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Introduction
In describing an object’s motion, it is often useful to relate 
it to another object. Consider, for example a coordinate 
system centered at our sun in which the moon’s motion 
must be defined. It is much easier to describe the motion 
of the moon relative to the earth and the earth’s motion 
directly in a sun-centric coordinate system. Such 
sequences of relative motion are found not only in 
astronomy but also in robotics, amusement park rides, 
internal combustion engines, and human figure 
animation. This chapter is concerned with animating 
objects whose motion is relative to another object.
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This chapter is concerned with animating objects whose 
motion is relative to another object, especially when there 
is a sequence of objects whose motion is relative to 
another object, especially when there is a sequence of 
objects where each object’s motion can be easily 
described relative to the previous one. Such an object 
sequence forms a motion hierarchy. Often the 
components of the hierarchy represent objects that are 
physically connected and are referred to by the term 
linked appendages or, more simply, linkages.
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The topic of this chapter is how to form data structures 
that support such linkages and how to animate the 
linkages by specifying or determining position parameters 
over time. As such, it is concerned with kinematics. Of 
course, a common use for kinematic linkages is for 
animating human (or other) figures in which the animator 
must specify rotation parameters at joints connected by 
rigid links.
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The two approaches to positioning such a hierarchy are 
known as forward kinematics, in which the animator must 
specify rotation parameters at joints, and inverse 
kinematics, in which the animator specifies the desired 
position of the hand, for example, and the system solves 
for the joint angles that satisfy that desire
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Hierarchical Modeling
Relative motion Parent-child relationship

Constrains motion Reduces dimensionality

Simplifies motion specification
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Modeling & animating hierarchies

3 aspects
1. Linkages & Joints – the relationships
2. Data structure – how to represent such a hierarchy
3. Converting local coordinate frames into global space
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Some terms
Joint – allowed relative motion & parameters
Joint Limits – limit on valid joint angle values
Link – object involved in relative motion
Linkage – entire joint-link hierarchy
Armature – same as linkage
End effector – most distant link in linkage
Articulation variable – parameter of motion associated with joint
Pose – configuration of linkage using given set of joint angles
Pose vector – complete set of joint angles for linkage

Arc – of a tree data structure – corresponds to a joint
Node – of a tree data structure – corresponds to a link
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Use of hierarchies in animation

Forward Kinematics (FK)
animator specifies values of articulation variables

Inverse Kinematics (IK)
animator specifies final desired global transform for 
end effector (and possibly other linkages)
→ Values of articulation variables are computed 

→ global transform for each linkage is computed
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Forward & Inverse 
Kinematics
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Joints
The joints from the previous slide allow motion in one 
direction and are said to have one degree-of-freedom
(DOF). Structures in which more than one DOF are 
coincident are called complex joints. Complex joints 
include the planar joint and the ball-and-socket joint 
Planar joints are those in which one link slides on the 
planar surface of another. Sometimes when a joint has 
more than one DOF, it is modeled as a set of n one-DOF 
joints connected by n-1 links of zero length. Alternatively, 
multiple DOF joints can be modeled using a multiple-
valued parameter such as Euler angles or quaternions.
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Hierarchical Structure
Human figures and animals are conveniently modeled as 
hierarchical linkages. Such linkages can be represented by 
a tree structure of nodes connected by arcs. The highest 
node of the tree is the root node, which corresponds to 
the root object of the hierarchy whose position is known in 
the global coordinate system. The position of all other 
nodes of the hierarchy will be located relative to the root 
node. A node from which no arcs extend downward is 
referred to as a leaf node. When discussing two nodes of 
the tree connected by an arc the one higher up the 
hierarchy is referred to as the parent node, and the one 
farther down the hierarchy as the child node.
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Hierarchical structure
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Tree structure
A node contains the information necessary to define the 
object part in a position ready to be articulated. It 
represents the transformation of the object data into a link 
of the hierarchical model.
Two types of transformations are associated with an arc 
leading to a node. One transformation rotates and 
translated the object into its position of attachment 
relative to the link one position up in the hierarchy. This 
defines the link’s neutral position relative to its parent. 
The other transformation is the variable information 
responsible for the actual joint articulation.
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Tree structure
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Tree 
structure
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Tree structure
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Forward Kinematics
Evaluation of a hierarchy by traversing the corresponding 
tree produces the figure in a position that reflects the 
setting of the joint parameters. Traversal follows a depth-
first pattern from root to leaf node in a recursive fashion. 
Whenever an arc is followed down the tree hierarchy, its 
transformations are concatenated to the transformations 
of its parent node. Whenever we move back up to a node 
due to the recursion, the transformation of that node must 
be restored before traversal continues downward. A stack 
of transformations is a conceptually simple way to 
implement the saving and restoring of transformations as 
arcs are followed down and then back up the tree.
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Forward Kinematics
In C-like pseudo-code, each arc has associated with it the 
following:

