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L-Systems

Branching Structures
Botany
Display

geometric substitution
turtle graphics

Animating plants, animals
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Plant examples
http://algorithmicbotany.org/papers/#abop
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As a Formal Grammar
Chapter 7

Related to fractals
recursive branching structure
often self-similar under scale

Grammar
parallel rewriting system
context-free (in basic version)
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Historical development
Chapter 7

Aristid Lindenmayer
botanist
the ‘L’ in L-systems

Przemyslaw Prusinkiewicz
U. of Calgary
introduced L-systems to graphics
The Algorithmic Beauty of Plants
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DOL-systems
Basic version

Deterministic
Context-free

rules words
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Geometric interpretation
Chapter 7

Geometric substitution
symbol -> geometric element

Turtle graphics
symbol -> drawing command
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Geometric substitution
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Turtle graphics
F move forward w/ drawing
f move forward w/o drawing
+ turn left
- Turn right

rules words
S -> ABA
A -> FF
B -> TT
T->-F++F-

S
ABA
FFTTFF
FF-F++F--F++F-FF
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Turtle graphics

FF-F++F--F++F-FF
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Botany: terms
Stems, roots, buds, leaves, flowers
Nodes, internodes
Herbaceous v. woody
Dichotomous, monopodial
Lateral bud
Leavs from buds: alternate, opposite whorled
Cell influence: lineage, tropisms, obstacles

Discrete components: apices, internodes, leaves, flowers
Finite number of components
Components represented by symbols

Chapter 7
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Bracketed L-Systems
Chapter 7

S->FAF
A->[+FBF]
A->F
B->[-FBF]
B->F

Also add non-determinism 
database amplification
procedural models

Brackets -> branch
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Example

S->FAF
A->[+FBF]
A->F
B->[-FBF]
B->F
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More examples

S->FAF
A->[+FBF]
A->F
B->[-FBF]
B->F
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Stochastic L-System
Add probabilities to non-deterministic L-systems

Chapter 7

These probabilities will control how likely a production 
will be to form a branch at each possible branching 
point:

Controls average termination level
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Context-sensitive
Better control of rule application
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Animating plant growth

Changes in topology
Elongation of existing structures
Changing angles, lengths

Chapter 7
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Animating branches
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Parametric L-systems
Chapter 7

A parameter can be associated with the symbols:

S => A(0)
A(t) => A(t + 0.01)
A(t):t>=1.0 => F
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Context-sensitive, timed
w/ conditions
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Open L-systems
environmental interaction

Plant
Reception of information from environment
Transport and processing of info inside plant
Response in form of growth changes

Environment
Perception of plants actions
Simulate processes of environment (e.g. light propagation)
Present modified environment to plant
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Open L-systems
environmental interaction

Add construct to L-systems

?E(x1,x2,…,xm)

See paper by Mech and Prusinkiewicz for details

(a bit simply) Query appears in production -
sends message to environment which then 
returns value to production
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Chapter 7
Examples
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Implicit Surfaces
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Implicit Surfaces

Surface is only *implicitly* defined

0)( =Pf

explicit

parametric

)(xfy =

)(
)(

tgy
tfx

=
=
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Implicit Surfaces
Chapter 7

Basic formulation
Animation
Collision detection
Deforming implicits
Level set methods
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Implicit Surfaces
0)( =Pf

0)( <Pf

0)( >Pf

Usually define so: 
surface = 0
inside <0
outside > 0
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Displaying Implicit Surfaces

Marching cubes
embed in 3D volume of cells
intersect cell edges with surface
define polygonal pieces from cell intercepts
see examples a few slides later

Ray Tracing
0)( =Pf

0)( <Pf

0)( >Pf

Search along ray 
to find zero point

Chapter 7
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Metaball - spherical, distance-based implicit

S
R
rd

R
CPdistdPf   surface the describes  0)()),(()( =−=

d

Chapter 7

The best-known implicit primitive is often referred to as 
the metaball and is defined by a central point C, a 
radius of influence R, a density function f, and a 
threshold value T.

T
R
rd =⎟
⎠
⎞

⎜
⎝
⎛
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Multiple Implicits
Sum overlapped implicits - with weights

0)()( =−=∑ TPfwPF ii
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Implicit Surfaces
Chapter 7

Surface constructed 
when positive weights 
are associated with 
density functions

Surface constructed 
when one positive 
weight and one 
negative weight are 
associated with density 
functions
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Topology smoothly changes

http://local.wasp.uwa.edu.au/~pbourke/modelling_rendering/implicitsurf/
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Signed-distance-based primitives
From

Point
Edge
Face
Polyhedron

0)),(()( =−
−

= T
R

elementcentralPdistdPf

Chapter 7

Hence, the density function describes the distance 
from the basic primitive instead of just a point.
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Implicit Surfaces
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Testing - good for collision detection
Chapter 7

