
1-1Department of Computer Science and Engineering

1 From Graphics to Visualization

From Graphics to Visualization

1-2Department of Computer Science and Engineering

1 From Graphics to Visualization

Motivation

In both visualization and computer graphics, we take as

input some data and produce an image that reflects

several aspects of the input data.

Hence, there are similarities between visualization and

computer graphics. As a simple example, we can

visualize a function f(x,y) = z by simply plotting it.

This then results in the classical solution, the height plot.

The function f is sampled at various sample points,

typically aligned in a grid pattern, and then plotted by

using OpenGL triangles for example. (Note: while quads

could be used OpenGL may not draw them if the vertices

are not planar.)

1-3Department of Computer Science and Engineering

1 From Graphics to Visualization

Height plot

Height plot for the function sampled at

30x30 points:

)(
22

),(
yx

eyxf




Image courtesy of Alexandru Telea

1-4Department of Computer Science and Engineering

1 From Graphics to Visualization

Height plot (continued)

Obviously, the sampling rate greatly influences the quality

of the visualization. To low a sampling rate can result in a

misrepresentation of the results. Hence, the sampling

density must be proportional to the local frequency of the

original continuous function that we want to approximate.

According to the Nyquist theorem, the sampling rate must

be at least twice as high as the signal’s frequency. In

practice, an adaptive sampling rate proportional to the

curvature, i.e. second derivative, provides good results.

1-5Department of Computer Science and Engineering

1 From Graphics to Visualization

Height plot (continued)

Height plot for a sinusoidal function 
















22

1
sin),(

yx
yxg

100 by 100 samples adaptive sampling

Images courtesy of Alexandru Telea

1-6Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting

Using correct lighting improves the three-dimensional

impression.

1-7Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

OpenGL allows you to specify locations for up to eight

light sources. In addition, material properties can be

specified that describe the characteristics of on object’s

surface, e.g. how shiny it is.

The framework provided for the assignments already

defines a light source and sets reasonable material

properties for your objects. If you want to change those

you can use the OpenGL function glMaterial as described

on the next slide. Keep in mind that changing the material

properties often comes with a loss in rendering

performance.

1-8Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Material properties

Different kind of materials can be generated with regard to, for
example, their shininess using glMaterial*:

GLfloat diffuse []

= { 0.2, 0.4, 0.9, 1.0 };

GLfloat specular []

= { 1.0, 1.0, 1.0, 1.0 };

glMaterialfv (GL_FRONT_AND_BACK,

GL_AMBIENT_AND_DIFFUSE, diffuse);

glMaterialfv (GL_FRONT_AND_BACK,

GL_SPECULAR, specular);

glMaterialf (GL_FRONT_AND_BACK, GL_SHININESS,

25.0);

1-9Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

The lighting in OpenGL is then calculated based on the

Phong Illumination model, i.e. OpenGL computes the

reflection direction of the light to determine the specular

and diffuse lighting.

eye v Light LR N

Reflection R = 2(LN)  N - L

Image courtesy of Alexandru Telea

1-10Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Entire mathematical model in detail:

I = kdId + ksIs + kaIa

= Ii (kd (L N) + ks(R·V)n) + kaIa

As a 2-D section:

ambient

diffuse

specular

1-11Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Light sources

OpenGL supports up toe eight light source (GL_LIGHT0

through GL_LIGHT7). To enable lighting you need to

issue:

glEnable (GL_LIGHTING)

Each light source can be enabled using, for example:

glEnable (GL_LIGHT0)

Properties of light sources can be changed using the

command:

glLight* (lightName, lightProperty,

propertyValue);

1-12Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Properties

Different properties are available:

Location:

GLfloat position [] = { 0.0, 0.0, 0.0 };

glLightfv (GL_LIGHT0, GL_POSITION, position);

Color:

GLfloat color [] = { 1.0, 1.0, 1.0 };

glLightfv (GL_LIGHT0, GL_AMBIENT, color);

glLightfv (GL_LIGHT0, GL_DIFFUSE, color);

glLightfv (GL_LIGHT0, GL_SPECULAR, color);

1-13Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Shading model

In OpenGL, two shading models are available: flat

shading and Gouraud shading (default)

You can specify which of the shading models to use by

using the following function

glShadeModel (mode);

Where mode can assume the values GL_SMOOTH and

GL_FLAT.

