
3-1Department of Computer Science and Engineering

3 Data Representation

Data Representation

3-2Department of Computer Science and Engineering

3 Data Representation

Overview

This chapter will introduce you to data representations

used for Scientific Visualization.

We will discuss different grid structures and ways to

represent data using these grid structures. In addition,

you will learn more about the different VTK file formats.

Finally, we will briefly discuss interpolation strategies for

deriving data values at locations where no data value is

provided directly by the data representation and discuss

some advanced data representations.

3-3Department of Computer Science and Engineering

3 Data Representation

Continuous Data

Mathematically, continuous data can be modeled as a

function

f:D→C

Where DRd is the function domain and C Rc is the

function codomain, respectively. In a related terminology,

f is called a d-dimensional, or d-variate, c-valued function.

In other words, if we write f(x)=y, where xD and yC,

this actually means f(x1,…,xd)=(y1,…,yc). In visualization

applications, f or its sampled counterpart is sometimes

called a field.

3-4Department of Computer Science and Engineering

3 Data Representation

Continuous Data (continued)

The function values are usually called dataset attributes.

The dimensionality c of the function’s codomain C is also

called the attribute dimension. The attribute dimension c

typically ranges from 1 to 4 (it can be significantly higher

as we will see in Information Visualization).

Discontinuous C0 continuous higher order Ck

function function continuous function

f(x) f(x) f(x)

f’(x) f’(x) f’(x)

3-5Department of Computer Science and Engineering

3 Data Representation

Sampled Data

Most of the time, visualization

data is not provided in a

continuous form. Two

operations relate sampled

data and continuous data:

• sampling: produce sampled

data from continuous form

• reconstruction:

recover/approximate

continuous data

Image courtesy of Alexandru Telea

3-6Department of Computer Science and Engineering

3 Data Representation

Sampled Data (continued)

How can we store scientific data?

The data structure should:

• Cover an area or volume with a set of data points

• Allow easy and fast access to the data

• Re-usable, i.e. not applicable to one example only

• Be flexible

3-7Department of Computer Science and Engineering

3 Data Representation

Sampled Data (continued)

Inspired by finite element analysis, often different kinds of

cells are used where the data points are located at the

vertices of these cells or the entire cell.

3-8Department of Computer Science and Engineering

3 Data Representation

Cell Topology

Cells specify the topology of the covered area. Different

cell types can occur:

– Polygon

– Tetrahedron

– Hexahedron

– Triangle

– Line

– etc.

3-9Department of Computer Science and Engineering

3 Data Representation

Cells

• Cell is defined by an ordered list of points

– Triangle, quadrilateral points specified counter clockwise

– Others as shown

• Data is attached to entire cell or vertices of the cell

0

1

3

2
Tetrahedron

2

0
1

3

4
5

6

7

Hexahedron

3-10Department of Computer Science and Engineering

3 Data Representation

VTK Dataset Types

VTK provides several different grid data structures:

• vtkImageData

• vtkStructuredPoints

• vtkRectilinearGrid

• vtkStructuredGrid

• vtkPolyData

• vtkUnstructuredGrid

3-11Department of Computer Science and Engineering

3 Data Representation

Datasets

Organizing structure plus attributes

• Structured points

• Rectilinear Grid

• Structured Grid

3-12Department of Computer Science and Engineering

3 Data Representation

Unstructured Grid

A collection of vertices, edges, faces and cells whose

connectivity information must be explicitly stored

3-13Department of Computer Science and Engineering

3 Data Representation

Available Cell Types in VTK

3-14Department of Computer Science and Engineering

3 Data Representation

Data Attributes

Data attributes are assigned to points or cells

• Scalars

• Vector

– Magnitude and direction

• Normal

– a vector of magnitude 1

– Used for lighting

• Texture Coordinate

– Mapping data points into a texture space

• Tensor

3-15Department of Computer Science and Engineering

3 Data Representation

VTK File Format

There are two different styles of file formats available in

VTK. The simplest are the legacy, serial formats that are

easy to read and write either by hand or

programmatically. However, these formats are less

flexible than the XML based file formats described later in

this section. The XML formats support random access,

parallel I/O, and portable data compression and are

preferred to the serial VTK file formats whenever

possible.

We will focus on the ASCII legacy file format as it is

easier to parse and read in our own software.

3-16Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

The legacy VTK file formats consist of five basic parts:

• The first part is the file version and identifier. This part

contains the single line: # vtk DataFile Version x.x.

