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In visualization, topological methods started with vector 

field visualization. So we will start with that and we will 

have to introduce the notion of streamlines which trace 

through the vector field.
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Vector Fields

Divergence

Given a vector field v:R3→R3, the divergence of 

v=(vx,vy,vz) is the scalar quantity

Intuitively, if v is a flow field that transports mass, div v

characterizes the increase or loss of mass at a given 

point p in the vector field in unit time.

– positive divergence at p: mass spreads from p outward.

– negative divergence at p: mass gets sucked into p.

– zero divergence at p: mass is transported without getting 

spread or sucked, i.e. without compression or expansion.
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Vector Fields (continued)

Vorticity

Given a vector field v:R3→R3, the vorticity of v=(vx,vy,vz), 

also called curl or rotor, is the vector quantity

The vorticity rot v of v is a vector field that is locally 

perpendicular to the plane or rotation of v and whose 

magnitude expresses the speed of angular rotation of v

around rot v. Hence, the vorticity vector characterizes the 

speed and direction of rotation of a given vector field at 

every point. Sometimes rot v is also denoted as curl v.
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neg. divergence

pos. divergence

laminar

vortex

Divergence of a 

2D vector field

Vorticity of a 2D 

vector field

Images courtesy of Alexandru Telea
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Vector Algorithms (continued)
A simple vector visualization technique is to draw an 

oriented, scaled line for each vector. The line begins at 

the point with which the vector is associated and is 

oriented in the direction of the vector components. 

Typically, the resulting line must be scaled up or down to 

control the size of its visual representation. This 

technique is often referred to as  hedgehog because of 

the bristly result.

Direction can also be visualized using color coding by 

using different colors at each ends of the glyph
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Vector Algorithms (continued)

The problem with glyphs is that it easily results in clutter.
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Time animation

The idea is to move points (mass-less particles) along the 

vector field. Basically, the particle is advected at every 

point in direction of the vector at that location (if 

necessary interpolation needs to be used), i.e. v = dx/dt.

Beginning with a sphere S centered about some point, we 

move S repeatedly to generate the bubbles below:
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Vector Algorithms (continued)

The eye tends to trace out a path by connecting the 

bubbles, giving the observer a qualitative understanding 

of the fluid flow in that area. The bubbles may be 

displayed as an animation over time (giving the illusion of 

motion) or as a multiple exposure sequence (giving the 

appearance of a path).

The choice of step size is a critical parameter in 

constructing accurate visualization of particle paths in a 

vector field. By taking large steps we are likely to jump 

over changes in the velocity. Using smaller steps we will 

end in a different position.
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Vector Algorithms (continued)

Example

Particle advection for fire simulation
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Vector Algorithms (continued)

Tracing particles

In order to determine the locations of a particle previously 

represented as a bubble, the particle needs to be traced 

throughout the vector field. 

Since we are considering a mass-less particle, the 

particle basically follows the integral curve, i.e.

The initial position is user-defined.
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Vector Algorithms (continued)

Although this form cannot be solved analytically for most 

real world data, its solution can be approximated using 

numerical integration techniques. Accurate numerical 

integration is a topic beyond the scope of this class, but it 

is known that the accuracy of the integration is a function 

of the step size. Since the path is an integration 

throughout the data set, the accuracy of the cell 

interpolation functions, as well as the accuracy of the 

original vector data, plays an important role in realizing 

accurate solutions.
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Vector Algorithms (continued)

Euler’s method

The simples form of numerical integration is Euler’s 

method

where xi is the position and Δt the step size.

