
3-1Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3

Kinematic Linkages

3-2Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Introduction
In describing an object’s motion, it is often useful to relate
it to another object. Consider, for example a coordinate
system centered at our sun in which the moon’s motion
must be defined. It is much easier to describe the motion
of the moon relative to the earth and the earth’s motion
directly in a sun-centric coordinate system. Such
sequences of relative motion are found not only in
astronomy but also in robotics, amusement park rides,
internal combustion engines, and human figure
animation. This chapter is concerned with animating
objects whose motion is relative to another object.

3-3Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Introduction
This chapter is concerned with animating objects whose
motion is relative to another object, especially when there
is a sequence of objects whose motion is relative to
another object, especially when there is a sequence of
objects where each object’s motion can be easily
described relative to the previous one. Such an object
sequence forms a motion hierarchy. Often the
components of the hierarchy represent objects that are
physically connected and are referred to by the term
linked appendages or, more simply, linkages.

3-4Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Introduction
The topic of this chapter is how to form data structures
that support such linkages and how to animate the
linkages by specifying or determining position parameters
over time. As such, it is concerned with kinematics. Of
course, a common use for kinematic linkages is for
animating human (or other) figures in which the animator
must specify rotation parameters at joints connected by
rigid links.

3-5Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Introduction
The two approaches to positioning such a hierarchy are
known as forward kinematics, in which the animator must
specify rotation parameters at joints, and inverse
kinematics, in which the animator specifies the desired
position of the hand, for example, and the system solves
for the joint angles that satisfy that desire

3-6Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3

Hierarchical Modeling
Relative motion Parent-child relationship

Constrains motion Reduces dimensionality

Simplifies motion specification

3-7Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Modeling & animating hierarchies

3 aspects
1. Linkages & Joints – the relationships
2. Data structure – how to represent such a hierarchy
3. Converting local coordinate frames into global space

3-8Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Some terms
Joint – allowed relative motion & parameters
Joint Limits – limit on valid joint angle values
Link – object involved in relative motion
Linkage – entire joint-link hierarchy
Armature – same as linkage
End effector – most distant link in linkage
Articulation variable – parameter of motion associated with joint
Pose – configuration of linkage using given set of joint angles
Pose vector – complete set of joint angles for linkage

Arc – of a tree data structure – corresponds to a joint
Node – of a tree data structure – corresponds to a link

3-9Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Use of hierarchies in animation

Forward Kinematics (FK)
animator specifies values of articulation variables

Inverse Kinematics (IK)
animator specifies final desired global transform for
end effector (and possibly other linkages)
→ Values of articulation variables are computed

→ global transform for each linkage is computed

3-10Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3

Forward & Inverse
Kinematics

3-11Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Joints – relative movement

3-12Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Joints
The joints from the previous slide allow motion in one
direction and are said to have one degree-of-freedom
(DOF). Structures in which more than one DOF are
coincident are called complex joints. Complex joints
include the planar joint and the ball-and-socket joint
Planar joints are those in which one link slides on the
planar surface of another. Sometimes when a joint has
more than one DOF, it is modeled as a set of n one-DOF
joints connected by n-1 links of zero length. Alternatively,
multiple DOF joints can be modeled using a multiple-
valued parameter such as Euler angles or quaternions.

3-13Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Complex Joints

3-14Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Hierarchical Structure
Human figures and animals are conveniently modeled as
hierarchical linkages. Such linkages can be represented by
a tree structure of nodes connected by arcs. The highest
node of the tree is the root node, which corresponds to
the root object of the hierarchy whose position is known in
the global coordinate system. The position of all other
nodes of the hierarchy will be located relative to the root
node. A node from which no arcs extend downward is
referred to as a leaf node. When discussing two nodes of
the tree connected by an arc the one higher up the
hierarchy is referred to as the parent node, and the one
farther down the hierarchy as the child node.

3-15Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Hierarchical structure

3-16Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Tree structure
A node contains the information necessary to define the
object part in a position ready to be articulated. It
represents the transformation of the object data into a link
of the hierarchical model.
Two types of transformations are associated with an arc
leading to a node. One transformation rotates and
translated the object into its position of attachment
relative to the link one position up in the hierarchy. This
defines the link’s neutral position relative to its parent.
The other transformation is the variable information
responsible for the actual joint articulation.

