11 Web-based Visualization

Web-Based Visualization

Web-Based Visualization

I _ , ,
WRIGHT STATE Department of Computer Science and Engineering 14
UNIVERSITY

11 Web-based Visualization

Motivation

Nowadays, web browser become more and more capable
of displaying graphical content. Different packages are
available for creating such content, most of them are
based on JavaScript. This chapter will look into two
common methods of visualizing data within a web
browser:

WebGL
D3

WRIGHT STATE Department of Computer Science and Engineering 112

11 Web-based Visualization

Getting WebGL enabled browser

See Instructions on:

Firefox
* Most versions already have WebGL support enabled

Chrome

 If you already have Chrome 7 or newer, try to execute it with
--enable-webgl parameter

TR 1] _ . :
WRIGHT STATE Department of Computer Science and Engineering 113
UNIVERSITY

http://learningwebgl.com/blog/?p=11
http://khronos.org/webgl/wiki/Getting_a_WebGL_Implementation

11 Web-based Visualization

WebGL rendering on Canvas element
WebGL is rendering context for HTMLS5 Canvas

Canvas is a rectangular area, that can be
manipulated dynamically via JavaScript

var canvas = document.getElementById("minigolf-canvas"); HTML page
gl = canvas.getContext ("experimental-webgl");
gl.viewportWidth = canvas.width; CanvaS

gl.viewportHeight = canvas.height;

gl.clearColor (0.0, 0.0, 0.0, 1.0);

WRIGHT STATE Department of Computer Science and Engineering 114
UNIVERSITY

11 Web-based Visualization

Graphics Pipeline

* Vertex Shader

« Buffers (vertex arrays)

« Textures (images)

« Uniforms (call parameters)
 Fragment Shader

« Computes color of the pixel
* Render target

« <canvas> or Framebuffer object for
rendering to textures

Shader Demo:

<script id="shader-fs" type="x-shader/x-fragment">
#ifdef GL_ES
precision highp float;
#endif

varying vec4 vColor;
void main(void) {
gl_FragColor = vColor;
}
</script>
<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 aVertexPosition;
attribute vec4 aVertexColor;

uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
varying vec4 vColor;

void main(void) {
gl_Position = uPMatrix * uMVMatrix *
vec4d(aVertexPosition, 1.0);
vColor = aVertexColor;

¥

</script>

WRIGHT STATE Department of Computer Science and Engineering 115

http://spidergl.org/meshade/index.html

11 Web-based Visualization

WebGL

<canvas> has 3D option—WebGL—for low-level 3D
graphics

WebGL = OpenGL ES 2.0 (embedded systems)
Supported by all major browsers except IE
Working group: Apple, Google, Mozilla, Opera (not MS)

Low-level API, not for faint of heart
(Most users will use higher-level libraries)

Good book: WebGL: Up and Running

WRIGHT STATE Department of Computer Science and Engineering 116

11 Web-based Visualization

Pure WebGL code vs WebGL libraries

« Numerous WebGL libraries rise the abstraction level of
WebGL programming

« Using libraries often sets some restrictions for the
Implementation

 Pure WebGL has greater degree of freedom, but the
coding iIs more complex
* Quality of WebGL libraries is varying

« Some libraries have a good documentation but no examples
« Others have only examples, but no documentation whatsoever

WRIGHT STATE Department of Computer Science and Engineering 117

11 Web-based Visualization

Three.|s

WebGL is low-level: 3D is hard work

Need libraries for higher-level capabillities
Object models

Scene graphs
Display lists
We'll start with raw WebGL examples, then move to
Three.js

WRIGHT STATE Department of Computer Science and Engineering

11-8

11 Web-based Visualization

WebGL overview

Steps to 3D graphics:

Create a canvas element

Obtain drawing context

Initialize the viewport

Create buffers of data (vertices) to be rendered

Create model and view matrices

Create shaders

Draw

WRIGHT STATE

Department of Computer Science and Engineering

11-9

11 Web-based Visualization

Graphics Pipeline

ES2.0 Programmable Pipeline

WRIGHT STATE Department of Computer Science and Engineering 1110
UNIVERSITY

11 Web-based Visualization

How would you do this?

ui=am _ o
WRIGHT STATE Department of Computer Science and Engineering 1111
UNIVERSITY

http://mrdoob.github.com/three.js/examples/webgl_materials_cubemap_balls_reflection.html

11 Web-based Visualization

WebGL Concepts

Buffers

RenderBuffer
FrameBuffer
Textures

Blending

Depth buffer
Stencil buffer
Uniform variables
Attribute variables

WRIGHT STATE Department of Computer Science and Engineering
UNIVERSITY

11-12

11 Web-based Visualization

Shaders

GLSL: GL Shader Language
C-like syntax

Vertex shaders: per-vertex computation
Fragment shaders: per-pixel computation
SIMD-like architecture

WRIGHT STATE Department of Computer Science and Engineering 1113

http://www.iquilezles.org/apps/shadertoy/

11 Web-based Visualization

Vertex Shaders

Little program to process a vertex
Inputs:

Per-vertex inputs supplied as vertex arrays (locations, normals, colors,
texture coords, etc.)

