
object vertex, the following information is recorded: the closes line 
segment (L2); the line segment’s distance to the polyline segment 
(d); and the objects vertex’s relative position on this line segment, 
that is, the ratio r of the length of the line segment (d1) and the 
distance from one end of the line segment to the object vertex (d2).
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2D skeleton-based bending
Chapter 2

The polyline is hen repositioned by the user and each object 
vertex is repositioned relative to the polyline using the 
information previously recorded for that vertex. A line parallel
to the newly positioned segment is constructed d units away 
and the vertex’s new position is the same fraction along this 
line that it was in the original configuration
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Global Transformations

ppMp )(' =

Mpp ='

The idea is to globally deform the space in which an 
object is defined by applying a 3x3 transformation matrix, 
M, which is a function of the point being transformed:

Chapter 2

In GT, the transformation is a function of where you are 
in space, i.e. it depends on the point p:
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Global Transformations
Chapter 2

A simple linear 2D tapering operation:
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Global Transformations
Chapter 2

A twist about an axis:
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Global Transformations

z below zmin: no rotation

z between  zmin ,zmax : 
Rotate from 0 to Q

z above zmin: rotate Q

Chapter 2

A global bend operation:
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Compound global transformations
Chapter 2
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Free-Form Deformations (FFDs)

2D grid-based deforming FFDs

2D grid 3D grid

tri-cubic interpolationbi-linear interpolation

Chapter 2
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Free-Form Deformation
A Free-Form Deformation (FFD) is essentially a three-
dimensional extension of Burtnyk’s grid deformation that 
incorporates higher-order interpolation. In both cases, a 
localized coordinate grid, in a standard configuration, is 
superimposed over an object. For each vertex of the 
object, coordinates relative to this local grid are 
determined that register the vertex to the grid. The grid is 
then manipulated by the user. Using its relative 
coordinates, each vertex is then mapped back into the 
modified grid, which relocates that vertex in global space. 
Instead of linear interpolation, cubic interpolation is 
typically used with FFDs, e.g. Bezier interpolation.
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Free-Form Deformations
As with the 2D grid deformation, the object is 
embedded in a rectilinear grid (which can be 
composed of an unequal number of points in the 
three directions:

Chapter 2
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Free-Form Deformations
Chapter 2

In the first step of the FFD, vertices of an object are 
located in a 3D the rectilinear grid. Initially, the local 
coordinate system is defined by a not-necessarily 
orthogonal set of three vectors (S, T, U). A vertex P is 
registered in the local coordinate system by 
determining its tri-linear interpolation as shown on the 
next slide.
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Free-Form Deformations
Chapter 2
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Free-Form Deformations
Chapter 2

Register points in grid: cell x,y,z ↔ (s,t,u)
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Free-Form Deformations
Chapter 2

Given the local coordinates (s, t, u) of a point and the 
unmodified local coordinate grid, a point’s position 
can be reconstructed in global space by simply 
moving in the direction of the local coordinate axes 
according to its local coordinates:

uUtTsSPP +++= 0



1-123Department of Computer Science and Engineering

2 Interpolation Techniques

Free-Form Deformations
Chapter 2

To facilitate the modification of the local coordinate 
system, the grid of control points is then used. If there 
are l points in the S direction, m points in the T
direction, and n points in the U direction, the control 
points are located according to the following equation:
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The deformations are specified by moving the control points 
from their initial positions. The function that effects the 
deformation is a tri-variate Bezier interpolating function. The 
deformed position of a point Pstu is determined by using its (s, t, u)
local coordinates in the following Bezier interpolating function, 
where P(s, t, u) represents the global coordinates of the 
deformed point, and Pijk the global coordinates of the control 
points:
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Free-Form Deformations
Chapter 2

Show sample video.

http://video.google.com/videoplay?docid=439282958833763030&q=free+form+deformation&ei=5-ALSOOyDp2mrALI99GwBA&hl=en
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Free-Form Deformations
As in Bezier curve interpolation, multiple Bezier 
solids can e joined. The continuity is controlled by 
co-planarity of control points:

Chapter 2

Higher-order continuity can be maintained similar to 
curves and surfaces as well.
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FFDs: alternate grid organizations
Chapter 2

FFDs have been extended to include initial grids that are 
something other than a parallelepiped. For example, a 
cylindrical lattice can be formed from the standard 
parallelepiped by merging the opposite boundary planes 
in one direction and then merging all the points along the 
cylindrical axis:
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Composite FFDs
Chapter 2

