
11-1Department of Computer Science and Engineering

11 Web-based Visualization

Web-Based Visualization

Web-Based Visualization

11-2Department of Computer Science and Engineering

11 Web-based Visualization

Motivation

Nowadays, web browser become more and more capable

of displaying graphical content. Different packages are

available for creating such content, most of them are

based on JavaScript. This chapter will look into two

common methods of visualizing data within a web

browser:

WebGL

D3

11-3Department of Computer Science and Engineering

11 Web-based Visualization

Getting WebGL enabled browser
• See instructions on:

http://learningwebgl.com/blog/?p=11

• Firefox

• Most versions already have WebGL support enabled

• Chrome

• If you already have Chrome 7 or newer, try to execute it with

--enable-webgl parameter

• http://khronos.org/webgl/wiki/Getting_a_WebGL_Impl

ementation

3

14.4.

http://learningwebgl.com/blog/?p=11
http://khronos.org/webgl/wiki/Getting_a_WebGL_Implementation

11-4Department of Computer Science and Engineering

11 Web-based Visualization

WebGL rendering on Canvas element

WebGL is rendering context for HTML5 Canvas

Canvas is a rectangular area, that can be

manipulated dynamically via JavaScript

var canvas = document.getElementById("minigolf-canvas");

gl = canvas.getContext("experimental-webgl");

gl.viewportWidth = canvas.width;

gl.viewportHeight = canvas.height;

gl.clearColor(0.0, 0.0, 0.0, 1.0);

…

4

14.4.

HTML page

Canvas

11-5Department of Computer Science and Engineering

11 Web-based Visualization

Graphics Pipeline
• Vertex Shader

• Buffers (vertex arrays)

• Textures (images)

• Uniforms (call parameters)

• Fragment Shader

• Computes color of the pixel

• Render target

• <canvas> or Framebuffer object for

rendering to textures

Shader Demo:

http://spidergl.org/meshade/index.html

5

14.4.

<script id="shader-fs" type="x-shader/x-fragment">

#ifdef GL_ES

precision highp float;

#endif

varying vec4 vColor;

void main(void) {

gl_FragColor = vColor;

}

</script>

<script id="shader-vs" type="x-shader/x-vertex">

attribute vec3 aVertexPosition;

attribute vec4 aVertexColor;

uniform mat4 uMVMatrix;

uniform mat4 uPMatrix;

varying vec4 vColor;

void main(void) {

gl_Position = uPMatrix * uMVMatrix *

vec4(aVertexPosition, 1.0);

vColor = aVertexColor;

}

</script>

http://spidergl.org/meshade/index.html

11-6Department of Computer Science and Engineering

11 Web-based Visualization

WebGL

<canvas> has 3D option—WebGL—for low-level 3D

graphics

WebGL ≈ OpenGL ES 2.0 (embedded systems)

Supported by all major browsers except IE

Working group: Apple, Google, Mozilla, Opera (not MS)

Low-level API, not for faint of heart

(Most users will use higher-level libraries)

Good book: WebGL: Up and Running

11-7Department of Computer Science and Engineering

11 Web-based Visualization

Pure WebGL code vs WebGL libraries

• Numerous WebGL libraries rise the abstraction level of

WebGL programming

• Using libraries often sets some restrictions for the

implementation

• Pure WebGL has greater degree of freedom, but the

coding is more complex

• Quality of WebGL libraries is varying

• Some libraries have a good documentation but no examples

• Others have only examples, but no documentation whatsoever

7

14.4.

11-8Department of Computer Science and Engineering

11 Web-based Visualization

Three.js

WebGL is low-level; 3D is hard work

Need libraries for higher-level capabilities

Object models

Scene graphs

Display lists

We’ll start with raw WebGL examples, then move to

Three.js

11-9Department of Computer Science and Engineering

11 Web-based Visualization

WebGL overview

Steps to 3D graphics:

Create a canvas element

Obtain drawing context

Initialize the viewport

Create buffers of data (vertices) to be rendered

Create model and view matrices

Create shaders

Draw

11-10Department of Computer Science and Engineering

11 Web-based Visualization

Graphics Pipeline

11-11Department of Computer Science and Engineering

11 Web-based Visualization

How would you do this?

http://mrdoob.github.com/three.js/examples/webgl_materials_cubemap_balls_reflection.html