Euler’s method has an error on the order of O(Δt2), which 

is not accurate enough for some applications.
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Vector Algorithms (continued)

Example

Integral curves computed using two different techniques 

for a rotational vector field
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Vector Algorithms (continued)

Runge-Kutta method

The family of explicit Runge-Kutta methods is given by

Where

(Note: the above equations have different but equivalent 

definitions in different texts).
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Vector Algorithms (continued)

To specify a particular method, one needs to provide the integer s

(the number of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for 

i = 1, 2, ..., s) and ci (for i = 2, 3, ..., s). These data are usually 

arranged in a mnemonic device, known as a Runge-Kutta tableau:

The Runge-Kutta method is consistent if 

There are also accompanying requirements if we require the method 

to have a certain order p, meaning that the truncation error is 

O(hp+1). These can be derived from the definition of the truncation 

error itself. For example, a 2-stage method has order 2 if b1 + b2 = 1, 

b2c2 = 1/2, and b2a21 = 1/2.
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Vector Algorithms (continued)

Runge-Kutta technique of order 2

Hence, we get the following formula for the Runge-Kutta 

technique of order 2:
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Vector Algorithms (continued)

Streamlines

We have seen that the step size is a design parameter. 

Hence, we can choose the step size in such a way that a 

line is formed. For a static vector field, i.e. a vector field 

that does not change over time, the integral curve results 

in a streamline.

Different type types of integral curves exist:

• Pathlines

• Streaklines

• Streamlines
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Vector Algorithms (continued)

Pathline

A pathline is the line traced by a given particle. This is 

generated by injecting a dye into the fluid and following its 

path by photography or other means 
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Vector Algorithms (continued)

Streakline

A streakline concentrates on fluid particles that have 

gone through a fixed station or point. At some instant of 

time the position of all these particles are marked and a 

line is drawn through them.
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Vector Algorithms (continued)

Streamline

A streamline is one that is drawn tangential to the velocity 

vector at every point in the flow at a given instant and 

forms a powerful tool in understanding flows. Thus, it 

satisfies the equation )),((),( txsvtxs

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Vector Algorithms (continued)

Example

Flow velocity computed for a small kitchen (side view). 

Forty streamlines start along the rake positioned under 

the window. Some eventually travel over the hot stove 

and are convected upwards.
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Vector Algorithms (continued)

Example

Flow around NASA’s tapered cylinder
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Vector Algorithms (continued)

Many enhancements of streamlines exist. Lines can be 

colored according to velocity magnitude to indicate speed 

of flow. Other scalar quantities such as temperature or 

pressure also may be used to color the lines. We also 

may create constant time dashed lines. Each dash 

represents a constant time increment. This, in areas of 

high velocity, the length of the dash will be greater 

relative to regions of lower velocity.



10-25Department of Computer Science and Engineering

10 Topological Methods

Vector Algorithms (continued)

Example

NASA’s blunt fin data set
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Vector Algorithms (continued)

Choosing an appropriate sampling strategy that solves 

the coverage, density, and continuity issues well is more 

critical when tracing streamlines in 3D datasets as 

compared to 2D datasets.

Similar to the using glyphs, streamline visualizations can 

get cluttered if the parameters for placement and opacity 

are not chosen properly.



10-27Department of Computer Science and Engineering

10 Topological Methods

Vector Algorithms (continued)

Example

Undersampling 10x10x10, opacity 1 Undersampling 3x3x3, opacity 1

Undersampling 3x3x3, opacity 0.1 Undersampling 3x3x3, opacity 0.3

Images courtesy of 

Alexandru Telea
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Vector field topology

Vector fields have a complex structure characterized by 

special features called critical points. Critical points are 

locations in the vector field where the local vector 

magnitude goes to zero and the vector direction becomes 

undefined. At these points the vector field either 

converges or diverges, and/or local circulation around the 

point occurs. In order to understand critical points better, 

we take a look at linearly defined vector fields. Since we 

usually interpolate vector fields linearly, this will result in 

the most common cases of critical points.

Vector Algorithms (continued)
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Critical points

Let v be a given vector field v:W→IR3 with W  IR3 as 

defined on a face of a tetrahedron. Let further x0W be a 

point where the vector field vanishes, i.e. v(x0) = 0. Then 

x0 is considered a critical point of the vector field v. 

Several terms are used synonymously for critical points. 

These are singularities, singular points, zeros, or 

equilibrium.

Vector Algorithms (continued)
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Linear vector fields

A linear 3-D vector field v can be described by a matrix 
and a displacement vector. Therefore, a linear map
A:W→IR3 described by the 33 matrix A and a vector
bIR3 can be found such that it describes the given vector 
field v, i.e. v(x) = Ax + b for all xW.