FFDs can be composed sequentially or hierarchically. In 
a sequential composition, an object is modeled by 
progressing through a sequence of FFDs, each of which 
imparts a particular feature to the object. In this way, 
various detail elements can be added to an object in 
stages as opposed to trying to create one mammoth, 
complex FFD designed to do everything at once. For 
example, if a bulge is desired on a bent tube, then one 
FFD can be used to impart the bulge while a second one 
is designed to bend the object.
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Composite FFDs: 
sequence of bulging and bending:

Chapter 2
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Composite FFDs
Chapter 2

Organizing FFDs hierarchically allows the user to work at 
various levels of detail. Finer resolution FFDs, usually 
localized, are embedded inside FFDs higher in the 
hierarchy. As a coarser-level FFD us used to modify the 
object’s vertices, it also modifies the control points of any 
of its children FFDs that are within the space affected by 
the deformation. A modification made at a finer level in 
the hierarchy will remian well defined even as the 
animator works at a coarser level by modifying an FFD 
grid higher up in the hierarchy.
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FFDs
hierarchical

Chapter 2
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Animated FFDs
Chapter 2

FFDs can also be used to control an animation in one of 
two ways. The FFD can be constructed so that traversal 
of an object through the FFD space results in a 
continuous transformation of its shape. Alternatively, the 
control points of an FFD can be animated, which results 
in an animated deformation that automatically animates 
the object’s shape.
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FFDs – as tools to design shapes
Chapter 2

First, some form of deformation is defined based on 
the FFD technique:
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Animated FFDs
Chapter 2

Now, the previously defined deformation is moved 
relative to the object, thereby generating the 
animation:



1-135Department of Computer Science and Engineering

2 Interpolation Techniques

FFDs
Alternatively, the 
object can 
translate though 
the local 
deformation 
space of the FFD 
and be deformed 
by the 
progression 
through the FFD.

Chapter 2
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Animated FFDs
Chapter 2

Another way to animate an object using FFDs is to 
animate the control points of the FFD. For example, the 
FFD control points can be animated explicitly using key-
frame animation, or their movement can be the result of a 
physically-based simulation. As the FFD grid points 
move, they define a changing deformation to be applied 
to the object’s vertices.
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FFDs Facial animation by manipulating FFD

Chapter 2
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Animated FFDs
Chapter 2

FFDs can also be used to model muscles of a human 
model. The muscles in this case are not meant to be 
anatomical representations of real muscles but to provide 
for a more artistic style.
As a simple example, a hinge joint with adjacent links is 
modeled. There are three FFDs: one for each of the two 
lings and one for the joint. The FFDs associated with the 
links will deform the skin according to a stylized muscle, 
and the purpose of the FFD associated with the joint is to 
prevent interpenetration of the skin surface in highly bent 
configurations:
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FFDs Exo-muscular system
Skeleton -> changes FFD -> changes skin

Chapter 2
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Chapter 2
3D Shape Interpolation
We first need to define a few terms:
topology (mathematical):

Describes the connectivity of the surface of an object, 
i.e. the number of holes and the number of separate 
bodies

genus:
Number of holes of an object

topology (computer graphics):
Vertex/edge/face connectivity of an object
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Interpolate between 2 objects
Chapter 2

Correspondence problem: what part of one 
object to map into what part of the other 
object
How to handle objects of different genus?
Volumetric approaches with remeshing

Interpolation problem: how to create a 
sequence of intermediate objects that 
visually represent the transformation.
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Matching Topology
The simplest case of transforming one object into another 
is when the two shapes to be interpolated share the same 
vertex-edge topology. Here, the objects are transformed 
by merely interpolating the positions of the vertices on a 
vertex-by-vertex basis. The correspondence between the 
two shapes is established by the vertex-edge connectivity 
structure shared by the two objects. The interpolation 
problem is solved, as in the majority of techniques 
presented here, by interpolating three-dimensional vertex 
positions.
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Radial mapping
If the two objects are both star-shaped polyhedra, then 
polar coordinates can be used to induce a 2D mapping 
between the two shapes. The object surfaces are 
sampled by a regular distribution of rays emanating 
from a central point in the kernel of the object.