3-17Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3

Tree structure

3-18Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3

Tree
structure

3-19Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Tree structure

3-20Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Relative movement

3-21Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Relative movement

3-22Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Tree structure

3-23Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Tree structure

3-24Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Forward Kinematics
Evaluation of a hierarchy by traversing the corresponding
tree produces the figure in a position that reflects the
setting of the joint parameters. Traversal follows a depth-
first pattern from root to leaf node in a recursive fashion.
Whenever an arc is followed down the tree hierarchy, its
transformations are concatenated to the transformations
of its parent node. Whenever we move back up to a node
due to the recursion, the transformation of that node must
be restored before traversal continues downward. A stack
of transformations is a conceptually simple way to
implement the saving and restoring of transformations as
arcs are followed down and then back up the tree.

3-25Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Forward Kinematics
In C-like pseudo-code, each arc has associated with it the
following:

– nodePtr: a pointer to a node that holds the data to be
ar4ticulated by the arc

– Lmatrix: a matrix that locates the following (child) node relative
to the previous (parent) node

– Amatrx: a matrix that articulates the node data; this is the
matrix that is changed in order to animate (articulate) the
linkage

– arcPtr: a pointer to a sibling arc (another child of this arc’s
parent node); this is NULL if there are no more siblings

3-26Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Forward Kinematics
Each node has associated with it the following:

– dataPtr: data (possibly shared by other nodes) that represent
the geometry of this segment of the figure

– Tmatrix: a matrix to transofrm the node data into position to be
articulated (e.g. put the point of rotation at the origin)

– ArcPtr: a pointer to a single child arc

3-27Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Tree
traversal

traverse (arcPtr,matrix)
{

// concatenate arc matrices
matrix = matrix*arcPtr->Lmatrix
matrix = matrix*arcPtr->Amatrix;

// get node and transform data
nodePtr=acrPtr->nodePtr
push (matrix)
matrix = matrix * nodePTr->matrix
aData = transformData(matrix,dataPTr)
draw(aData)
matrix = pop();

// process children
If (nodePtr->arc != NULL) {

nextArcPtr = nodePTr->arc
while (nextArcPtr != NULL) {

push(matrix)
traverse(nextArcPtr,matrix)
matrix = pop()
nextArcPtr = nextArcPtr->arc

}
}

}

L
A

d,M

NOTE:
Node points to first child
Each child points to sibling
Last sibling points to NULL

3-28Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
OpenGL
Single
linkage

glPushMatrix();
For (i=0; i<NUMDOFS; i++) {

glRotatef(a[i],axis[i][0], axis[i][1], axis[i][2]);
if (linkLen[i] != 0.0) {

draw_linkage(linkLen[i]);
glTranslatef(0.0,linkLen[i],0.0);

}
}
glPopMatrix();

A[i] – joint angle
Axis[i] – joint axis
linkLen[i] – length of link

OpenGL concatenates matrices

3-29Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Forward Kinematics
Example video.

http://video.google.com/videoplay?docid=-2451886633223829135&q=forward+kinematic&ei=WAMVSPuzNpHmqgKI2LTwBA&hl=en

3-30Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
Introductory video.

http://video.google.com/videoplay?docid=4337904650686331203&ei=PAQVSObWFJqyrQKq5fTyBA&hl=en

3-31Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
In inverse kinematics, the desired position and possibly
orientation of the end effector are given by the user along
with the initial pose vector. From this, the joint values
required to attain that configuration are calculated giving the
final pose vector. The problem can have zero, one, or more
solutions. If there are so many constraints on the
configuration that no solution exists, the system is called
overconstrained. If there are relatively few constraints on
the system and there are many solutions, then it is
underconstraint. The reachable workspace is that volume
which the end effector can reach. The dextrous workspace
is the volume that the end effector can reach in any
orientation.

3-32Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse kinematics

Given goal position (and orientation) for end effector

Compute internal joint angles

If simple enough => analytic solution
Else => numeric iterative solution

3-33Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse kinematics - spaces

Configuration space
Reachable workspace
Dextrous workspace

3-34Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Analytic
inverse
kinematics

)
2

)(
cos(

21

222
2

2
1

2 LL
YXLL

a
+−+

−=θ

Note: typos
in the book

3-35Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK - numeric

If linkage is too complex to solve analytically

Desired change from this specific pose
Compute set of changes to the pose to effect that change

Solve iteratively – numerically solve for step toward goal

E.g., human arm is typically
modeled as 3-1-3 or 3-2-2 linkage

3-36Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
For those problems that are too complex to find an
analytical solution, the motion can be incrementally
constructed. At each time step, a computation is
performed that determines a way to change each joint
angle in order to direct the current position and
orientation of the end effector toward the desired
configuration. There are several methods used to
compute the change in joint angle but most involve
forming the matrix of partial derivatives called the
Jacobian.