Uniforms (non-varying variables)
Samplers (textures, displacement maps, etc.)
Shader program

Outputs: “varying variables”

Tasks
Transformations
Per-vertex lighting

Generating or transforming texture coordinates

WRIGHT STATE Department of Computer Science and Engineering 1114

11 Web-based Visualization

Example Vertex Shader

uniform mat4 uMVMatrix; // modelview matrix
uniform mat4 uPMatrix; // perspective
attribute vec4 aVertexPosition; // position of vertex

attribute vecd4d aVertexColor; // color of vertex

// varying variables: input to fragment shader

varying vec4 vColor; // output vertex color

void main () {
gl Position = uPMatrix * uMVMatrix * aVertexPosition;

vColor = aVertexColor;

[TTTEf . . .
WRIGHT STATE Department of Computer Science and Engineering 1115
UNIVERSITY

11 Web-based Visualization

Primitive Assembly
Individual vertices are assembled into primitives
(triangles, lines, or point-sprites)

Trivial accept-reject culling (is the primitive entirely
outside the view frustum?)

Backface culling

Clipping (cut away parts of primitive outside view
frustum)

WRIGHT STATE Department of Computer Science and Engineering 11-16

11 Web-based Visualization

Rasterization

Convert primitives into 2D “fragments”
(representing pixels on the screen)

Different algorithms for triangles, lines, and point-sprites

WRIGHT STATE Department of Computer Science and Engineering 1117

11 Web-based Visualization

Fragment Shaders

Little program to process a fragment (pixel)

Inputs:
Varying variables (outputs of vertex shader, interpolated)
Uniforms
Samplers
Shader program

Output
gl_FragColor

Tasks
Per-vertex operations such as Phong shading

WRIGHT STATE Department of Computer Science and Engineering 1118

11 Web-based Visualization

Example Fragment Shader

precision highp float; // numeric precision

// (lowp, mediump, highp)

varying vecd4 vColor; // input vertex color

void main (void) {

gl FragColor = vColor;

TR LT

WRIGHT STATE
UNIVERSITY

Department of Computer Science and Engineering

11-19

11 Web-based Visualization

Per-Fragment Operations

Operations on fragment data:
Pixel ownership test
Scissor test
Stencil test
Depth test
Blending
Dithering

T 11 _ : :
WRIGHT STATE Department of Computer Science and Engineering 11:20
UNIVERSITY

11 Web-based Visualization

Graphics Pipeline in Detall

Application

Scene/Geometry database traversal
Movement of objects, camera
Animated movement of models
Visibility check, occlusion culling
Select level of detall

Geometry

Transform from model frame to world
frame

Transform from world frame to view
frame (modelview matrix)

Project (projection matrix)

Trivial accept/reject culling

Backface culling
Lighting
Perspective division
Clipping

Transform to screen space
Rasterization
Scanline conversion
Shading

Texturing

Fog

Alpha tests

Depth buffering
Antialiasing

Display

WRIGHT STATE

Department of Computer Science and Engineering

11-21

11 Web-based Visualization

Distributed Computing
Some work is done on the CPU, some on processors on
the graphics card

E.g. read an object file on the CPU. Set it up on the
various processors on the graphics card for rendering

How to get the data to the graphics card?

WRIGHT STATE Department of Computer Science and Engineering 1122

11 Web-based Visualization

Vertex Buffer Objects

Vertex data must be sent to the graphics card for
display
WebGL uses Vertex Buffer Objects

Create an array (chunk of memory) for vertex data (position,
color, etc) and vertex indices

Put it in a Vertex Buffer Object
Send it to the graphics card, where it is stored

WRIGHT STATE Department of Computer Science and Engineering 1123

11 Web-based Visualization

Hello WebGL

Lots of machinery to draw a triangle

But once the framework is in place, the rest is easy...