Chapter 2
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Object 
interpolation

Chapter 2

The vertices of an 
intermediate object 
are constructed by 
interpolating 
between the 
intersection points 
along a ray



1-145Department of Computer Science and Engineering

2 Interpolation Techniques

Chapter 2
Axial Slices
The idea can be extended to 3D objects as well. For each 
object, the user defines an axis that runs through the 
middle of the object. At regular intervals along this axis, 
perpendicular slices are taken of an object. These slices 
must be star shaped with respect to the point of 
intersection between the axis and the slice. This central 
axis is defined for both objects, and the part of each axis 
interior to its respective object is parameterized from zero 
to one. In addition, the user defines an orientation vector 
(or a default direction is used) that is perpendicular to the 
axis.
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Axial Slices
For cylinder-like objects

Chapter 2
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Chapter 2
Axial Slices
Corresponding slices (in the sense that they use the 
same axis parameter to define the plane of intersection) 
are taken from each object. The two-dimensional slices 
can be interpolated pair-wise (one from each object) by 
constructing rays that emanate from the center point and 
sample the boundary at regular intervals with respect to 
the orientation vector.
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Axial Slices
Chapter 2

The denser the sampling, the more accurate the 
approximation to the original object. The corresponding 
points can then be interpolated in 3D space.
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Application of axial slice 
technique in a more 
complex example.



1-150Department of Computer Science and Engineering

2 Interpolation Techniques

Chapter 2
Object Interpolation
Even among genus 0 objects, more complex polyhedra 
may not be star shaped or allow an internal axis to define 
star-shaped slices. A more complicated mapping 
procedure may be required to establish the 2D 
parameterization of the object’s surfaces. One approach is 
to map both objects onto a common surface, such as a 
unit sphere. The mapping must be such that the entire 
object surface maps to the entire sphere with no overlap. 
Once both objects have been mapped onto the sphere, a 
union of their vertex-edge topologies can be constructed 
and then inversely mapped back onto each original object.
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Chapter 2
Object Interpolation
If both objects are successfully mapped to the sphere’s 
surface, the projected edges are intersected and merged 
into one topology. The new vertices and edges are a 
superset of both object topologies. They are then 
projected back onto both object surfaces. This produces 
two new object definitions, identical in shape to the original 
objects but now having the same vertex-edge topology, 
allowing for a vertex-by-vertex interpolation to transform 
one object into the other.
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Object interpolation
Spherical mapping to establish 
matching edge-vertex topology

Chapter 2

1. Map to sphere
2. Intersect arc-edges
3. Retriangulate
4. Remap to object shapes
5. Vertex-to-vertex interpolation
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Map to sphere
Chapter 2

The algorithm starts by considering one vertex Va of object 
A and finding the face Fb of object B that contains vertex 
Va. The edges emanating from Va are added to the work 
list. Face Fb becomes the current face, and all edges of 
face Fb are put on each edge’s intersection-candidate list.
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Chapter 2
Object Interpolation
Every edge Ea is tested for any intersection with the 
edges on its associated intersection-candidates list. If no 
intersections are found, intersection processing for this 
edge is complete. If an intersection I is found with one of 
the edge Eb then the following steps performed:

– I is added to the final model
– I is added to the intersection lists of both Ea and Eb

– The face Gb on the other side of Eb becomes the 
current face

– The other edges of face Gb replace the edges in 
edge Ea’s intersection-candidate list
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Object interpolation
Chapter 2

The intersections with edges of object B then have to 
be sorted along each edge to ensure they are lined 
up properly along the edge.
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Chapter 2
Object Interpolation
Now, all the vertices, edges, and intersection points are 
mapped back onto the original objects. New face 
definitions need to be constructed for each object. 
Because both models started out as triangulated meshes, 
there are only a limited number of configurations possible 
when one considers the triangulation required from the 
combined models.
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Chapter 2



1-158Department of Computer Science and Engineering

2 Interpolation Techniques

Chapter 2
Object Interpolation
After this process, both objects have the same topology 
so that we can easily interpolate between the two by 
linearly interpolating between the vertices of both objects.
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Object Interpolation
The main problem with the previous procedure is that 
many new edges are created as a result of the merging 
operation. There is no attempt to map existing edges into 
one another. To avoid a plethora of new edges, a 
recursive approach can be taken in which each object is 
reduced to 2D polygonal meshes. Meshes from each 
object are matched by associating the boundary vertices 
and adding new ones when necessary. The meshes are 
then similarly split and the procedure is recursively 
applied until everything has been reduced to triangles.
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Object interpolation – recursive sheets