Implicitly defined objects lend themselves to collision 
detection. Sample points on the surface of one object 
can be tested for penetration with an implicit object by 
merely evaluating the implicit function at those points. 
Numerical subdivision can yield a more accurate 
location of the intersection.
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Polyhedra embedded in implicits
Chapter 7

Using implicit surfaces for detecting collision between 
polyhedral objects
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Chapter 7
Deforming as a Result of Collision
Marie-Paul Cani has developed a technique to compute 
the deformation of colliding implicit surfaces. This 
technique first detects the collision of two implicit surfaces 
by testing sample points on the surface of one object 
against the other. The overlap of the areas of influence of 
the two implicit objects is called the penetration region. 
An additional region just outside the penetration region is 
called the propagation region.
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Implicit Surfaces
Chapter 7

Penetrating implicit surfaces
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Chapter 7
Deforming as a Result of Collision (continued)
The density function of each object is modified by the 
overlapping density function of the other object so as to 
deform the implicitly defined surface of both objects so 
that they coincide in the region of overlap, thus creating a 
contact surface. A deformation term is added to Fi as a 
function of Objectj’s overlap with Objecti, Gij, to form the 
contact surface. Similarly, a deformation term is added to 
Fj as a function of Objecti’s overlap with Objectj, Gji. The 
deformation functions are defined so that the isosurface
of the modified density functions, Fi(p)+Gij(p)=0 and 
Fj(p)+Gji(p)=0, coincide with the surface defined by 
Fi(p)=Fj(p).
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Colliding Implicit Surfaces
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Colliding Implicit Surfaces
Chapter 7
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Level Sets

Chapter 7
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Level Set Methods
Chapter 7

Adds dynamics to implicit surfaces

Usually operate on signed distance function

Isosurface updated according to 
velocity field defined over interface

Tracing particles on curve is 
problematic
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Fundamental Idea

Instead of evolving curve C(t) = 0
Evolve surface, U, that curve is a level set of

Common surface used is signed distance function
U(x,y) = distance to nearest point in C

If U evolves according to Ut, C will evolve by Ct

Chapter 7
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Level Set - Fundamental idea

Chapter 7
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Front Propogation
Isosurface advects

φ
φ

∇
∇

=n

2

2

dt
d φ

),(
yx ∂
∂

∂
∂

=∇
φφφ

Can have constant 
magnitude

Normally in direction of gradient 

Or use magnitude of curvature

Chapter 7
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Level Set Methods
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Front Propagation

),,( IGLF
dt
d

=
φ

Velocity can depend on:
• Local properties (e.g. curvature)
• Global properties (e.g. position 
of front)
• Properties Independent of shape 
(e.g. transport function)

More generally

Chapter 7
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Level Set Equation

FnV =⋅

0=∇⋅+
∂
∂ φφ V

t

V - velocity field

Convection equation

0=∇+
∂
∂ φφ F

t

φφ
φ
φφ ∇⋅=∇

∇
∇

⋅=∇⋅ nVVV
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Level Set Equation

)()( φ
φ
φκ ∇=

∇
∇

= Fdiv

F can be:
Constant
Function of gradient
Function of curvature

Chapter 7
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Implementation

Use grid to hold 
distance 
function

http://www.cs.cornell.edu/Courses/cs664/2005fa/Lectures/lecture24.pdf

Chapter 7
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Narrow band
Chapter 7
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Subdivision surfaces

Chapter 7
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Subdivision surfaces
Chapter 7

Use coarse polyhedron as general shape 
Refine to generate smooth surface

Issue: what is the limit surface?

Gives high-level shape control

By its nature is a level-of-detail representation

Does it shrink or expand the object?
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Simple Subdivision

Cut off each corner of polyhedron and replace with face

Chapter 7
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Subdivision surfaces
Redefine faces

Chapter 7
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Subdivision surfaces

But doesn’t smooth large flat areas

Chapter 7
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Various Subdivision schemes

Following images are from: 
http://www.holmes3d.net/graphics/subdivision/

Doo-Sabin
Catmull-Clark
Loop
Butterfly (not shown below)

Chapter 7
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Edge point - average of 2 edge 
vertices and 2 new face points

Face point - for each face, 
average of vertices

Doo-Sabin Subdivision

Vertex point - for each face, 
average the vertex, the face 
point and two edge points

Chapter 7
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Doo-Sabin Subdivision
Chapter 7
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Catmull-Clark Subdivision
Face point - for each face, 
average of vertices

Vertex point - (n-3/n)*vertex 
+ 1/n average of face points 
+ 2/n midpoints of edges

Edge point - average of 2 edge 
vertices and 2 new face points

Chapter 7
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Catmull-Clark Subdivision
Chapter 7
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Loop Subdivision

Edge point - = (3/8)*2 edge vertices +
(1/8)*2 triangle vertices

Vertex point - (1-n)*s*vertex + s*(sum of 
neighboring vertices) 
For n=3, s = 3/16
Else s = (1/n)(5/8-(3/8 + 
1/4cose(2Pi/n))^2)

Only works on triangles

Chapter 7
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Loop Subdivision
Chapter 7
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