Steps:
Compile the shaders
Attach to program object
Link
Connect vertex outputs
to fragment inputs

Connect other variables
and uniforms

WRIGHT STATE Department of Computer Science and Engineering 1124

11 Web-based Visualization

The Shaders

var fragShader = " \
precision highp float; \
varying vec4d vColor; \
void main (void) { \
gl FragColor = vColor; \
P
var vertShader = " \

attribute vec3 aVertexPosition;
attribute vecd4 aVertexColor;
uniform mat4 uMVMatrix;

uniform mat4 uPMatrix;

varying vec4d vColor;

void main (void) { \

gl Position = uPMatrix * uMVMatrix * vec4 (aVertexPosition, 1.0); \

vColor = aVertexColor; \
P
TG . : :
WRIGHT STATE Department of Computer Science and Engineering 1125

UNIVERSITY

11 Web-based Visualization

Compiling the Shaders (glx.}s)

glx.loadShader = function(type, shaderSrc) {

var shader, compileStatus;

shader = gl.createShader (type);

if (shader == 0) return 0O;

gl.shaderSource (shader, shaderSrc);
gl.compileShader (shader) ;

compileStatus = gl.getShaderParameter (shader, gl.COMPILE STATUS) ;

if (!compileStatus) {
alert (gl.getShaderInfolog (shader)) ;
gl.deleteShader (shader) ;
return 0O;

}

return shader;

WRIGHT smﬁfg Department of Computer Science and Engineering 1126
UNIVERSITY

11 Web-based Visualization

Linking the Shaders (glx.]s)

glx.loadPrograms = function(vertShaderSrc, fragShaderSrc) {

var vertShader, fragShader, programObject, linkStatus;

vertShader glx.loadShader (gl.VERTEX SHADER, vertShaderSrc);

fragShader = glx.loadShader (gl.FRAGMENT SHADER, fragShaderSrc);

programObject = gl.createProgram() ;
gl.attachShader (programObject, vertShader);

gl.attachShader (programObject, fragShader);

gl.linkProgram(programObject) ; // link programs
linkStatus = gl.getProgramParameter (programObject, gl.LINK STATUS);
if (!linkStatus) {
alert(gl.getProgramInfolog (programObject)) ;
gl.deleteProgram(programObject) ;
return 0;
}

return programObject;

WRIGHT smﬁfg Department of Computer Science and Engineering 1127
UNIVERSITY

11 Web-based Visualization

Connecting Arguments

var shaderProgram;

function initShaders () {

shaderProgram = glx.loadPrograms (vertShader, fragShader):;
gl.useProgram(shaderProgram) ;
shaderProgram.vertexPositionAttribute =

gl.getAttribLocation (shaderProgram, "aVertexPosition");
gl.enableVertexAttribArray (shaderProgram.vertexPositionAttribute) ;
shaderProgram.vertexColorAttribute =

gl.getAttribLocation (shaderProgram, "aVertexColor");
gl.enableVertexAttribArray (shaderProgram.vertexColorAttribute) ;
shaderProgram.pMatrixUniform =

gl.getUniformLocation (shaderProgram, "uPMatrix");
shaderProgram.mvMatrixUniform =

gl.getUniformLocation (shaderProgram, "uMVMatrix");

WRIGHT STATE Department of Computer Science and Engineering 1128
UNIVERSITY

11 Web-based Visualization

Setting Up the View

function setupView () {

gl.viewport (0, 0, gl.viewportWidth, gl.viewportHeight);

pMatrix = mat4.perspective (30, gl.viewportWidth /
gl.viewportHeight, 0.1, 100.0);

mat4d.identity (mvMatrix) ;
matd.translate (mvMatrix, [0.0, 0.0, -6.01);
//mat4.lookAt (0,0,-6, 0,0,0, 0,1,0, mvMatrix) ;

gl.uniformMatrix4fv (shaderProgram.pMatrixUniform,
false, pMatrix);

gl.uniformMatrix4fv (shaderProgram.mvMatrixUniform,
false, mvMatrix);

WRIGHT STATE Department of Computer Science and Engineering 1129
UNIVERSITY

11 Web-based Visualization

Vertex Buffers

Array of vertex data to be sent to graphics card

Each vertex may have 4 coords, 2 texture coords,
4 color values, 3 normal coords...80 bytes or more

Setup:
gl.createBuffer() = make a new buffer

gl.bindBuffer() make it our “current buffer”
gl.bufferData() put data in the buffer

Draw:

gl.vertexAttribPointer() use buffer for vertex attribute
gl.drawArrays() draw using specified buffer

WRIGHT STATE Department of Computer Science and Engineering

11-30

11 Web-based Visualization

Draw Scene

function drawScene () {

setupView () ;

gl.

gl
gl

gl

clear (gl1.COLOR BUFFER BIT | gl.DEPTH BUFFER BIT);

.bindBuffer (gl.ARRAY BUFFER, triangleVertexPositionBuffer);

.vertexAttribPointer (shaderProgram.vertexPositionAttribute,

triangleVertexPositionBuffer.itemSize, gl.FLOAT,false,0,0);