– nodePtr: a pointer to a node that holds the data to be 
ar4ticulated by the arc

– Lmatrix: a matrix that locates the following (child) node relative 
to the previous (parent) node

– Amatrx: a matrix that articulates the node data; this is the 
matrix that is changed in order to animate (articulate) the 
linkage

– arcPtr: a pointer to a sibling arc (another child of this arc’s 
parent node); this is NULL if there are no more siblings
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Each node has associated with it the following:

– dataPtr: data (possibly shared by other nodes) that represent 
the geometry of this segment of the figure

– Tmatrix: a matrix to transofrm the node data into position to be 
articulated (e.g. put the point of rotation at the origin)

– ArcPtr: a pointer to a single child arc
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Tree 
traversal

traverse (arcPtr,matrix)
{

// concatenate arc matrices
matrix = matrix*arcPtr->Lmatrix
matrix = matrix*arcPtr->Amatrix;

// get node and transform data
nodePtr=acrPtr->nodePtr
push (matrix)
matrix = matrix * nodePTr->matrix
aData = transformData(matrix,dataPTr)
draw(aData)
matrix = pop();

// process children
If (nodePtr->arc != NULL) {

nextArcPtr = nodePTr->arc
while (nextArcPtr != NULL) {

push(matrix)
traverse(nextArcPtr,matrix)
matrix = pop()
nextArcPtr = nextArcPtr->arc

}
}

}

L 
A

d,M

NOTE: 
Node points to first child
Each child points to sibling
Last sibling points to NULL
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OpenGL
Single 
linkage

glPushMatrix();
For (i=0; i<NUMDOFS; i++) {

glRotatef(a[i],axis[i][0], axis[i][1], axis[i][2]);
if (linkLen[i] != 0.0) {

draw_linkage(linkLen[i]);
glTranslatef(0.0,linkLen[i],0.0);

}
}
glPopMatrix();

A[i] – joint angle
Axis[i] – joint axis
linkLen[i] – length of link

OpenGL concatenates matrices
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Forward Kinematics
Example video.

http://video.google.com/videoplay?docid=-2451886633223829135&q=forward+kinematic&ei=WAMVSPuzNpHmqgKI2LTwBA&hl=en
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Inverse Kinematics
Introductory video.

http://video.google.com/videoplay?docid=4337904650686331203&ei=PAQVSObWFJqyrQKq5fTyBA&hl=en
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In inverse kinematics, the desired position and possibly 
orientation of the end effector are given by the user along 
with the initial pose vector. From this, the joint values 
required to attain that configuration are calculated giving the 
final pose vector. The problem can have zero, one, or more 
solutions. If there are so many constraints on the 
configuration that no solution exists, the system is called 
overconstrained. If there are relatively few constraints on 
the system and there are many solutions, then it is 
underconstraint. The reachable workspace is that volume 
which the end effector can reach. The dextrous workspace
is the volume that the end effector can reach in any 
orientation.
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Inverse kinematics

Given goal position (and orientation) for end effector

Compute internal joint angles

If simple enough => analytic solution
Else => numeric iterative solution
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Inverse kinematics - spaces

Configuration space
Reachable workspace
Dextrous workspace
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Analytic
inverse 
kinematics
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IK - numeric

If linkage is too complex to solve analytically

Desired change from this specific pose
Compute set of changes to the pose to effect that change

Solve iteratively – numerically solve for step toward goal

E.g., human arm is typically 
modeled as 3-1-3 or 3-2-2 linkage
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For those problems that are too complex to find an 
analytical solution, the motion can be incrementally 
constructed. At each time step, a computation is 
performed that determines a way to change each joint 
angle in order to direct the current position and 
orientation of the end effector toward the desired 
configuration. There are several methods used to 
compute the change in joint angle but most involve 
forming the matrix of partial derivatives called the 
Jacobian.
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These equations can also be used to describe the change in 
the output variables relative to the change in the input 
variables. The differentials of yi can be written in terms of 
the differentials of xi using the chain rule. This generates:
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Inverse Kinematics - Jacobian

( )θθ &JV =

X
X
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∂
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Desired motion 
of end effector

Unknown change in 
articulation variables

The Jacobian is the matrix relating 
the two: it’s a function of current avar
(articulation variables) values
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Inverse Kinematics - Jacobian
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V is the vector of linear and rotational velocities and 
represents the desired change in the end effector. The 
desired change will be based on the difference between 
its current position/orientation to that specified by the goal 
configuration.
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Each term of the Jacobian relates the change of a 
specific joint to a specific change in the end effector. For 
a revolute joint, the rotational change in the end effector
is merely the velocity of the joint angle about the axis of 
revolution at the joint under consideration. For a prismatic 
joint, the end effector orientation is unaffected by the joint 
articulation. For a rotational joint, the linear change in the 
end effector is the cross product of the axis of revolution 
and a vector from the joint to the end effector. The 
rotation at a rotational joint induces an instantaneous 
linear direction of travel at the end effector. For a 
prismatic joint, the linear change is identical to the 
change at the joint.