Then, singularities can be found by directly solving the 
equation Ax + b = 0. Obviously, there cannot be more 
than one singularity located within one triangle when 
using linear interpolation. For the case b = 0 we consider 
the vector field described by Ax homogenous linear. 
Without loss of generality we assume homogenous linear 
vector fields in the further discussion of the theory of 
vector field topology.

Vector Algorithms (continued)
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Classification of critical points

Singularities can be classified using the eigenvalues of 

the interpolating matrix A regarding their property of 

attracting or repelling the surrounding flow. If all 

eigenvalues have negative real parts the singularity is 

considered a sink which attracts the surrounding flow. On 

the other hand, if all eigenvalues have positive real parts 

the singularity is a source that repels the surrounding 

flow.

Vector Algorithms (continued)
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Computing streamlines

Further analyzing the matrix A leads to a several types of 

vector fields distinguished by their major properties of the 

flow, i.e. the behavior of the streamlines within this vector 

field. In order to compute a streamline, the Cauchy 

problem has to be solved with initial problem x(0)  = k, k 

IR3:
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Vector Algorithms (continued)
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Solution to the Cauchy problem

It can be proven that the solution to the Cauchy problem 

for a linear vector field can be described by an 

exponential function:

Different categories of vector fields can then be 

distinguished weather the matrix A is diagonalizable, 

resulting in a different behavior of the streamlines in each 

case. This leads to three main categories described in the 

following.
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Vector Algorithms (continued)
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Type 1 vector fields

The matrix A is diagonalizable, i.e. the eigenvalues λ and 

μ are real. Thus it is similar to a matrix B, i.e. there exist 

an invertible matrix P with B = PAP-1, of the following 

structure:

Due to the structure of the matrix B, a streamline x(t) with 

initial condition k = (k1, k2) can be computed in a vector 

field described by such a matrix using the following 

formula:
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By computing streamlines we can generate a phase 

portrait of the different cases of vector fields within this 

category. Three different types are possible, again 

distinguished by the eigenvalues of the interpolating 

matrix A. The first case, where λ > 0 > μ, results in a 

saddle singularity:

Vector Algorithms (continued)
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The second case, described by an eigenvalue 

configuration of λ < μ < 0, describes a node singularity:

Vector Algorithms (continued)
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The last case with two identical eigenvalues is the focus 

singularity, for example λ = μ < 0.

The examples shown here mainly show sinks; however, 

the same types of singularities occur with sources. The 

only difference is in the sign of the eigenvalues, i.e. 

multiplying the eigenvalues by -1 results in the same 

singularities as sources.

Vector Algorithms (continued)
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Type 2 vector fields

The two eigenvalues of the matrix A have a non-

imaginary part, i.e. A is similar to the following matrix:

When substituting the values a and b in the above matrix 

by introducing new values θ and r:

the matrix B can be rewritten as follows:
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Obviously, a vector field described by such a matrix has a 

strong rotational component. Consequently, a streamline 

x(t) with initial condition k = (k1, k2) can be computed using 

the following formula:
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Vector Algorithms (continued)
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For a=0, the streamlines describe perfect, concentric 

circles, resulting in the center singularity:

Otherwise, a spiral singularity is 

described with streamlines spiralling 

around the singularity and then 

eventually ending up at the 

singularity itself.

Vector Algorithms (continued)
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Type 3 vector fields

The matrix A is not diagonalizable and the two 

eigenvalues are equal, i.e. λ = μ. In this case, A is similar 

to the following matrix:

By splitting up the matrix B into two components

it can be easily seen that a streamline with initial condition k = 

(k1, k2) integrated through such a vector field can be described 

by:
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This case resembles an improper node singularity:

Vector Algorithms (continued)
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Topological analysis

The topological graph, or simply topology, of a vector field 

describes the structure of the flow or phase portrait. 