• The second part is the header. The header consists of

a character string terminated by end-of-line character

\n. The header is 256 characters maximum.

• The next part is the file format. The file format

describes the type of file, either ASCII or binary. On this

line the single word ASCII or BINARY must appear.

3-17Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

• The fourth part is the dataset structure. The geometry part

describes the geometry and topology of the dataset. This part

begins with a line containing the keyword DATASET followed by a

keyword describing the type of dataset. Then, depending upon the

type of dataset, other keyword/data combinations define the actual

data.

• The final part describes the dataset attributes. This part begins

with the keywords POINT_DATA or CELL_DATA, followed by an

integer number specifying the number of points or cells,

respectively. (It doesn’t matter whether POINT_DATA or

CELL_DATA comes first.) Other keyword/data combinations then

define the actual dataset attribute values (i.e., scalars, vectors,

tensors, normals, texture coordinates, or field data).

3-18Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Example

vtk DataFile Version 2.0

Really cool data

ASCII | BINARY

DATASET type

...

POINT_DATA n

...

CELL_DATA n

...

Header

Title

Type

Geometry/topology

Dataset attributes

3-19Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

The type of the dataset can be one of the following:

STRUCTURED_POINTS

STRUCTURED_GRID

UNSTRUCTURED_GRID

POLYDATA

RECTILINEAR_GRID

FIELD

The number of data items n of each type must match the

number of points or cells in the dataset. (If type is FIELD,

point and cell data should be omitted.)

3-20Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Before describing the data file formats please note the following.

– dataType is one of the types bit, unsigned_char, char,

unsigned_short, short, unsigned_int, int, unsigned_long,

long, float, or double. These keywords are used to describe the form

of the data, both for reading from file, as well as constructing the

appropriate internal objects. Not all data types are supported for all

classes.

– Indices are 0-offset. Thus the first point is point id 0.

– If both the data attribute and geometry/topology part are present in the

file, then the number of data values defined in the data attribute part must

exactly match the number of points or cells defined in the

geometry/topology part.

– Cell types and indices are of type int.

– The geometry/topology description must occur prior to the data attribute

description.

3-21Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Structured Points

The file format supports 1D, 2D, and 3D structured point

datasets. The dimensions nx, ny, nz must be greater than

or equal to 1. The data spacing sx, sy, sz must be greater

than 0. (Note: in the version 1.0 data file, spacing was

referred to as “aspect ratio”. ASPECT_RATIO can still be

used in version 2.0 data files, but is discouraged.)

DATASET STRUCTURED_POINTS

DIMENSIONS nx ny nz

ORIGIN x y z

SPACING sx sy sz

3-22Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Structured Grid

The file format supports 1D, 2D, and 3D structured grid datasets. The

dimensions nx, ny, nz must be greater than or equal to 1. The point

coordinates are defined by the data in the POINTS section. This

consists of x-y-z data values for each point.

DATASET STRUCTURED_GRID

DIMENSIONS nx ny nz

POINTS n dataType

p0x p0y p0z

p1x p1y p1z

...

p(n-1)x p(n-1)y p(n-1)z

3-23Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
Rectilinear Grid

A rectilinear grid defines a dataset with regular topology, and semi-
regular geometry aligned along the x-y-z coordinate axes. The
geometry is defined by three lists of monotonically increasing
coordinate values, one list for each of the x-y-z coordinate axes. The
topology is defined by specifying the grid dimensions, which must be
greater than or equal to 1.

DATASET RECTILINEAR_GRID

DIMENSIONS nx ny nz

X_COORDINATES nx dataType

x0 x1 ... x(nx-1)

Y_COORDINATES ny dataType

y0 y1 ... y(ny-1)

Z_COORDINATES nz dataType

z0 z1 ... z(nz-1)

3-24Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
Polygonal Data

The polygonal dataset consists of arbitrary combinations of surface graphics
primitives vertices (and polyvertices), lines (and polylines), polygons (of
various types), and triangle strips. Polygonal data is defined by the POINTS
VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS sections. The
POINTS definition is the same as we saw for structured grid datasets. The
VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS keywords define
the polygonal dataset topology. Each of these keywords requires two
parameters: the number of cells n and the size of the cell list size. The cell
list size is the total number of integer values required to represent the list
(i.e., sum of numPoints and connectivity indices over each cell). None of the
keywords VERTICES, LINES, POLYGONS, or TRIANGLE_STRIPS is
required.