3-43Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – computing the Jacobian

Change in positionChange in orientation
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The desired angular and linear velocities are computed 
by finding the difference between the current 
configuration of the end effector and the desired 
configuration. The angular and linear velocities of the end 
effector induced by the rotation at a specific joint are 
determined by the computations on the previous slide. 
The problem is to determine the best linear combination 
of velocities induced by the various joints that would 
result in the desired velocities of the end effector. The 
Jacobian is formed by posing the problem in matrix form.
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In assembling the Jacobian, it is important to make sure 
that all of the coordinate values are in the same 
coordinate system. It is often the case that joint-specific 
information is given in the coordinate system local to that 
joint. In forming the Jacobian matrix, this information must 
be converted into some common coordinate system, such 
as global world coordinate system or the end effector
coordinate system. Various methods have been 
developed for computing the Jacobian based on attaining 
maximum computation efficiency given the required 
information in local coordinate systems, but all methods 
produce the derivative matrix in a common coordinate 
system.
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IK - configuration

Example: move end effector E to the goal position G.
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IK – compute positional change vectors 
induced by changes in joint angles

Instantaneous positional change vectors
Desired change vector

One approach to IK computes 
linear combination of change 
vectors that equal desired 
vector
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The desired change to the end effector is the difference 
between the current position of the end efector and the 
goal position:

A vector of the desired change in values is set equal to 
the Jacobian matrix multiplied by a vector of the unknown 
values, which are the changes to the joint angles:
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IK - singularity

Some singular configurations are not so easily recognizable
Near singular configurations are also problematic – why?
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Inverse Kinematics – Near Singular Configurations
A configuration that is only close to being a singularity 
can still present major problems. If the joints of the 
linkage in the previous slide are slightly  perturbed, then 
the configuration is not singular. However, in order to 
form a linear combination of the resulting instantaneous 
change vectors, very large values must be used. This 
results in large impulses near areas of singularities. 
These must be clamped to more reasonable values. Even 
then, numerical errors can result in unpredictable motion.
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Inverse Kinematics - Numeric

Given
• Current configuration
• Goal position/orientation

Determine
• Goal vector
• Positions & local coordinate systems of 

interior joints (in global coordinates)
• Jacobian

Solve & take small step – or clamp 
acceleration or clamp velocity

Repeat until:
• Within epsilon of goal
• Stuck in some configuration
• Taking too long

( )θθ &JV = Is in same form as more  recognizable : bAx =
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If J not square, usually under-constrained: more DoFs than constraints 
Requires use of pseudo-inverse of Jacobian

If J square, compute inverse, J-1

Avoid direct computation of inverse by solving Ax=B form
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Simple Euler integration can be used at this point to 
update the joint angles. The Jacobian has changed at the 
next time step, so the computation must be performed 
again and another step taken. This process repeats until 
the end effector reaches the goal configuration within 
some acceptable tolerance.
It is important to remember that the Jacobian is only valid 
for the instantaneous configuration for which it is formed. 
That is, as soon as the configuration of the linkage 
changes, the Jocobian ceases to accurately describe the 
relation ship between the changes in the joint angles and 
changes in end effector position and orientation.
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This means that if too big a step is taken in joint angle 
space, the end effector may not appear to travel in the 
direction of the goal. If this appears to happen during an 
animation sequence, then taking smaller steps in joint 
angle space and thus recalculating the Jacobian more 
often may be in order.



3-55Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
Solving: Example
Consider a two-dimensional 3-joint linkage with link 
lengths of 15, 10, and 5. Using an initial pose vector of 
{π/8, π/4, π/4} and a goal position of {-20,5}. A 21 frame 
sequence is calculated for linearly interpolated 
intermediate goal positions for the end effector. The next 
slides shows frames of 0, 5, 10 ,15, and 20 of the 
sequence. Notice the path of the end effector (the end 
point of the third link) travels in approximately a straight 
line to the goal position.
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IK – Jacobian solution - problem

When goal is out of reach
Bizarre undulations can occur
As armature tries to reach the unreachable

Add a damping factor
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IK – Jacobian w/ damped least squares