Separatrices are used to separate the areas of the flow 

into regions with similar behavior. Separatrices can be 

easily computed by integrating streamlines emerging 

from saddle singularities in direction of the eigenvectors 

of the interpolating matrix. The topological graph then 

consists of the singularities and the separatrices. 

Vector Algorithms (continued)
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Example

Vector Algorithms (continued)
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Topological analysis with different interpolation

The topological graph be different when using different 

types of interpolations. By changing the cell type alone, 

for example triangulating the cells by splitting up 

rectangles into two triangles, the topological graph can 

change. Hence, the interpolation technique used for 

integrating the streamlines should be chosen with special 

care!

Vector Algorithms (continued)
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Example

Vector Algorithms (continued)
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Closed streamlines

There are more topological features other than 

separatrices and critical points. The flow can – in the 

same way as with critical points – be attracted or repelled 

by a closed streamline.

For example, the Hopf bifurcation describes critical point 

that changes from source to sink resulting in an attracting 

closed streamline:

Vector Algorithms (continued)
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By considering closed streamlines are able to connect 

parts of the topological skeleton and to complete the 

topological analysis.

Since closed streamlines are a global feature we cannot 

identify them by using local properties of the vector field.

Vector Algorithms (continued)
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Obviously a closed streamline runs through the same 

cells of our grid over and over again. The idea for finding 

a closed streamline is basically to prove that the closed 

streamline does not leave cell cycle.

Vector Algorithms (continued)
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In order to check if the streamline can leave cell cycle we 

basically need to start backward integration at every point 

at edge of cell cycle. If the backward integration exists 

that run toward the streamline then the streamline leaves 

cell cycle (near the point where the backward integration 

was started). Otherwise, if such backward integration 

does not exist then the streamline stays inside the cell 

cycle forever. The problem, however, is that the number 

of points at the edge of the cell cycle infinite.

Vector Algorithms (continued)
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Therefore, we define 
potential exits. Potential exits 
are considered those points 
that are either vertices of cell 
cycle or points at edge of cell 
cycle where the vector field 
is tangential to that edge. 
Then, backward integration 
is only necessary at these 
potential exits since the 
integration of two 
neighboring potential exits 
cover the entire edge 
connecting them.

Vector Algorithms (continued)
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Example

In a vector field 

describing a hurricane, 

the eye of the hurricane 

is surrounded by a 

closed streamline if the 

vector field is projected 

on to a 2-D plane. 

Thus, the eye can be 

identified by finding the 

closed streamline in the 

projected vector field.

Image courtesy of David Bock, NCSA

Vector Algorithms (continued)
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Example

In combustion processes it is 

important that the gas stays in 

an area for a certain amount of 

time for the gas to burn 

completely. Closed streamlines 

are a hint for recirculation 

zones, i.e. areas where the gas 

stays for longer period of time. 

Hence, closed streamlines 

indicate areas with better 

combustion.

Vector Algorithms (continued)
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Tracking closed streamlines over time

In order to understand how and when closed streamlines 

occur, we can take a look at a vector field that changes 

over time. At various instances in time, a 2-D vector field 

is given. Through linear interpolation between 

consecutive time steps we can compute vectors at every 

instance in time and any location within the 2-D space 

defined by the domain of the vector field.

Vector Algorithms (continued)
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2-D grid structure including time

Vector Algorithms (continued)
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Closed streamlines over time

We can now determine the location of the closed 

streamlines within each of the time steps and then 

connect the resulting curves with triangles:

Vector Algorithms (continued)
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Morse Smale Complex

Vector Algorithms (continued)
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Morse Theory

• Investigates the topology of a surface by lookingat

critical points of a function on thatsurface.