3-37Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK math notation

),,,,,(
),,,,,(
),,,,,(
),,,,,(
),,,,,(
),,,,,(

65432166

65432155

65432144

65432133

65432122

65432111

xxxxxxfy
xxxxxxfy
xxxxxxfy
xxxxxxfy
xxxxxxfy

xxxxxxfy

=
=
=
=
=
=

()XFY =

3-38Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – math notation

6
6

5
5

4
4

3
3

2
2

1
1

x
x
fx

x
fx

x
fx

x
fx

x
fx

x
fy iiiiii

i ∂
∂
∂

+∂
∂
∂

+∂
∂
∂

+∂
∂
∂

+∂
∂
∂

+∂
∂
∂

=∂

X
X
FY ∂
∂
∂

=∂

These equations can also be used to describe the change in
the output variables relative to the change in the input
variables. The differentials of yi can be written in terms of
the differentials of xi using the chain rule. This generates:

3-39Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics - Jacobian

()θθ &JV =

X
X
FY ∂
∂
∂

=∂

Desired motion
of end effector

Unknown change in
articulation variables

The Jacobian is the matrix relating
the two: it’s a function of current avar
(articulation variables) values

3-40Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics - Jacobian

()θθ &JV =
[]zyxzyx vvvV ωωω ,,,,,= []654321 ,,,,, θθθθθθθ &&&&&&& =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂

∂
∂
∂

∂
∂

∂
∂

=

61

1

621

θ
α

θ
α

θ

θθθ

zz

y

xxx

p

ppp

J
K

K

KChange in
position (linear
velocities)

Change in orientation
(rotational velocities)

3-41Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
V is the vector of linear and rotational velocities and
represents the desired change in the end effector. The
desired change will be based on the difference between
its current position/orientation to that specified by the goal
configuration.

3-42Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
Each term of the Jacobian relates the change of a
specific joint to a specific change in the end effector. For
a revolute joint, the rotational change in the end effector
is merely the velocity of the joint angle about the axis of
revolution at the joint under consideration. For a prismatic
joint, the end effector orientation is unaffected by the joint
articulation. For a rotational joint, the linear change in the
end effector is the cross product of the axis of revolution
and a vector from the joint to the end effector. The
rotation at a rotational joint induces an instantaneous
linear direction of travel at the end effector. For a
prismatic joint, the linear change is identical to the
change at the joint.

3-43Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – computing the Jacobian

Change in positionChange in orientation

3-44Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
The desired angular and linear velocities are computed
by finding the difference between the current
configuration of the end effector and the desired
configuration. The angular and linear velocities of the end
effector induced by the rotation at a specific joint are
determined by the computations on the previous slide.
The problem is to determine the best linear combination
of velocities induced by the various joints that would
result in the desired velocities of the end effector. The
Jacobian is formed by posing the problem in matrix form.

3-45Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
In assembling the Jacobian, it is important to make sure
that all of the coordinate values are in the same
coordinate system. It is often the case that joint-specific
information is given in the coordinate system local to that
joint. In forming the Jacobian matrix, this information must
be converted into some common coordinate system, such
as global world coordinate system or the end effector
coordinate system. Various methods have been
developed for computing the Jacobian based on attaining
maximum computation efficiency given the required
information in local coordinate systems, but all methods
produce the derivative matrix in a common coordinate
system.

3-46Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK - configuration

Example: move end effector E to the goal position G.

3-47Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – compute positional change vectors
induced by changes in joint angles

Instantaneous positional change vectors
Desired change vector

One approach to IK computes
linear combination of change
vectors that equal desired
vector

3-48Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics
The desired change to the end effector is the difference
between the current position of the end efector and the
goal position:

A vector of the desired change in values is set equal to
the Jacobian matrix multiplied by a vector of the unknown
values, which are the changes to the joint angles:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

z

y

x

EG
EG
EG

V
)(
)(
)(

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

−×−××
−×−××

= yyy

xxx
PEPEE
PEPEE

J))1,0,0(())1,0,0(())1,0,0((
))1,0,0(())1,0,0(())1,0,0((

21

21

⎦⎣ −×−×× zzz PEPEE))1,0,0(())1,0,0(())1,0,0((21

3-49Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK - singularity

Some singular configurations are not so easily recognizable
Near singular configurations are also problematic – why?