11-12Department of Computer Science and Engineering

11 Web-based Visualization

WebGL Concepts

Buffers

RenderBuffer

FrameBuffer

Textures

Blending

Depth buffer

Stencil buffer

Uniform variables

Attribute variables

11-13Department of Computer Science and Engineering

11 Web-based Visualization

Shaders

GLSL: GL Shader Language

C-like syntax

Vertex shaders: per-vertex computation

Fragment shaders: per-pixel computation

SIMD-like architecture

Examples:

http://www.iquilezles.org/apps/shadertoy/

11-14Department of Computer Science and Engineering

11 Web-based Visualization

Vertex Shaders

Little program to process a vertex

Inputs:

Per-vertex inputs supplied as vertex arrays (locations, normals, colors,

texture coords, etc.)

Uniforms (non-varying variables)

Samplers (textures, displacement maps, etc.)

Shader program

Outputs: “varying variables”

Tasks

Transformations

Per-vertex lighting

Generating or transforming texture coordinates

11-15Department of Computer Science and Engineering

11 Web-based Visualization

Example Vertex Shader
uniform mat4 uMVMatrix; // modelview matrix

uniform mat4 uPMatrix; // perspective

attribute vec4 aVertexPosition; // position of vertex

attribute vec4 aVertexColor; // color of vertex

// varying variables: input to fragment shader

varying vec4 vColor; // output vertex color

void main() {

gl_Position = uPMatrix * uMVMatrix * aVertexPosition;

vColor = aVertexColor;

}

11-16Department of Computer Science and Engineering

11 Web-based Visualization

Primitive Assembly

Individual vertices are assembled into primitives

(triangles, lines, or point-sprites)

Trivial accept-reject culling (is the primitive entirely

outside the view frustum?)

Backface culling

Clipping (cut away parts of primitive outside view

frustum)

11-17Department of Computer Science and Engineering

11 Web-based Visualization

Rasterization

Convert primitives into 2D “fragments”

(representing pixels on the screen)

Different algorithms for triangles, lines, and point-sprites

11-18Department of Computer Science and Engineering

11 Web-based Visualization

Fragment Shaders

Little program to process a fragment (pixel)

Inputs:

Varying variables (outputs of vertex shader, interpolated)

Uniforms

Samplers

Shader program

Output

gl_FragColor

Tasks

Per-vertex operations such as Phong shading

11-19Department of Computer Science and Engineering

11 Web-based Visualization

Example Fragment Shader

precision highp float; // numeric precision

// (lowp, mediump, highp)

varying vec4 vColor; // input vertex color

void main(void) {

gl_FragColor = vColor;

}

11-20Department of Computer Science and Engineering

11 Web-based Visualization

Per-Fragment Operations

Operations on fragment data:

Pixel ownership test

Scissor test

Stencil test

Depth test

Blending

Dithering

11-21Department of Computer Science and Engineering

11 Web-based Visualization

Graphics Pipeline in Detail
Application

Scene/Geometry database traversal

Movement of objects, camera

Animated movement of models

Visibility check, occlusion culling

Select level of detail

Geometry

Transform from model frame to world

frame

Transform from world frame to view

frame (modelview matrix)

Project (projection matrix)

Trivial accept/reject culling

Backface culling

Lighting

Perspective division

Clipping

Transform to screen space

Rasterization

Scanline conversion

Shading

Texturing

Fog

Alpha tests

Depth buffering

Antialiasing

Display

11-22Department of Computer Science and Engineering

11 Web-based Visualization

Distributed Computing

Some work is done on the CPU, some on processors on

the graphics card

E.g. read an object file on the CPU. Set it up on the

various processors on the graphics card for rendering

How to get the data to the graphics card?