∇ƒ p =
∂ ƒ 

(p)
∂ ƒ 

(p)
∂x ∂ y

= 0

• A function ƒ is a Morse function if

– ƒ is smooth

– All critical points are isolated

– All critical points are non−degenerate det(Hessian(p)) ≠ 0

Vector Algorithms (continued)
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Notion of Critical Points and TheirIndex

• Minima, maxima, andsaddles

• Topological changes

• Piecewise linear interpolation

• Barycentric coordinates on triangles

Minima MaximaSaddlesRegular
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Notion of Critical Points and TheirIndex

Minima MaximaSaddlesRegular

Standard form of a non-degenerate critical point 

p of a function ƒ: Md → R

ƒ = —X1
2 — X2

2 — ⋯ — Xh
2 + Xh+1

2 + ⋯ + Xd
2 +   c

Where (X1, X2, ⋯ , Xn) are some local coordinate system  

such that p is the origin and ƒ(p) = c.
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Notion of Critical Points and TheirIndex

Minima MaximaSaddlesRegular

Standard form of a non-degenerate critical point 

p of a function ƒ: Md → R

ƒ = —X1
2 — X2

2 — ⋯ — Xh
2 + Xh+1

2 + ⋯ + Xd
2 +   c

Where (X1, X2, ⋯ , Xn) are some local coordinate system  

such that p is the origin and ƒ(p) = c.

Then the number of minus signs, λ, is the index of p.
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Notion of Critical Points and TheirIndex

Examples of critical points in2-manfold

Minima MaximaSaddle

x2 + y2 x2 — y2 —x2 — y2
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Notion of Critical Points and TheirIndex

Examples of critical points in2-manfold

Minimum Maximu

m

Saddle

x2 + y2 x2 — y2 —x2 — y2

λ = 0 λ = 1 λ = 2
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Notion of Critical Points and TheirIndex

Standard form of a non-degenerate critical point 

p of a function ƒ: Md → R

ƒ = —X1
2 — X2

2 — ⋯ — Xh
2 + Xh+1

2 + ⋯ + Xd
2 +   c

Where (X1, X2, ⋯ , Xn) are some local coordinate system  

such that p is the origin and ƒ(p) = c.

Then the number of minus signs, λ, is the index of p.

i = 0 i = 1 i = 2Regular
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p
• Have zero gradient

minimum 1-saddlemaximum

regular

upper link  

(continent)

lower link  

(ocean)

2-saddle

• Characterized by lower link

Critical Points in 3D
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p
• Have zero gradient

minimum 1-saddlemaximum

regular

upper link  

(continent)

lower link  

(ocean)

2-saddle

• Characterized by lower link

Critical Points in 3D

i = 0 i = 3 i = 1 i = 2
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ReebGraph

• The Reeb graph maps out the relationship  
between index—0 and index—1, and index—
(d—1) and index—d critical points in  a d—
dimensional space.
– In 2-manifold, index(0) to index(1), and index(1) to  

index(2)

– In 3-manifold, index(0) to index(1), and index(2) to  
index(3)

• The contour tree is a Reeb graph defined 
over a  simply connected Euclidean space Ed
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Limitation of ReebGraph
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Limitation of ReebGraph

Lacking the geometric connectivity of thefeatures



10-70Department of Computer Science and Engineering

10 Topological Methods

Limitation of ReebGraph

Lacking the geometric connectivity of the features

Additionally, for higher dimensional manifolds (>2), the 

saddle- saddle connections are not represented in the 

Reeb graph.
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Morse Complex

• Instead of partitioning a 
manifold  according to the 
behavior of level  sets, it is 
more general to  partition the 
manifold based on  the 
behavior of the gradient.

• The gradient of a function  
defines a smooth vector field 
on  M with zeroes at critical 
points.
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Morse Complex

• Integral line:

– Integral lines represent the flow  

along the gradient between 

critical  points.

= limt→–∞l(t)• Origin: org l

• Destination: dest l = limt→∞l(t)

∂t

∂  
l t = ∇ƒ l t for all t ∈ R
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Morse Complex

Integral lines have the following properties

– Two integral lines are either disjoint or the same, 

i.e. uniqueness of each integral line

–Integral lines cover all of M

–The origin and destination of an integral line are  

critical points of ƒ (except at boundary)

–In gradient vector field, integral lines are  

monotonic, i.e. org(l) ≠ dest(l)
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Morse Complex

Ascending/descending Manifolds
– Let p be a critical point of ƒ: M → R.

– The ascending manifold of p is the set of points  
belonging to integral lines whose origin is p.