DATASET POLYDATA

POINTS n dataType

p0x p0y p0z

...

p(n-1)x p(n-1)y p(n-1)z

3-25Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

VERTICES n size

numPoints0, i0, j0, k0, ...

numPoints1, i1, j1, k1, ...

...

numPointsn-1, in-1, jn-1, kn-1, ...

LINES n size

numPoints0, i0, j0, k0, ...

numPoints1, i1, j1, k1, ...

...

numPointsn-1, in-1, jn-1, kn-1, ...

3-26Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

POLYGONS n size

numPoints0, i0, j0, k0, ...

numPoints1, i1, j1, k1, ...

...

numPointsn-1, in-1, jn-1, kn-1, ...

TRIANGLE_STRIPS n size

numPoints0, i0, j0, k0, ...

numPoints1, i1, j1, k1, ...

...

numPointsn-1, in-1, jn-1, kn-1, ...

3-27Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
Unstructured Grid

The unstructured grid dataset consists of arbitrary combinations of any
possible cell type. Unstructured grids are defined by points, cells, and cell
types. The CELLS keyword requires two parameters: the number of cells n
and the size of the cell list size. The cell list size is the total number of integer
values required to represent the list (i.e., sum of numPoints and connectivity
indices over each cell). The CELL_TYPES keyword requires a single
parameter: the number of cells n. This value should match the value
specified by the CELLS keyword. The cell types data is a single integer value
per cell that specified cell type (see vtkCell.h or Figure 2).

DATASET UNSTRUCTURED_GRID

POINTS n dataType

p0x p0y p0z

p1x p1y p1z

...

p(n-1)x p(n-1)y p(n-1)z

3-28Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
CELLS n size

numPoints0, i0, j0, k0, l0, ...

numPoints1, i1, j1, k1, l1, ...

numPoints2, i2, j2, k2, l2, ...

...

numPointsn-1, in-1, jn-1, kn-1, ln-1, ...

CELL_TYPES n

type0

type1

type2

...

typen-1

3-29Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Field

Field data is a general format without topological and

geometric structure, and without a particular

dimensionality. Typically field data is associated with the

points or cells of a dataset. However, if the FIELD type is

specified as the dataset type, then a general VTK data

object is defined. Use the format described in the next

slides to define a field.

3-30Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Dataset Attribute Format

The Visualization Toolkit supports the following dataset attributes:
scalars (one to four components), vectors, normals, texture
coordinates (1D, 2D, and 3D), tensors, and field data. In addition, a
lookup table using the RGBA color specification, associated with the
scalar data, can be defined as well. Dataset attributes are supported
for both points and cells.

Each type of attribute data has a dataName associated with it. This is
a character string (without embedded whitespace) used to identify a
particular data. The dataName is used by the VTK readers to extract
data. As a result, more than one attribute data of the same type can
be included in a file. For example, two different scalar fields defined
on the dataset points, pressure and temperature, can be contained in
the same file. (If the appropriate dataName is not specified in the
VTK reader, then the first data of that type is extracted from the file.)

3-31Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Scalars

The variable numComp is optional—by default the

number of components is equal to one. (The parameter

numComp must range between (1,4) inclusive; in

versions of VTK prior to vtk2.3 this parameter was not

supported.)

SCALARS dataName dataType numComp

s0

s1

...

sn-1

3-32Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
Vectors

VECTORS dataName dataType

v0x v0y v0z

v1x v1y v1z

...

v(n-1)x v(n-1)y v(n-1)z

Normals

Normals are assumed normalized.

NORMALS dataName dataType

n0x n0y n0z

n1x n1y n1z

...

n(n-1)x n(n-1)y n(n-1)z

3-33Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)

Texture Coordinates

Texture coordinates of 1, 2, and 3 dimensions are

supported.

TEXTURE_COORDINATES dataName dim dataType

t00 t01 ... t0(dim-1)

t10 t11 ... t1(dim-1)

...

t(n-1)0 t(n-1)1 ... t(n-1)(dim-1)

3-34Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
Tensors

Currently only 3x3 real-valued, symmetric tensors are supported.