.bindBuffer (gl.ARRAY BUFFER, triangleVertexColorBuffer);

.vertexAttribPointer (shaderProgram.vertexColorAttribute,

triangleVertexColorBuffer.itemSize, gl.FLOAT, false, 0,0);

.drawArrays (gl.TRIANGLES, O,

triangleVertexPositionBuffer.numltems) ;

WRIGHT STATE Department of Computer Science and Engineering
UNIVERSITY

11-31

Initialize

11 Web-based Visualization

function initGL (canvas) {

gl = canvas.getContext ("experimental-webgl") ;

gl.viewportWidth = canvas.width;

gl.viewportHeight = canvas.height;

gl.clearColor (0.0, 0.0, 0.0,
gl.clearDepth(1.0);
gl.enable (gl.DEPTH TEST) ;

gl.depthFunc (gl.LEQUAL) ;

function webGLStart () {

var canvas = document.getElementById ("canvasl");

initGL (canvas) ; initShaders () ;

initBuffers();

erval (drawScene, 20);

S N
TR

WRIGHT STATE Department of Computer Science and Engineering 1132

UNIVERSITY

11 Web-based Visualization

Using Matrices (glMatrix.Js)

learningwebgl.com uses glMatrix.js:
Types: vec3, mat3, mat4, quat4

Functions:
create, set, identity
add, subtract, negate, multiply, scale, normalize
dot, cross, transpose, determinant, inverse
lerp
translate, scale, rotate
frustum, perspective, ortho, lookAt

TR 1] _ . :
WRIGHT STATE Department of Computer Science and Engineering 11.33
UNIVERSITY

11 Web-based Visualization

WebGL Primitives

. P P Py
drawArrays modes: B ® oP, b, ~_pP, P P
POINTS Poe oPs P, / / Py Po Py
LINES P:® o *Ps P~ 'Ps P; Ps
Ps Ps Ps
LINE_LOOP 5
P, 2
LINE_STRIP 2 Py "7 &
TRIANGLES " O o D)
7 5 p7 P5
TRIANGLE_STRIP ’ Py ’ s

TRIANGLE_FAN

Other shapes?

[T T . . .
WRIGHT STATE Department of Computer Science and Engineering 1134

UNIVERSITY

11 Web-based Visualization

Polygons

In OpenGL, to ensure correct display, polygons must be
simple, convex, and flat
WebGL can only do triangles

What about complex shapes?

shapes?

(o)

WRIGHT STATE Department of Computer Science and Engineering 1135

http://mrdoob.github.com/three.js/examples/webgl_morphtargets.html

11 Web-based Visualization

Polygon Triangulation

The Van Gogh algorithm

O(n?) time

Better algorithms can
achieve O(n log n) time (plane sweep)

Or O(n log log n) time

Or O(n log* n) time

Or ??

T 11 _ : :
WRIGHT STATE Department of Computer Science and Engineering 11.36
UNIVERSITY

Other primitives

11 Web-based Visualization

Text
use HTML, CSS
Curved objects

(Bezier curves, NURBS
surfaces, etc)?

Make triangles in JS
Or use OpenGL

% Computer Graphics
= Computer Graphics go
C% Computer Graphics E
” Cowbmper (}I..sbpgca @
*é Computer Graphics 5&?
o
 (omputer Graphies 2

squdm{) .Iecmdwog

WRIGHT STATE Department of Computer Science and Engineering 1137

11 Web-based Visualization

Hidden surface removal

How can we prevent hidden surfaces from being
displayed?

Painter's algorithm:
paint from back to front.

How can we do this
by computer, when
polygons come in

arbitrary order?
C

WRIGHT STATE Department of Computer Science and Engineering 1138

11 Web-based Visualization

HSR Example
Which polygon should be drawn first?

y

WRIGHT STATE Department of Computer Science and Engineering 1139
UNIVERSITY

11 Web-based Visualization

Depth buffer (z-buffer) alg

Hidden surface removal is accomplished on a per-pixel
basis in hardware with a depth buffer (also called z-
buffer):

When computing screen coordinates for each pixel, also
compute distance Z from viewer

When drawing each pixel, draw R, G, B, A in the color buffer
and Z in the depth buffer

Only draw the pixel if it's closer than what was there before.