11-23Department of Computer Science and Engineering

11 Web-based Visualization

Vertex Buffer Objects

Vertex data must be sent to the graphics card for

display

WebGL uses Vertex Buffer Objects

Create an array (chunk of memory) for vertex data (position,

color, etc) and vertex indices

Put it in a Vertex Buffer Object

Send it to the graphics card, where it is stored

11-24Department of Computer Science and Engineering

11 Web-based Visualization

Hello WebGL

Lots of machinery to draw a triangle

But once the framework is in place, the rest is easy…

Steps:

Compile the shaders

Attach to program object

Link

Connect vertex outputs

to fragment inputs

Connect other variables

and uniforms

11-25Department of Computer Science and Engineering

11 Web-based Visualization

The Shaders
var fragShader = " \

precision highp float; \

varying vec4 vColor; \

void main(void) { \

gl_FragColor = vColor; \

} ";

var vertShader = " \

attribute vec3 aVertexPosition; \

attribute vec4 aVertexColor; \

uniform mat4 uMVMatrix; \

uniform mat4 uPMatrix; \

varying vec4 vColor; \

\

void main(void) { \

gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); \

vColor = aVertexColor; \

}";

11-26Department of Computer Science and Engineering

11 Web-based Visualization

Compiling the Shaders (glx.js)
glx.loadShader = function(type, shaderSrc) {

var shader, compileStatus;

shader = gl.createShader(type);

if (shader == 0) return 0;

gl.shaderSource(shader, shaderSrc);

gl.compileShader(shader);

compileStatus = gl.getShaderParameter(shader, gl.COMPILE_STATUS);

if (!compileStatus) {

alert(gl.getShaderInfoLog(shader));

gl.deleteShader(shader);

return 0;

}

return shader;

}

11-27Department of Computer Science and Engineering

11 Web-based Visualization

Linking the Shaders (glx.js)
glx.loadPrograms = function(vertShaderSrc, fragShaderSrc) {

var vertShader, fragShader, programObject, linkStatus;

vertShader = glx.loadShader(gl.VERTEX_SHADER, vertShaderSrc);

fragShader = glx.loadShader(gl.FRAGMENT_SHADER, fragShaderSrc);

programObject = gl.createProgram();

gl.attachShader(programObject, vertShader);

gl.attachShader(programObject, fragShader);

gl.linkProgram(programObject); // link programs

linkStatus = gl.getProgramParameter(programObject, gl.LINK_STATUS);

if (!linkStatus) {

alert(gl.getProgramInfoLog(programObject));

gl.deleteProgram(programObject);

return 0;

}

return programObject;

}

11-28Department of Computer Science and Engineering

11 Web-based Visualization

Connecting Arguments
var shaderProgram;

function initShaders() {

shaderProgram = glx.loadPrograms(vertShader, fragShader);

gl.useProgram(shaderProgram);

shaderProgram.vertexPositionAttribute =

gl.getAttribLocation(shaderProgram, "aVertexPosition");

gl.enableVertexAttribArray(shaderProgram.vertexPositionAttribute);

shaderProgram.vertexColorAttribute =

gl.getAttribLocation(shaderProgram, "aVertexColor");

gl.enableVertexAttribArray(shaderProgram.vertexColorAttribute);

shaderProgram.pMatrixUniform =

gl.getUniformLocation(shaderProgram, "uPMatrix");

shaderProgram.mvMatrixUniform =

gl.getUniformLocation(shaderProgram, "uMVMatrix");

}

11-29Department of Computer Science and Engineering

11 Web-based Visualization

Setting Up the View
function setupView() {

gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);

pMatrix = mat4.perspective(30, gl.viewportWidth /

gl.viewportHeight, 0.1, 100.0);

mat4.identity(mvMatrix);

mat4.translate(mvMatrix, [0.0, 0.0, -6.0]);

//mat4.lookAt(0,0,-6, 0,0,0, 0,1,0, mvMatrix);

gl.uniformMatrix4fv(shaderProgram.pMatrixUniform,

false, pMatrix);

gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform,

false, mvMatrix);

}

11-30Department of Computer Science and Engineering

11 Web-based Visualization

Vertex Buffers

Array of vertex data to be sent to graphics card

Each vertex may have 4 coords, 2 texture coords,

4 color values, 3 normal coords…80 bytes or more

Setup:

gl.createBuffer() make a new buffer

gl.bindBuffer() make it our “current buffer”

gl.bufferData() put data in the buffer

Draw:

gl.vertexAttribPointer() use buffer for vertex attribute

gl.drawArrays() draw using specified buffer

11-31Department of Computer Science and Engineering

11 Web-based Visualization

Draw Scene

function drawScene() {

setupView();

gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

gl.bindBuffer(gl.ARRAY_BUFFER, triangleVertexPositionBuffer);

gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,

triangleVertexPositionBuffer.itemSize, gl.FLOAT,false,0,0);

gl.bindBuffer(gl.ARRAY_BUFFER, triangleVertexColorBuffer);

gl.vertexAttribPointer(shaderProgram.vertexColorAttribute,

triangleVertexColorBuffer.itemSize, gl.FLOAT, false, 0,0);

gl.drawArrays(gl.TRIANGLES, 0,

triangleVertexPositionBuffer.numItems);