1-14Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Types of Shading

Flat, Gouraud and Phong shading are the three most

common types of shading used on 3D objects. (Image

courtesy of Intergraph Computer Systems.)

1-15Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Since the Phong illumination model requires normal

vectors for the object, these need to be specified.

Typically, this is done per vertex so that the light intensity

can be interpolated across a polygon (if there is only one

normal vector per polygon, only flat shading is possible).

1-16Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Normal vectors

Normal vectors can be provided by using the command
glNormal*:

GLfloat normal [] = { 1.0, 1.0, 1.0 };

GLfloat vertex [] = { 2.0, 1.0, 3.0 };

glNormal3fv (normal);

glVertex3fv (vertex);

Make sure that the normal vector is provided before the
vertex since OpenGL is a state machine!

If your normal vectors are not normalized OpenGL can do
that for you if you issue:

glEnable (GL_NORMALIZE);

1-17Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Polygonal normal generation

Gouroud and Phong shading can improve the

appearance of rendered polygons. Both techniques

require point normals. Unfortunately, polygonal meshes

do not always contain point normals, or data file formats

may not support point normals. Examples include the

marching cubes algorithm for general data sets which

typically will not generate surface normals.

1-18Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Example

1-19Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Computing normal vectors

Ideally, the exact normal of the object should be used.

However, these data may not be available so that we

need to compute the normal vector ourselves. In order to

compute the normal for a single vertex, all adjacent

polygons need to be considered. The average normal of

the normal vectors of all those polygons is then used as

the normal vector for the vertex.

Finding all adjacent polygons can be tedious and

computationally intensive. It is easier and faster to just

loop through the faces:

1-20Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Computing normal vectors

• Create an array of normal vectors (same size as array of

vertices)

• Loop through the polygons

• Compute normal vector for the polygon

• Add this normal vector to the current ones

associated with all vertices of the current polygon

• Normalize normal vectors

This algorithm computes the normal vectors relatively

fast. However, this naïve approach may fail in some

cases:

1-21Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Naïve approach that just averages normals between

neighboring polygons can have unsatisfactory results:

1-22Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

First, neighboring polygons should be oriented in the

same way. Otherwise normal may cancel each other out

since they are facing in opposite directions, i.e. the scalar

product is negative.

To orient edges consistently, we use a recursive neighbor

traversal. An initial polygon is selected and marked

“consistent”. For each edge neighbor of the initial

polygon, the ordering of the neighbor polygon points is

checked – if not consistent, the ordering is reversed. The

neighbor polygon is then marked “consistent.” This

process repeats recursively for each edge neighbor until

all neighbors are marked “consistent.”

1-23Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Consistent polygons

1-24Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Feature edges

A similar traversal method splits sharp edges. A sharp

edge is an edge shared by two polygons whose normals

vary by a used specified feature angle. The feature angle

between two polygons is the angle between their

normals. When sharp edges are encountered during the

recursive traversal, the points along the edge are

duplicated, effectively disconnecting the mesh along that

edge. Then, when shared polygon normals are computed

later in the process, contributions to the average normal

across sharp edges is prevented.

1-25Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Splitting of edges

1-26Department of Computer Science and Engineering

1 From Graphics to Visualization

Lighting (continued)

Result

1-27Department of Computer Science and Engineering

1 From Graphics to Visualization

Texture mapping

Extra realism can be added to rendered 3D models by

using a technique called texture mapping. The rendering

mode described so far assigns a single color to a each

vertex of the polygon (for Gouraud and Phong shading).

Such techniques are limited in conveying the large

amount of small-scale detail present in real-life objects,

such as surface ruggedness or fiber structure that are

particular to various materials, such as wood, stone,

brick, sand, or textiles. Texture mapping is an effective

technique that can simulate a wide range of appearances

of such materials on surface by mapping image data onto

the surface.