WRIGHT STATE Department of Computer Science and Engineering 1140

11 Web-based Visualization

Depth-buffer images

Color buffer B Depth buffer

IR _ o
WRIGHT STATE Department of Computer Science and Englneerlng 11-41
UNIVERSITY

11 Web-based Visualization

Depth Buffer in WebGL
Enable depth buffering

gl.enable (gl.DEPTH TEST) ;

gl.depthFunc (gl.LEQUAL) ;

When you clear a buffer, also clear the depth buffer

gl.clear (gl.COLOR BUFFER BIT |
gl.DEPTH BUFFER BIT) ;

TR] i : :
WRIGHT STA'}E Department of Computer Science and Engineering 11.42
UNIVERSITY

11 Web-based Visualization

Depth Buffer Analysis

Every pixel of every polygon is drawn, even if most don't
appear in final image — theoretically slow in some

cases
Supported in all modern 3D graphics hardware

Pixel-sized depth values results in aliasing

WRIGHT STATE Department of Computer Science and Engineering 1143

11 Web-based Visualization

OpenGL buffers

Color
Depth

Stencill
Restrict drawing to certain portions of the screen

E.g. cardboard cutout

Accumulation
Can "add together" different versions of an image
Anti-aliasing, motion blur, soft shadows, compositing

E.g. how to do fog?

WRIGHT STATE Department of Computer Science and Engineering 1144

11 Web-based Visualization

Phew.

Lots of work to write a WebGL program, set up buffers
and shaders, etc.

Can we do cool stuff with much less code?

http://mrdoob.github.com/three.js/

11 Web-based Visualization

Three.Js Features

Renderers: <canvas:>, <svg> and WebGL,; effects: anaglyph, crosseyed, stereo and more

Scenes: add and remove objects at run-time; fog

Cameras: perspective and orthographic; controllers: trackball, FPS, path and more

Animation: morph and keyframe

Lights: ambient, direction, point and spot lights; shadows: cast and receive

Materials: Lambert, Phong and mare - all with textures, smooth-shading and more

Shaders: access to full WebGL capabilities; lens flare, depth pass and extensive post-processing library
Objects: meshes, particles, sprites, lines, ribbons, bones and more - all with level of detail

Geometry: plane, cube, sphere, torus, 3D text and more; modifiers: lathe, extrude and tube

Loaders: binary, image, JSON and scene

Utilities: full set of time and 3D math functions including frustum, Quaternion, matrix, UVs and more
Export/Import: utilities to create Three.js-compatible JSON files from within: Blender, CTM, FBX, 3D Max, and OBJ
Support: APl documentation is under construction, public forum and wiki in full operation

Examples: More than 150 files of coding examples plus fonts, models, textures, sounds and other support files

WRIGHT STABFE Department of Computer Science and Engineering 11-46
UNIVERSITY

11 Web-based Visualization

Three.|s

Written by Mr.doob aka Cabello Miguel of Spain
Perceived leader of WebGL frameworks
IS thin, but 150

WRIGHT STATE Department of Computer Science and Engineering 1147

http://mrdoob.github.com/three.js/docs/52/
http://mrdoob.github.com/three.js/

11 Web-based Visualization

First Three.js Program

A document to draw on:

<html>

<head>

<title>My first Three.js app</title>

<style>canvas { width: 18@%; height: 188% }</style>
</head>

<body>

<script

src="https://raw.github.com/mrdoob/three. js/master/build/three. js">
</script>

<script>

Jf Qur Javascript will go here.

</script>

</body>

</html>

WRIG STATE Department of Computer Science and Engineering 1148
UNIVERSITY

11 Web-based Visualization

Three.|s basics

To display something with Three.js we need:
A scene
A camera
A renderer

var scene = new THREE.Scene();
var camera = new THREE.PerspectiveCamera(75,
window.innerWidth/window. innerHeight, @.17, T1@88);

var renderer = new THREE.WebGLRenderer():
renderer.setSize(window.1innerWidth, window.1innerHeight);
document.body. appendChild(renderer.domElement);

WRIGHT STABFE Department of Computer Science and Engineering 11-49
UNIVERSITY

11 Web-based Visualization

Adding geometry

Now we need to add an object to the scene:

var geometry = new THREE.CubeGeometry(1,1,1);

var material = new THREE.MeshBasicMaterial({color: @éxgefrfee}):
var cube = new THREE.Mesh(geometry, material);
scene.add(cube)

camera.position.z = §5;

WRIGHT STATE Department of Computer Science and Engineering 11:50
UNIVERSITY

11 Web-based Visualization

Render the scene

function render() {
requestAnimationFrame(render) ;

cube.rotation.x += 8.1;
cube.rotation.y += @.1;

renderer.render({scene, camera):

}

render():

WRIGHT STATE Department of Computer Science and Engineering 1151
UNIVERSITY

11 Web-based Visualization

Three.JS overview

thin, incomplete. | |

Types of objects:
Cameras (orthographic, perspective)
Controllers (firstperson, fly, path, roll, trackball)
Scenes
Renderers (WebGL, Canvas, SVG)
Objects (mesh, line, particle, bone, sprite, etc)
Geometries (cube, cylinder, sphere, lathe, text, etc)
Lights,
Materials
Loaders
Animation (animationHandler, morphTarget)
Collision detection

WRIGHT STATE Department of Computer Science and Engineering 1152

http://mrdoob.github.com/three.js/docs/52/
http://stemkoski.github.com/Three.js/

11 Web-based Visualization

Project: animated flower

Make a 3D flower

Simple version:
Doesn’t have to be realistic
Use a function for petals, etc.
Make it rotate or move

Trackball controller

Fancier version:
More realistic

Animated, e.g. bends in the wind,
slider to open/close flower, etc.