TENSORS dataName dataType

t000 t001 t002

t010 t011 t012

t020 t021 t022

t100 t101 t102

t110 t111 t112

t120 t121 t122

...

tn-1
00 tn-1

01 tn-1
02

tn-1
10 tn-1

11 tn-1
12

tn-1
20 tn-1

21 tn-1
22

3-35Department of Computer Science and Engineering

3 Data Representation

VTK File Format (continued)
Example: dipol.vtk

vtk DataFile Version 2.0

vtk output

ASCII

DATASET STRUCTURED_GRID

DIMENSIONS 10 10 10

POINTS 1000 float

-1 -1 -1 -1 -1 -0.8 -1 -1 -0.6 -1 -1 -0.4 -1 -1 -0.2 …

POINT_DATA 1000

VECTORS vectors float

-1 1 0 -1 1 0

-1 1 0 -1 1 0

…

3-36Department of Computer Science and Engineering

3 Data Representation

Visualizing Images

• Images are displayed as textures mapped on polygons

• In OpenGL all textures must have dimensions that are

powers of two

• Images can be interpolated before display, hence some

(small) loss of sharpness takes place (only visible in

small images)

– E.g. an 100x50 image can be resampled to 128x64

before display

• Similar issues for color display, i.e. scalars vs. lookup

tables as in surfaces

• We will examine image display later in this course

3-37Department of Computer Science and Engineering

3 Data Representation

Data in-between

Let us assume the data values are given at the vertices of

a triangular or rectangular grid (the two most common

cases).

Since the data values are only known at the vertices the

data set has “holes” that need to be filled in. Interpolation

is a technique that does exactly that: determine a

continuous function based on values that are only

discretely defined.

3-38Department of Computer Science and Engineering

3 Data Representation

Interpolation

Several interpolation methods are available that can be

applied here. We will cover the linear case; however,

other interpolation techniques, such as Hermite

interpolation, can be used as well. See the course

Computer Graphics II for more details on interpolation.

3-39Department of Computer Science and Engineering

3 Data Representation

Linear Interpolation

In 1-D, linear interpolation is equivalent to a weighted

average of two points connected by a straight line:

The value for the point in question can then be computed

as c = (1 – t) ·a + t · b.

a c b
t 1 - t

3-40Department of Computer Science and Engineering

3 Data Representation

Bi-linear Interpolation

Bi-linear interpolation can be used for rectangular cells.

The interpolation process is simply applied several times.

First, an interpolated value along one edge is computed;

another one is determined at the parallel edge. Then, the

linearly interpolated value between the previously

determined ones is computed resulting in the final value g

at (u,v):

e = (1 – u) · a + u · d

f = (1 – u) · b + u · c

g = (1 – v) · f + v · e

a

c

d

b

g

e

f

u

v

3-41Department of Computer Science and Engineering

3 Data Representation

Tri-linear Interpolation

Tri-linear interpolation is suitable for cuboid-shaped cells.

The interpolation process is applied to two parallel faces

just like in the 2-D case for interpolation as seen before.

After that, the resulting data value is derived by linearly

interpolating between the two values we just computed:

a c b
t 1 - t

3-42Department of Computer Science and Engineering

3 Data Representation

Interpolation in Triangles

When using triangles as the basic grid element, linear

interpolation can be used directly without applying several

linear interpolations as a sequence. Just like in the 1-D

linear interpolation, weights are determined so that the

resulting value can be computed as the weighted average

between the data values at the vertices of the triangle.

v = t1 · v1 + t2 · v2 + t3 · v3

In order to determine these weights barycentric

coordinates can be used.

3-43Department of Computer Science and Engineering

3 Data Representation

Barycentric Coordinates

Barycentric coordinates, discovered by Möbius in 1827,
define a coordinate system for points in reference to three
given points, for example the vertices of a triangle.

To find the barycentric coordinates for an arbitrary point
P, find t2 and t3 from the point Q at the intersection of the
line A1P with the side A2A3, and then determine t1 as the
mass at A1 that will balance a mass t2 + t3 at Q, thus
making P the centroid (left figure). Furthermore, the areas
of the triangles ΔA1A2P, ΔA1A3P, and ΔA2A3P are
proportional to the barycentric coordinates t1, t2, and t3 of
P.

In case of t1 + t2 + t3 = 1 we speak of homogeneous
barycentric coordinates (this is what we will use).

3-44Department of Computer Science and Engineering

3 Data Representation

Barycentric Coordinates (continued)

3-45Department of Computer Science and Engineering

3 Data Representation

Barycentric Coordinates (continued)

Computing homogeneous barycentric coordinates

In order to compute homogeneous barycentric

coordinates, a system of linear equation needs to be

solved:

t1 + t2 + t3 = 1

A1 · t1 + A2 · t2 + A3 · t3 = P

This looks similar to what we are looking for, i.e. we can

use as weights t1, t2, and t3 to form the weighted average

and compute the interpolated value:

v = t1 · v1 + t2 · v2 + t3 · v3

3-46Department of Computer Science and Engineering

3 Data Representation

Cramer’s Rule

For solving the system of linear equation Cramer’s rule usually

results in better performance compared to Gaussian solvers.