}

11-32Department of Computer Science and Engineering

11 Web-based Visualization

Initialize
function initGL(canvas) {

gl = canvas.getContext("experimental-webgl");

gl.viewportWidth = canvas.width;

gl.viewportHeight = canvas.height;

gl.clearColor(0.0, 0.0, 0.0, 1.0);

gl.clearDepth(1.0);

gl.enable(gl.DEPTH_TEST);

gl.depthFunc(gl.LEQUAL);

}

function webGLStart() {

var canvas = document.getElementById("canvas1");

initGL(canvas); initShaders(); initBuffers();

setInterval(drawScene, 20);

}

11-33Department of Computer Science and Engineering

11 Web-based Visualization

Using Matrices (glMatrix.js)

learningwebgl.com uses glMatrix.js:

Types: vec3, mat3, mat4, quat4

Functions:

create, set, identity

add, subtract, negate, multiply, scale, normalize

dot, cross, transpose, determinant, inverse

lerp

translate, scale, rotate

frustum, perspective, ortho, lookAt

11-34Department of Computer Science and Engineering

11 Web-based Visualization

WebGL Primitives

drawArrays modes:

POINTS

LINES

LINE_LOOP

LINE_STRIP

TRIANGLES

TRIANGLE_STRIP

TRIANGLE_FAN

Other shapes?

11-35Department of Computer Science and Engineering

11 Web-based Visualization

Polygons

In OpenGL, to ensure correct display, polygons must be

simple, convex, and flat

WebGL can only do triangles

What about complex shapes?

Non-flat

shapes?

http://mrdoob.github.com/three.js/examples/webgl_morphtargets.html

11-36Department of Computer Science and Engineering

11 Web-based Visualization

Polygon Triangulation

The Van Gogh algorithm

O(n2) time

Better algorithms can

achieve O(n log n) time (plane sweep)

Or O(n log log n) time

Or O(n log* n) time

Or ??

11-37Department of Computer Science and Engineering

11 Web-based Visualization

Other primitives

Text

use HTML, CSS

Curved objects

(Bezier curves, NURBS

surfaces, etc)?

Make triangles in JS

Or use OpenGL

11-38Department of Computer Science and Engineering

11 Web-based Visualization

Hidden surface removal

How can we prevent hidden surfaces from being

displayed?

Painter's algorithm:

paint from back to front.

How can we do this

by computer, when

polygons come in

arbitrary order?

11-39Department of Computer Science and Engineering

11 Web-based Visualization

HSR Example

Which polygon should be drawn first?

11-40Department of Computer Science and Engineering

11 Web-based Visualization

Depth buffer (z-buffer) alg

Hidden surface removal is accomplished on a per-pixel

basis in hardware with a depth buffer (also called z-

buffer):

When computing screen coordinates for each pixel, also

compute distance Z from viewer

When drawing each pixel, draw R, G, B, A in the color buffer

and Z in the depth buffer

Only draw the pixel if it's closer than what was there before.

11-41Department of Computer Science and Engineering

11 Web-based Visualization

Depth-buffer images

Depth bufferColor buffer

11-42Department of Computer Science and Engineering

11 Web-based Visualization

Depth Buffer in WebGL

Enable depth buffering

gl.enable(gl.DEPTH_TEST);

gl.depthFunc(gl.LEQUAL);

When you clear a buffer, also clear the depth buffer

gl.clear(gl.COLOR_BUFFER_BIT |

gl.DEPTH_BUFFER_BIT);

11-43Department of Computer Science and Engineering

11 Web-based Visualization

Depth Buffer Analysis

Every pixel of every polygon is drawn, even if most don't

appear in final image – theoretically slow in some

cases

Supported in all modern 3D graphics hardware

Pixel-sized depth values results in aliasing

11-44Department of Computer Science and Engineering

11 Web-based Visualization

OpenGL buffers

Color

Depth

Stencil

Restrict drawing to certain portions of the screen

E.g. cardboard cutout

Accumulation

Can "add together" different versions of an image

Anti-aliasing, motion blur, soft shadows, compositing

E.g. how to do fog?