TR 1 _ : :
WRIGHT STATE Department of Computer Science and Engineering 1153
UNIVERSITY

11 Web-based Visualization

Geometry

How would you create geometry?

T

NN

WRIGHT STATE Department of Computer Science and Engineering 1164
UNIVERSITY

http://stemkoski.github.com/Three.js/Shapes.html

11 Web-based Visualization

Creating Geometry

Use an object like CubeGeometry, CylinderGeometry,
PolyhedronGeometry, etc to create an object

Add it to your scene

Check out example (or look at source code)

WRIGHT STATE Department of Computer Science and Engineering 1155

http://mrdoob.github.com/three.js/docs/52/

11 Web-based Visualization

Creating Geometry

scene = new THREE.Scene();
scene.fog = new THREE.FogExp2{ @xcccccc, 9.082);

var geometry = new THREE.CylinderGeometry(@, 18, 38, 4, 1);
var material = new THREE.MeshLambertMateriall { color:@xffffff, shading: THREE.FlatShading });

for (var 1i = @:; i = 58@: i ++) {

var mesh = new THREE.Mesh{ geometry, material);
mesh.position.x { Math.random{) - 8.5) = 1008;
mesh.position.y { Math.random{) - 8.5) * 1008;
mesh.position.z { Math.random() - 8.5) * 1088;
mesh.updateMatrix();

mesh.matrixAutolUpdate = false;

scene.add{ mesh); -

WRIGHT smﬁfg Department of Computer Science and Engineering 1156
UNIVERSITY

http://mrdoob.github.com/three.js/examples/misc_camera_trackball.html

11 Web-based Visualization

Virtual Trackball?

How would you figure out how to set up a virtual
trackball?

[Tl [&

WRIGHT STATE Department of Computer Science and Engineering 1157
UNIVERSITY

11 Web-based Visualization

Trackball controller

Use the TrackballControls camera controller

Check out example (or look at source code)

T 11 _ : :
WRIGHT STATE Department of Computer Science and Engineering 1158
UNIVERSITY

http://mrdoob.github.com/three.js/docs/52/

11 Web-based Visualization

Trackball controller

camera =

new THREE.PerspectiveCamera(60, window.innerh

camera.position.z = 508;

controls

controls.
controls.
controls.

controls.
controls.

controls.
controls.

controls.

controls.

el

WRIGHT STATE
UNIVERSITY

= new THREE.TrackballControls{ camera);
rotateSpeed = 1.8;
ZzoomSpeed = 1.2;
panspeed B.8;

noZoom = fTalse:
noPan = fTalse:

staticMoving = true;
dynamicDampingFactor = B8.3;

keys = [65, B3, 68 1:
addEventListener{ 'change', render):

Department of Computer Science and Engineering 1159

http://mrdoob.github.com/three.js/examples/misc_camera_trackball.html

11 Web-based Visualization

Lighting?

Lights: AmbientLight, DirectionalLight, PointLight,
SpotLight

. there is some!
Check out an example anyway

WRIGHT STATE Department of Computer Science and Engineering 1160
UNIVERSITY

http://mrdoob.github.com/three.js/docs/52/

11 Web-based Visualization

Lighting In Three.]Js

var light = new THREE.PointLight{ @xff2208);
light.position.set{ 108, 186, 188):
scene.add({ light);

var light = new THREE.AmbientLight{ 8x111111);
scene.add{ light);

var geometry = new THREE.CubeGeometry({ 108, 100, 188);
var material = new THREE.MeshLambertMaterial({ { color: Bxff

IR LT . : :
WRIGHT smﬁfg Department of Computer Science and Engineering 1161
UNIVERSITY

http://mrdoob.github.com/three.js/examples/webgl_morphtargets.html

11 Web-based Visualization

Shading and material types

Material types:

Parameters/properties:

Color, wireframe, shading, vertexColors, fog, lightMap,
specularMap, envMap, skinning, morphTargets