– The descending manifold of p is the set of points  
belonging to integral lines whose destination is p.

Note that ascending and descending manifolds  
are also referred to as unstable and stable  
manifolds, lower and upper disks, and right-
hand  and left-hand disks.
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Morse Complex

Morse Complex

– Let ƒ: Md → R be a Morse function. The complex of descending  

manifold of ƒ is called the Morse complex
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Morse Complex

Morse Complex
– Let ƒ: Md →R be a Morse function. The complex of  

descending manifold of ƒ is called the Morse 
complex

CW-complexes
– Built on top of cells (0-cells, 1-cells, …., d-cells) via  

topologically gluing.

– The C    stands for "closure-finite", and the W for 
“weak  topology".

– Triangular mesh is one simple example of CW-
complexes.
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Morse-SmaleComplex

Morse-Smale Function

– A Morse function ƒ is Morse-Smale if the ascending 
and  descending manifolds intersect only 
transversally.

• Intuitively, an intersection of two manifolds as transversal 
when  they are not “parallel” at their intersection.

– A pair of critical points that are the origin and
destination of an integral line in the Morse-Smale
function cannot have the same index!

– Furthermore, the index of the critical point at the
origin is less than the index of the critical point at the
destination.
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Morse-SmaleComplex

Given a Morse-Smale function ƒ, the Morse-

Smale complex of ƒ is the complex formed 

by  the intersection of the Morse complex of 

ƒ and the Morse complex of – ƒ.
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Morse-SmaleComplex-1D
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Morse-SmaleComplex-1D
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Morse-SmaleComplex-1D
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Morse-SmaleComplex-1D
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Morse-SmaleComplex-2D
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Morse-SmaleComplex-2D
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Morse-SmaleComplex-2D
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Morse-SmaleComplex-2D
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Morse-SmaleComplex-2D
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Morse-SmaleComplex-2D

Decomposition into monotonic regions
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Combinatorial Structure 2D

• Nodes of the MS complex 

are  exactly the critical points 

of the  Morse function

• Saddles have exactly four 

arcs  incident on them

• All regions are quads

• Boundary of a region  

alternates between 

saddle- extremum

• 2k minima and maxima
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Morse-Smale Complex in 3D

Overlay of Asc and Desc  

manifolds

3D MS Complex cell
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Topological Simplification

(Persistence) Let pa be the critical point creating a boundary component B 

and  pb the critical point destroying B, then the pair (pa, pb) is a persistence 

pair. The  difference is function value | ƒ( pa)— ƒ(pb)| is called the persistence 

of the  topological feature (pa, pb)
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Topological Simplification

(Persistence) Let pa be the critical point creating a boundary component B 

and  pb the critical point destroying B, then the pair (pa, pb) is a persistence 

pair. The  difference is function value | ƒ (pa) — ƒ(pb)| is called the 

persistence of the  topological feature (pa, pb)
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Discrete Morse-SmaleComplex

The gradient directions (the arrows) are always pointing from lower-

dimensional  cells to their neighboring cells that are exactly one-dimension 

higher.
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Discrete Morse-SmaleComplex

V-path:

A V-path is the discrete equivalent of a streamline in a 

smooth vector field. A discrete vector field in which all 

V-paths are monotonic and do not contain any loops is 

a discrete gradient field.

The discrete version allows for more efficient 

computations in terms of memory efficiency and 

parallelization.
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Application: SurfaceSegmentation

• Why segmentation?
– Reduce the information overloaded

– Identify unique features and properties

• There have been many proposed surface  
segmentation strategies to encode the 
structure  of a function on a surface.
– Surface networks ideally segment terrain-type data into the 

cells  of the two-dimensional Morse-Smale complex, i.e., 
into regions  of uniform gradient flow behavior. Such a 
segmentation of a  surface would identify the features of a 
terrain such as peaks,  saddles, dips, and the lines 
connecting them.

– Image processing: watershed / distance field transform
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Applications
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Applications

Rayleigh-Taylor  

turbulence 

analysis
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Applications

Quadrangulation of surfaces