11-45Department of Computer Science and Engineering

11 Web-based Visualization

Phew.

Lots of work to write a WebGL program, set up buffers

and shaders, etc.

Can we do cool stuff with much less code?

http://mrdoob.github.com/three.js/

11-46Department of Computer Science and Engineering

11 Web-based Visualization

Three.js Features

11-47Department of Computer Science and Engineering

11 Web-based Visualization

Three.js

Written by Mr.doob aka Cabello Miguel of Spain

Perceived leader of WebGL frameworks

Documentation is thin, but 150 examples

http://mrdoob.github.com/three.js/docs/52/
http://mrdoob.github.com/three.js/

11-48Department of Computer Science and Engineering

11 Web-based Visualization

First Three.js Program

A document to draw on:

11-49Department of Computer Science and Engineering

11 Web-based Visualization

Three.js basics

To display something with Three.js we need:

A scene

A camera

A renderer

11-50Department of Computer Science and Engineering

11 Web-based Visualization

Adding geometry

Now we need to add an object to the scene:

11-51Department of Computer Science and Engineering

11 Web-based Visualization

Render the scene

11-52Department of Computer Science and Engineering

11 Web-based Visualization

Three.JS overview
Documentation thin, incomplete. [More examples]

Types of objects:

Cameras (orthographic, perspective)

Controllers (firstperson, fly, path, roll, trackball)

Scenes

Renderers (WebGL, Canvas, SVG)

Objects (mesh, line, particle, bone, sprite, etc)

Geometries (cube, cylinder, sphere, lathe, text, etc)

Lights,

Materials

Loaders

Animation (animationHandler, morphTarget)

Collision detection

http://mrdoob.github.com/three.js/docs/52/
http://stemkoski.github.com/Three.js/

11-53Department of Computer Science and Engineering

11 Web-based Visualization

Project: animated flower

Make a 3D flower

Simple version:

Doesn’t have to be realistic

Use a function for petals, etc.

Make it rotate or move

Trackball controller

Fancier version:

More realistic

Animated, e.g. bends in the wind,

slider to open/close flower, etc.

11-54Department of Computer Science and Engineering

11 Web-based Visualization

Geometry

How would you create geometry?

http://stemkoski.github.com/Three.js/Shapes.html

11-55Department of Computer Science and Engineering

11 Web-based Visualization

Creating Geometry

Use an object like CubeGeometry, CylinderGeometry,

PolyhedronGeometry, etc to create an object

Add it to your scene

Documentation:

Check out example (or look at source code)

http://mrdoob.github.com/three.js/docs/52/

11-56Department of Computer Science and Engineering

11 Web-based Visualization

Creating Geometry

http://mrdoob.github.com/three.js/examples/misc_camera_trackball.html

11-57Department of Computer Science and Engineering

11 Web-based Visualization

Virtual Trackball?

How would you figure out how to set up a virtual

trackball?

11-58Department of Computer Science and Engineering

11 Web-based Visualization

Trackball controller

Use the TrackballControls camera controller

Documentation

Check out example (or look at source code)

http://mrdoob.github.com/three.js/docs/52/

11-59Department of Computer Science and Engineering

11 Web-based Visualization

Trackball controller

http://mrdoob.github.com/three.js/examples/misc_camera_trackball.html

11-60Department of Computer Science and Engineering

11 Web-based Visualization

Lighting?

Lights: AmbientLight, DirectionalLight, PointLight,

SpotLight

Documentation: there is some!