VIJJJ TT 12 )( −+= λθ&

( ) VJJJ TT 1−
=θ&Undamped form: 

Damped form with user parameter: 
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The pseudoinverse computes one of many possible 
solutions, It minimizes joint angle rates. The configuration 
produced, however, do not necessarily correspond to 
what might be considered natural poses. To better control 
the kinematic model, such as encouraging joint angle 
constraints, a control expression can be added to the 
pseudoinverse Jacobian solution. The control expression 
is used to solve for control angle rates with certain 
attributes. The added control expression, because of its 
from, contributes nothing to the desired end effector
velocities.
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IK – Jacobian w/ control term

Physical systems (i.e. robotics) and synthetic character 
simulation (e.g., human figure) have limits on joint values

Take advantage of redundant manipulators - Allow user 
to set parameter that urges DOF to a certain value

Does not enforce joint limit constraints, but can be 
used to keep joint angles at mid-range values

IK allows joint angle to have any value

Difficult (computationally expensive) to 
incorporate hard constraints on joint values
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IK – Jacobian w/ control term
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IK – Jacobian w/ control term
To bias the solution toward the specific joint angles, such 
as the middle angle between joints, z is defined as z=α(θi-
θci)2, where θi are the current joint angles, θci are the 
desired joint angles, and θi are the joint gains. This does 
not enforce joint limits as hard constraints, but the 
solution can be biased toward the middle values so that 
violating the joint limits is less probable.
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IK – Jacobian w/ control term
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IK – alternate Jacobian

Jacobian formulated to pull the goal toward the end effector

Use same method to form Jacobian but use 
goal coordinates instead of end-effector
coordinates
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IK – Transpose of the Jacobian
Solving the linear equations using the pseudoinverse of 
the Jacobian is essentially determining the weights 
needed to form the desired velocity vector from the 
instantaneous change vectors. An alternative way of 
determining the contribution of each instantaneous 
change vector is to form its projection onto the end 
effector velocity vector. This entails forming the dot 
product between the instantaneous change vector and 
the velocity vector.
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IK – Transpose of the Jacobian

Compute how much the change vector 
contributes to the desired change vector:

Project joint change vector onto desired change vector

Dot product of joint change vector and desired 
change vector → Transpose of the Jacobian



3-67Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – Transpose of the Jacobian
Putting this into matrix form, the vector of joint parameter 
changes is formed by multiplying the transpose of the 
Jacobian times the velocity vector and using the scaled 
version of this as the joint parameter change vector:
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IK – Transpose of the Jacobian
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This avoids the expense of computing the inverse, or 
pseudoinverse, of the Jacobian. In certain configurations 
a zero vector may result. The main drawback is that even 
though a given instantaneous change vector might 
contribute to the velocity vector, it may also take the end 
effector well away from the desired direction.
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Instead of relying on numerical machinery to produce 
desired joint velocities, a more flexible, procedural 
approach can be taken. Cyclic Coordinate Descent 
considers each joint one at a time, sequentially from the 
outermost inward. At each joint, an angle is chosen that 
best gets the end effector to the goal position.



3-71Department of Computer Science and Engineering

3 Kinematic Linkages

Chapter 3
IK – cyclic coordinate descent

Consider one joint at a time, from outside in
At each joint, choose update that best gets end 
effector to goal position

In 2D – pretty simple

EF
Goal

Ji

axisi

Heuristic solution
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Chapter 3
IK – cyclic coordinate descent

In 3D, a bit more computation is needed
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IK – cyclic coordinate descent – 3D

EF
Goal

Ji

axisi

First – goal has to be projected onto 
plane defined by axis and EF
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IK – cyclic coordinate descent – 3D

Other orderings of processing joints 
are possible

Because of its procedural nature
• Lends itself to enforcing joint limits
• Easy to clamp angular velocity
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Inverse kinematics - review

Analytic method
Forming the Jacobian
Numeric solutions

Pseudo-inverse of the Jacobian
J+ with damping
J+ with control term
Alternative Jacobian
Transpose of the Jacobian
Cyclic Coordinate Descent (CCD)
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Inverse kinematics - orientation

Change in orientation at end-
effector is same as change at 
joint

Ji

axisi

EF
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Chapter 3
Inverse kinematics - orientation
How to represent orientation (at goal, at end-effector)?
How to compute difference between orientations?
How to represent desired change in orientation in V vector?
How to incorporate into IK solution? 

Matrix representation: Mg, Mef

Difference Md = Mef
-1 Mg

Use scaled axis of rotation: B(ax ay az ):
• Extract quaternion from Md
• Extract (scaled) axis from quaternion

E.g., use Jacobian Transpose method: 
Use projection of scaled joint axis onto extracted axis 