Continually add vertices to make corresponding 
boundaries have an equal number

Chapter 2
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Object Interpolation
The initial objects are divided into an initial number of 
polygonal meshes. Each mesh is associated with a mesh 
from the other object so that adjacency relationships are 
maintained by the mapping. The simplest way to do this 
is merely to break each object into two meshes: a front 
mesh and a back mesh. A front and back mesh can be 
constructed by searching for the shortest paths between 
the topmost, bottommost, leftmost, and rightmost vertices 
of the object and then appending these paths:
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Object interpolation
Chapter 2
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Chapter 2
Object Interpolation
If one of the meshes has fewer boundary vertices than 
the other, then new vertices must be introduced along its 
boundary to make up for the difference. There are various 
ways to do this, and the success of the algorithm is not 
dependent on the method. A suggested method is to 
compute the normalized distances of each vertex along 
the boundary as measured from the first vertex of the 
boundary. For the boundary with fewer vertices, new 
vertices can be added one at a time by searching for the 
largest gap in normalized distances for successive 
vertices in the boundary:
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Object 
interpolation

Chapter 2
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Object Interpolation
When the boundaries have the same number of vertices, 
a vertex on one boundary is said to be associated with 
the vertex on the other boundary at the same relative 
location. Once the meshes have been associated, each 
mesh is recursively divided. One mesh is chosen for 
division, and a path of edges is found across it. One good 
approach for this is to choose two vertices across the 
boundary from each other and try to find an existing path 
of edges between them.
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Object Interpolation
Once a path has been found across one mesh, then a 
path across the mesh it is associated with must be 
established between corresponding vertices. This may 
require creating new vertices and new edges. When 
these paths have been created, the meshes can be 
divided along these paths, creating two pairs of new 
meshes. The boundary association, finding a path of 
edges, and mesh splitting are recursively applied to each 
new mesh until all of the meshes have been reduced to 
single triangles. At this point the new vertices and new 
edges have been added to one or both objects so that 
both objects have the same topology.
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Morphing
Chapter 2

Image blending
Move pixels to corresponding pixels
Blend colors
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Morphing
To transform one image into another, the user defines a 
curvilinear grid over each of the two images to be 
morphed. It is the user’s responsibility to define the grids 
so that corresponding elements in the images are in the 
corresponding cells of the grids. The user defines the grid 
by locating the same number of grid intersection points in 
both images; the grid must be defined at the borders of 
the images in order to include the entire image. A curved 
mesh is then generated using the grid intersection points 
as control points for an interpolation scheme, such as 
Catmull-Rom or Bezier splines.
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Morphing
Chapter 2
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Morphing
To generate an intermediate image along the way from 
the source image to the destination image, the vertices of 
the source and destination grids are interpolated to form 
an intermediate grid. This interpolation can be done 
linearly, or grid from adjacent key frames can be used to 
perform higher-order interpolation. Pixels from the source 
and destination images are stretched and compressed 
according to the intermediate grid so that warped 
versions of both the source image and the destination 
grid are generated.
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Morphing
Chapter 2
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Morphing
First, the pixels from the source image are stretched and 
compressed in the x-direction to fit the interpolated grid. 
These pixels are then stretched and compressed in the y-
direction to fit the intermediate grid. To carry this out, an 
auxiliary grid is computed that, for each grid point, uses 
the x-coordinate from the corresponding grid point of the 
source image grid and the y-coordinate from the 
corresponding point of the intermediate grid.
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Chapter 2
Morphing
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Morphing
Chapter 2

This auxiliary 
grid is then 
used to 
distort the 
source pixels 
in the x-
direction.
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Morphing
Chapter 2

Then we can 
distort in y-
direction as 
well.
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Morphing
Chapter 2

By specifying grid sequences for both the source and 
the destination images, animations can be generated 
based on morphing.
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2 Interpolation Techniques

Morphing: feature based
Given: corresponding user-defined 
feature lines in source and destination 
images
These feature lines define a coordinate 
transformation which can be applied to 
the image.

Chapter 2
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2 Interpolation Techniques

Morphing: feature based
Compute coordinates (u,v) of a pixel 
based on the destination feature defined 
by P1 and P2

Chapter 2



1-179Department of Computer Science and Engineering

2 Interpolation Techniques

Morphing: feature based
Chapter 2

For every destination pixel, compute the 
location of the source pixel based on the 
source feature defined by Q1 and Q2
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2 Interpolation Techniques

Morphing: 
feature 
based

Chapter 2
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2 Interpolation Techniques

Chapter 2
Morphing video that illustrates 3D facial animation

http://video.google.com/videoplay?docid=-7050632706251817632&q=morphing&ei=xGMOSI-lOqXQ4ALD_ZGqBA&hl=en
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