3-50Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics – Near Singular Configurations
A configuration that is only close to being a singularity
can still present major problems. If the joints of the
linkage in the previous slide are slightly perturbed, then
the configuration is not singular. However, in order to
form a linear combination of the resulting instantaneous
change vectors, very large values must be used. This
results in large impulses near areas of singularities.
These must be clamped to more reasonable values. Even
then, numerical errors can result in unpredictable motion.

3-51Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse Kinematics - Numeric

Given
• Current configuration
• Goal position/orientation

Determine
• Goal vector
• Positions & local coordinate systems of

interior joints (in global coordinates)
• Jacobian

Solve & take small step – or clamp
acceleration or clamp velocity

Repeat until:
• Within epsilon of goal
• Stuck in some configuration
• Taking too long

()θθ &JV = Is in same form as more recognizable : bAx =

3-52Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Solving

() ()
θ

θ

θ

θ

&

&

&

&

=

=

=

=

+

−−

VJ

JJJJVJJJ

JJVJ
JV

TTTT

TT

11

θβ

β

β

θ

θ

&

&

&

=

=

=

=

=

−

−

+

T

T

T

TT

J

VJJ
VJJ

VJJJ

VJ

)(
)(

)(
1

1

If J not square, usually under-constrained: more DoFs than constraints
Requires use of pseudo-inverse of Jacobian

If J square, compute inverse, J-1

Avoid direct computation of inverse by solving Ax=B form

3-53Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Solving
Simple Euler integration can be used at this point to
update the joint angles. The Jacobian has changed at the
next time step, so the computation must be performed
again and another step taken. This process repeats until
the end effector reaches the goal configuration within
some acceptable tolerance.
It is important to remember that the Jacobian is only valid
for the instantaneous configuration for which it is formed.
That is, as soon as the configuration of the linkage
changes, the Jocobian ceases to accurately describe the
relation ship between the changes in the joint angles and
changes in end effector position and orientation.

3-54Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Solving
This means that if too big a step is taken in joint angle
space, the end effector may not appear to travel in the
direction of the goal. If this appears to happen during an
animation sequence, then taking smaller steps in joint
angle space and thus recalculating the Jacobian more
often may be in order.

3-55Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Solving: Example
Consider a two-dimensional 3-joint linkage with link
lengths of 15, 10, and 5. Using an initial pose vector of
{π/8, π/4, π/4} and a goal position of {-20,5}. A 21 frame
sequence is calculated for linearly interpolated
intermediate goal positions for the end effector. The next
slides shows frames of 0, 5, 10 ,15, and 20 of the
sequence. Notice the path of the end effector (the end
point of the third link) travels in approximately a straight
line to the goal position.

3-56Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian solution

3-57Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian solution - problem

When goal is out of reach
Bizarre undulations can occur
As armature tries to reach the unreachable

Add a damping factor

3-58Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian w/ damped least squares

VIJJJ TT 12)(−+= λθ&

() VJJJ TT 1−
=θ&Undamped form:

Damped form with user parameter:

3-59Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian w/ control term
The pseudoinverse computes one of many possible
solutions, It minimizes joint angle rates. The configuration
produced, however, do not necessarily correspond to
what might be considered natural poses. To better control
the kinematic model, such as encouraging joint angle
constraints, a control expression can be added to the
pseudoinverse Jacobian solution. The control expression
is used to solve for control angle rates with certain
attributes. The added control expression, because of its
from, contributes nothing to the desired end effector
velocities.