T 11 _ : :
WRIGHT STATE Department of Computer Science and Engineering 1162
UNIVERSITY

http://mrdoob.github.com/three.js/docs/52/
http://mrdoob.github.com/three.js/docs/52/
http://mrdoob.github.com/three.js/docs/52/

11 Web-based Visualization

Shading and material types

ff Sphere parameters: radius, segments along width, segments along height
var sphereGeom = new THREE.SphereGeometry(58, 32, 16);

S/ Three types of materials, each reacts differently to light.

var darkMaterial = new THREE.MeshBasicMaterial({ color: @x@00@EE });
var darkMaterialL new THREE.MeshLambertMateriall { color: @x@@0QEBE }):
var darkMaterialP new THREE.MeshPhongMateriall { color: @x@@0@888 });

// Creating three spheres to illustrate the different materials.

ff Note the clone() method used to create additional instances

il of the geometry from above.

var sphere = new THREE.Mesh{ THREE.GeometryUtils.clone{sphereGeom), darkMaterial);
sphere.position.set{-158, 5@, @);

scene.addl{ sphere);

var sphere = new THREE.Mesh{ THREE.GeometryUtils.clone(sphereGeom), darkMateriallL);
sphere.position.set(@, 58, 8);
scene.addl{ sphere);

var sphere = new THREE.Mesh{ THREE.GeometryUtils.clone{sphereGeom), darkMaterialP);
sphere.position.set(15@, 58, @);
scene.addl{ sphere);

[T T e

WRIGHT STATE Department of Computer Science and Engineering 1163
UNIVERSITY

http://stemkoski.github.com/Three.js/Materials-Solid.html

11 Web-based Visualization

Gradients

Use vertex colors

face = cubeGeometry.faces[1];
J/f determine 1f current face 1is a tri or a quad
number0fSides = (face instanceof THREE.Face3d) 7 3 : 4;
Ff assign color to each vertex of current face
for{ var j = 8; j < number0fSides; j++)
{
vertexIndex = face[faceIndices[j 1 1;
Ff initialize color wvarlable
color = new THREE.Color{ @xffffff);
color.setHex({ Math.random() * @xffffff):
face.vertexColors[j] = color;

http://stemkoski.github.com/Three.js/Vertex-Colors.html

11 Web-based Visualization

Moving your objects around

object.positon.set(X, vy, z)
object.rotation.x = 90 * Math.PI/ 180

Rotations occur in the order x, y, z

With respect to object’s internal coord system

If there is an x-rotation, y and z rotations may not be lined up
with world axes

Object properties (parent-relative):
Position
Rotation
Scale

WRIGHT STATE Department of Computer Science and Engineering 1165

11 Web-based Visualization

Object Hierarchy

What if you want to create an object with parts?

Object transform hierarchy
Scene: top-level object in hierarchy
Can add objects to other objects
Move or rotate one part: its children move as well

WRIGHT STATE Department of Computer Science and Engineering 1166

I
WRIGHT
UNIVER

var geometry = new THREE.SphereGeometry(Moon.SIZE_IN_EARTHS,
32, 32);

var texture = THREE.ImageUtils.loadTexture(MOONMAP);

var material = new THREE.MeshPhongMaterial({ map: texture,
ambient:0x888888 });

var mesh = new THREE.Mesh(geometry, material);

// Let's get this into earth-sized units (earth is a unit sphere)
var distance = Moon.DISTANCE_FROM_EARTH / Earth.RADIUS;
mesh.position.set(Math.sgrt(distance / 2), 0,

-Math.sgrt(distance / 2));

// Rotate the moon so it shows its moon-face toward earth
mesh.rotation.y = Math.PI;

// Create a group to contain Earth and Satellites
var moonGroup = new THREE.Object3D();
moonGroup.add({mesh);

/] Tilt to the ecliptic
moonGroup.rotation.x = Moon.INCLINATION;

// Tell the framework about our object
this.setObject3D(moonGroup);

// Save away our moon mesh so we can rotate it
this.moonMesh = mesh;

11 Web-based Visualization

How might you do this?

TATE Department of Computer Science and Engineering
UNIVERSITY

http://www.youtube.com/watch?v=F2AitTPI5U0

11 Web-based Visualization

Morphing

Image/video morphing: smoothly shifting from one
Image to another

First popularized in a Michael Jackson video

Method for video: a combination of
ldentifying corresponding points in images over time

Warping both images, gradually moving control points from
location in first image to location in the second

Cross-fading from first image sequence to second

WRIGHT STATE Department of Computer Science and Engineering 1170

3D Morphing

Define 3D before and
after shapes

Linear interpolation
of point locations
from first setting
to second

TR LT
WRIGHT STATE Department of Computer Sc
UNIVERSITY

http://webglsamples.googlecode.com/hg/aquarium/aquarium.html

11 Web-based Visualization

Morphing in Three.|s

Create geometry
Move vertices to create “morph targets”

geometry.morphTargets.push (
{ name: “target” + 1, vertices: vertices });