1-28Department of Computer Science and Engineering

1 From Graphics to Visualization

Texture mapping (continued)

To map the image (texture) onto the surface, a local

coordinate system (texture coordinates) is defined on the

surface which defines the mapping function:

1

10

t

s

s=0

t =2 s=2

t =0

s=0

t =0Images courtesy of Alexandru Telea

1-29Department of Computer Science and Engineering

1 From Graphics to Visualization

Texture mapping (continued)

Create the texture and copy it to the graphics memory:

GLuint image [];

unsigned int width = 256, height = 256;

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA,

width, height, 0, GL_RGBA,

GL_UNSIGNED_BYTE, image);

Enable textures:

glEnable (GL_TEXTURE_2D);

If you use OpenGL prior to version 2.0 width and height

have to be powers of two!

1-30Department of Computer Science and Engineering

1 From Graphics to Visualization

Texture mapping (continued)

Texture coordinates

Provide a texture coordinate for every vertex of you polygonal mesh:

GLfloat texcoord = { 1.0, 1.0 };

GLfloat vertex = { 2.0, 1.0, 3.0 };

glTexCoord2fv (texcoord);

glVertex3fv (vertex);

Provide the texture coordinate before the vertex!

When using vertex arrays, texture coordinates can also be provided
as a single array:

GLfloat texcoordarray;

glEnableClientState (GL_TEXTURE_COORD_ARRAY);

glTexCoordPointer (nCoords, GLfloat, 0,

texcoordarray);

1-31Department of Computer Science and Engineering

1 From Graphics to Visualization

Texture mapping (continued)

Naming textures

If you use more than one texture you need to provide

names in order to be able to switch between the provided

textures.

GLuint texname;

glGenTextures (1, texname);

Then, you can change between them using these names:

glBindTextures (GL_TEXTURE_2D, texname);

Remember, OpenGL is a state machine so it will use this

texture from now on for every texture related commands!

1-32Department of Computer Science and Engineering

1 From Graphics to Visualization

Texture mapping (continued)

Textures, just as colors, can also be used to visualize

additional information as we will see later. For example,

in order to visualize a 3D vector field, a surface can be

created based on the vector field and a texture can be

used to visualize the vector field locally.

Image courtesy of Alexandru Telea

1-33Department of Computer Science and Engineering

1 From Graphics to Visualization

Transparency and Blending

So far, we have used fully opaque shapes. In many

cases, rendering half-transparent (translucent) shapes

can add extra value to visualization. For instance, in our

height plot, we may be interested in seeing both the

gridded domain and the height plot in the same image

and from any viewpoint. We can achieve this effect by

first rendering the grid graphics, followed by rendering the

height plot, as described previously, but using half-

transparent primitives.

1-34Department of Computer Science and Engineering

1 From Graphics to Visualization

Transparency and Blending (continued)

In OpenGL, transparency-related effects can be achieved

by using a special graphics mode called blending. Note:

you have to request a visual that supports an alpha

channel; for example, when using GLUT you need to

initialize your display mode using something like this:

glutInitDisplayMode(GLUT_DOUBLE |

GLUT_RGBA |

GLUT_DEPTH);

Then, we must enable blending using the following

function call:

glEnable (GL_BLEND);

1-35Department of Computer Science and Engineering

1 From Graphics to Visualization

Transparency and Blending (continued)

We can define the way the color of a newly rendered

polygon is combined with the one currently in the frame

buffer by defining the blending function:

glBlendFunc(GL_SOURCE_ALPHA

GL_ONE_MINUS_SOURCE_ALPHA);

The colors then typically are specified as four instead of

just three components where the last coefficient

describes the transparency:

glColor4f (0.3, 0.3, 0.3, 0.5);

Beware: the depth buffer OpenGL uses for solving the

visibility problem does not handle transparency.

1-36Department of Computer Science and Engineering

1 From Graphics to Visualization

Transparency and Blending (continued)

The height plot with transparency to make the underlying

sample grid more visible can then look like the following

image:

Image courtesy of Alexandru Telea