Check out an example anyway

http://mrdoob.github.com/three.js/docs/52/

11-61Department of Computer Science and Engineering

11 Web-based Visualization

Lighting in Three.js

http://mrdoob.github.com/three.js/examples/webgl_morphtargets.html

11-62Department of Computer Science and Engineering

11 Web-based Visualization

Shading and material types

Material types:

MeshBasicMaterial

MeshLambertMaterial

MeshPhongMaterial

Parameters/properties:

Color, wireframe, shading, vertexColors, fog, lightMap,

specularMap, envMap, skinning, morphTargets

http://mrdoob.github.com/three.js/docs/52/
http://mrdoob.github.com/three.js/docs/52/
http://mrdoob.github.com/three.js/docs/52/

11-63Department of Computer Science and Engineering

11 Web-based Visualization

Shading and material types

http://stemkoski.github.com/Three.js/Materials-Solid.html

11-64Department of Computer Science and Engineering

11 Web-based Visualization

Gradients

Use vertex colors

http://stemkoski.github.com/Three.js/Vertex-Colors.html

11-65Department of Computer Science and Engineering

11 Web-based Visualization

Moving your objects around

object.positon.set(x, y, z)

object.rotation.x = 90 * Math.PI / 180

Rotations occur in the order x, y, z

With respect to object’s internal coord system

If there is an x-rotation, y and z rotations may not be lined up

with world axes

Object properties (parent-relative):

Position

Rotation

Scale

11-66Department of Computer Science and Engineering

11 Web-based Visualization

Object Hierarchy

What if you want to create an object with parts?

Object transform hierarchy

Scene: top-level object in hierarchy

Can add objects to other objects

Move or rotate one part: its children move as well

11-67Department of Computer Science and Engineering

11 Web-based Visualization

Interactive Computer GraphicsChapter 3 - 67

11-68Department of Computer Science and Engineering

11 Web-based Visualization

11-69Department of Computer Science and Engineering

11 Web-based Visualization

How might you do this?

http://www.youtube.com/watch?v=F2AitTPI5U0

11-70Department of Computer Science and Engineering

11 Web-based Visualization

Morphing

Image/video morphing: smoothly shifting from one

image to another

First popularized in a Michael Jackson video

Method for video: a combination of

Identifying corresponding points in images over time

Warping both images, gradually moving control points from

location in first image to location in the second

Cross-fading from first image sequence to second

11-71Department of Computer Science and Engineering

11 Web-based Visualization

3D Morphing

Define 3D before and

after shapes

Linear interpolation

of point locations

from first setting

to second

http://webglsamples.googlecode.com/hg/aquarium/aquarium.html

11-72Department of Computer Science and Engineering

11 Web-based Visualization

Morphing in Three.js

Create geometry

Move vertices to create “morph targets”

geometry.morphTargets.push(

{ name: “target” + i, vertices: vertices });

Set influence

mesh.morphTargetInfluences[0]=0.3;

mesh.morphTargetInfluences[1]=0.7;

Can also set up animations that can be played (people

walking, etc)

11-73Department of Computer Science and Engineering

11 Web-based Visualization

Morphing in Three.js

MorphAnimMesh documentation: “todo”

See morph target example

http://mrdoob.github.com/three.js/examples/webgl_morphtargets.html

11-74Department of Computer Science and Engineering

11 Web-based Visualization

Summary

WebGL is OpenGL ES in the browser

Distributed and SIMD-like programming

Vertex and fragment shaders

WebGL graphics pipeline

Depth buffer algorithm for hidden surface removal

Three.js is nice!

11-75Department of Computer Science and Engineering

11 Web-based Visualization

An introduction to D3

D3 (Data-Driven Documents) is based on different

aspects found in HTML5

JavaScript

SVG

11-76Department of Computer Science and Engineering

11 Web-based Visualization

JavaScript

11-77Department of Computer Science and Engineering

11 Web-based Visualization

Functional Variables

11-78Department of Computer Science and Engineering

11 Web-based Visualization

Functional Variables

11-79Department of Computer Science and Engineering

11 Web-based Visualization

Method Chaining

11-80Department of Computer Science and Engineering

11 Web-based Visualization

Method Chaining

11-81Department of Computer Science and Engineering

11 Web-based Visualization

Method Chaining

11-82Department of Computer Science and Engineering

11 Web-based Visualization

SVG

11-83Department of Computer Science and Engineering

11 Web-based Visualization

11-84Department of Computer Science and Engineering

11 Web-based Visualization

D3 Web Tutorials

JavaScript User Group, Munich 2012:

Link: webholics.github.com/talk-munichjs-d3/#2.0

D3 Workshop:

Link: bost.ocks.org/mike/d3/workshop

webholics.github.com/talk-munichjs-d3/2.0
bost.ocks.org/mike/d3/workshop