Set influence

mesh.morphTargetInfluences[0]=0.3;

mesh.morphTargetInfluences[1]=0.7;

Can also set up animations that can be played (people
walking, etc)

WRIGHT STATE Department of Computer Science and Engineering 1172

11 Web-based Visualization

Morphing in Three.|s

MorphAnimMesh documentation: “todo”
See morph target

[Tl [&

WRIGHT STATE Department of Computer Science and Engineering 1173
UNIVERSITY

http://mrdoob.github.com/three.js/examples/webgl_morphtargets.html

11 Web-based Visualization

Summary

WebGL is OpenGL ES in the browser
Distributed and SIMD-like programming
Vertex and fragment shaders

WebGL graphics pipeline
Depth buffer algorithm for hidden surface removal
Three.js Is nice!

WRIGHT STATE Department of Computer Science and Engineering 1174

11 Web-based Visualization

An introduction to D3

D3 (Data-Driven Documents) is based on different
aspects found in HTML5

JavasScript
SVG

WRIGHT STATE Department of Computer Science and Engineering 1475
UNIVERSITY

11 Web-based Visualization

JavaScript

WRIGHT STATE Department of Computer Science and Engineering 1176

11 Web-based Visualization

Functional Variables

var foo = function(x) {

return (x > 4.3) 7 120*x+7 : Math.PI;
s

foo(5); // == 667
foo(@); // == 3.1415...

IR

WRIGHT STATE Department of Computer Science and Engineering 1177
UNIVERSITY

11 Web-based Visualization

Functional Variables

var w = 640, h = 320,
x = d3.scale.linear().domain([-1, 1]).range([®, w]),
y = d3.scale.linear().domain([@, 1]).range([®, h]);

x(0); // == w/2 == 320
y(3); // == 3*h == 960

WRIGHT STATE Department of Computer Science and Engineering 1178
UNIVERSITY

11 Web-based Visualization

Method Chaining

var rect = d3.select('rect’);
rect.attr('width', 100);
rect.attr('width', 20);
rect.style('fill', "#f00');
rect.style('stroke', '#00f');
rect.attr('opacity’, 0.5);

WRIGHT STATE Department of Computer Science and Engineering 1179
UNIVERSITY

11 Web-based Visualization

Method Chaining

var rect = d3.select('rect')
.attr('width', 100)
.attr('width', 20)
style('fill', "#f00')
.style('stroke', "#00f')
.attr('opacity', 0.5);

IR

WRIGHT STATE Department of Computer Science and Engineering
UNIVERSITY

11-80

11 Web-based Visualization

Method Chaining

var rect = d3.select('rect")
.attr('width', 100)
.attr('width', 20); // <- Your enemy
style('fill', "#f00')
.style('stroke', "#00f')
.attr('opacity’', 0.5);

IR

WRIGHT STATE Department of Computer Science and Engineering

11-81
UNIVERSITY

11 Web-based Visualization

SVG

WRIGHT STATE Department of Computer Science and Engineering 1192

UNIVERSITY

11 Web-based Visualization

<?xml version="1.8" encoding="utf-8"7>

<!-- Generator: Adobe Illustrator 15.8.08, 5VG Export Plug-In . 5VG Version: 6.0@ Build @) --»

<!DOCTYPE swg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg version="1.1" id="Layer_1" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://waw.w3.0rg/1999/x1link" x="0px" y="@px"
width="720px" height="432px" viewBox="0 @ 72@ 432" enable-background="new @ @ 720 432" xml:space="preserve">

<ellipse fill="#4AAD33" stroke="#59B@35" stroke-miterlimit="10" cx="84.5" cy="84.5" rx="69" ry="67.75"/>

<rect x="65.5" y="63.333" fill="#FFE580" stroke="#E8442(" stroke-width="5" stroke-miterlimit="10" width="116.035" height="177.833"/>

<line fill="none" stroke="#334A9A" stroke-width="5" stroke-miterlimit="10" x1="31.5" y1="205.5" x2="123.518" y2="134.5"/>

</svg>

WRIGHT STATE Department of Computer Science and Engineering 1163
UNIVERSITY

11 Web-based Visualization

D3 Web Tutorials

JavaScript User Group, Munich 2012:
Link:

D3 Workshop:
Link:

TR] i : :
WRIGHT STA'}E Department of Computer Science and Engineering 11.84
UNIVERSITY

webholics.github.com/talk-munichjs-d3/2.0
bost.ocks.org/mike/d3/workshop