3-60Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian w/ control term

Physical systems (i.e. robotics) and synthetic character
simulation (e.g., human figure) have limits on joint values

Take advantage of redundant manipulators - Allow user
to set parameter that urges DOF to a certain value

Does not enforce joint limit constraints, but can be
used to keep joint angles at mid-range values

IK allows joint angle to have any value

Difficult (computationally expensive) to
incorporate hard constraints on joint values

3-61Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian w/ control term

2

1

)(
)(

ciiiz
zIJJVJ

θθα

θ

−=

−+= −++&

0
0

)(
)(

=
=

−=

−=

=

+

+

V
zV

zJJJJV
zIJJJV

JV θ&

Change to the pose parameter in the form of
the control term adds nothing to the velocity

control expression

3-62Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian w/ control term
To bias the solution toward the specific joint angles, such
as the middle angle between joints, z is defined as z=α(θi-
θci)2, where θi are the current joint angles, θci are the
desired joint angles, and θi are the joint gains. This does
not enforce joint limits as hard constraints, but the
solution can be biased toward the middle values so that
violating the joint limits is less probable.

3-63Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Jacobian w/ control term

2

1

)(
)(

ciiiz
zIJJVJ

θθα

θ

−=

−+= −++&All bias to 0
Top gains = {0.1, 0.5, 0.1}
Bottom gains = {0.1, 0.1, 0.5}

3-64Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – alternate Jacobian

Jacobian formulated to pull the goal toward the end effector

Use same method to form Jacobian but use
goal coordinates instead of end-effector
coordinates

3-65Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Transpose of the Jacobian
Solving the linear equations using the pseudoinverse of
the Jacobian is essentially determining the weights
needed to form the desired velocity vector from the
instantaneous change vectors. An alternative way of
determining the contribution of each instantaneous
change vector is to form its projection onto the end
effector velocity vector. This entails forming the dot
product between the instantaneous change vector and
the velocity vector.

3-66Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Transpose of the Jacobian

Compute how much the change vector
contributes to the desired change vector:

Project joint change vector onto desired change vector

Dot product of joint change vector and desired
change vector → Transpose of the Jacobian

3-67Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Transpose of the Jacobian
Putting this into matrix form, the vector of joint parameter
changes is formed by multiplying the transpose of the
Jacobian times the velocity vector and using the scaled
version of this as the joint parameter change vector:

3-68Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Transpose of the Jacobian

θ&=VJ T

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

z

y

x

z

y

x

v
v
v

V

ω
ω
ω

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂

∂
∂

=

66

2

111

θ
α

θ

θ

θ
α

θθ

zx

x

zyx

T

p

p

pp

J
K

K

K

3-69Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Transpose of the Jacobian
This avoids the expense of computing the inverse, or
pseudoinverse, of the Jacobian. In certain configurations
a zero vector may result. The main drawback is that even
though a given instantaneous change vector might
contribute to the velocity vector, it may also take the end
effector well away from the desired direction.

3-70Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – cyclic coordinate descent
Instead of relying on numerical machinery to produce
desired joint velocities, a more flexible, procedural
approach can be taken. Cyclic Coordinate Descent
considers each joint one at a time, sequentially from the
outermost inward. At each joint, an angle is chosen that
best gets the end effector to the goal position.

3-71Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – cyclic coordinate descent

Consider one joint at a time, from outside in
At each joint, choose update that best gets end
effector to goal position

In 2D – pretty simple

EF
Goal

Ji

axisi

Heuristic solution

3-72Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – cyclic coordinate descent

In 3D, a bit more computation is needed

3-73Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – cyclic coordinate descent – 3D

EF
Goal

Ji

axisi

First – goal has to be projected onto
plane defined by axis and EF

3-74Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – cyclic coordinate descent – 3D

Other orderings of processing joints
are possible

Because of its procedural nature
• Lends itself to enforcing joint limits
• Easy to clamp angular velocity

3-75Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse kinematics - review

Analytic method
Forming the Jacobian
Numeric solutions

Pseudo-inverse of the Jacobian
J+ with damping
J+ with control term
Alternative Jacobian
Transpose of the Jacobian
Cyclic Coordinate Descent (CCD)

3-76Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse kinematics - orientation

Change in orientation at end-
effector is same as change at
joint

Ji

axisi

EF

3-77Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Inverse kinematics - orientation
How to represent orientation (at goal, at end-effector)?
How to compute difference between orientations?
How to represent desired change in orientation in V vector?
How to incorporate into IK solution?

Matrix representation: Mg, Mef

Difference Md = Mef
-1 Mg

Use scaled axis of rotation: B(ax ay az):
• Extract quaternion from Md
• Extract (scaled) axis from quaternion

E.g., use Jacobian Transpose method:
Use projection of scaled joint axis onto extracted axis