Systems of linear equations can be solved using Cramer’s rule and

computing determinants:

nk
D

D
x

aadaa

aadaa

D

aaa

aaa

D

d

d

x

x

aaa

aaa

k

k

nnknnknn

nkk

k

nnnn

n

nnnnnn

n









































































1

::

)1()1(1

1)1(11)1(111

21

11211

11

21

11211

 for

:computed be can equations linear of system the of solution the Then,

 ,





















3-47Department of Computer Science and Engineering

3 Data Representation

Interpolation in Tetrahedra

The same scheme that was used for interpolation in

triangles can be applied to tetrahedra. The only difference

is that the system of linear equations consists of more

equations due to the higher dimensionality:

t1 + t2 + t3 + t4 = 1

A1 · t1 + A2 · t2 + A3 · t3 + A4 · t4 = P

v = t1 · v1 + t2 · v2 + t3 · v3 + t4 · v4

3-48Department of Computer Science and Engineering

3 Data Representation

Modeling algorithms

Probing/Resampling

Probing obtains data set attributes by sampling one data

set (the input) with a set of points (the probe). The result

of probing is a new data set (the output) with the

topological and geometric structure of the probe data set,

and point attributes interpolated from the input data set.

3-49Department of Computer Science and Engineering

3 Data Representation

Modeling algorithms

For every point in the probe data set, the location in the

input data set (i.e. cell, sub-cell, and parametric

coordinates) and interpolation weights are determined.

Then the data values from the cell are interpolated to the

probe point.

3-50Department of Computer Science and Engineering

3 Data Representation

Modeling algorithms

Probing must be used carefully or errors may be

introduced. Under-sampling data in a region can miss

important high-frequency information or localized data

variations. Over-sampling data, while not necessarily

create errors, can however give false confidence in the

accuracy of the data. Thus, the sampling frequency

should have a similar density as the input data set, or if

higher density, the visualization should be carefully

annotated as to the original data frequency.

3-51Department of Computer Science and Engineering

3 Data Representation

Modeling algorithms

One important application of probing converts irregular or

unstructured data to structured form using a volume of

appropriate resolution as a probe to sample the

unstructured data. This is useful if we use volume

rendering or other volume visualization techniques to

view our data.

3-52Department of Computer Science and Engineering

3 Data Representation

Searching

Finding the cell containing a point p

To find the cell containing p, we can use the following

naïve search procedure. Traverse all cells in the dataset,

finding the one (if any) that contains p. To determine

whether a cell contains a point, the cell interpolation

functions are evaluated for the parametric coordinates

(r,s,t). If these coordinates lie within the cell, then p lies in

the cell. The basic assumption here is that cells do not

overlap, so that at most a single cell contains the given

point p.

3-53Department of Computer Science and Engineering

3 Data Representation

Searching

These naïve procedures are unacceptable for all but the
smallest data sets, since they are of order O(n), where n
is the number of cells or points. To improve the
performance of searching, we need to introduce
supplemental data structures to support spatial
searching. Such structures are well-known (see
Computer Graphics II) and include octress or kd-trees.

The basic idea behind these spatial search structures is
that the search space is subdivided into smaller parts, or
buckets. Each bucket contains a list of the points or cells
that lie within it. Buckets are organized in structured
fashion so that constant or logarithmic time access to any
bucket is possible.

3-54Department of Computer Science and Engineering

3 Data Representation

Searching (continued)

Cell / line intersection

An important geometric operation is intersection of a line

with a cell. This operation can be used to interactively

select a cell from the rendering window, to perform ray-

casting for rendering, or to geometrically query data.

Often, curves are approximated by line segments (i.e. a

linear spline) so that intersection with a line can be used

for computing the intersection with a curve.

In VTK, every cell must be capable of intersecting itself

against a line. The following approaches are used for

each cell type.

3-55Department of Computer Science and Engineering

3 Data Representation

Searching (continued)

3-56Department of Computer Science and Engineering

3 Data Representation

Searching (continued)

3-57Department of Computer Science and Engineering

3 Data Representation

Searching (continued)

3-58Department of Computer Science and Engineering

3 Data Representation

Searching (continued)

Special search techniques for structured points

Searching in structured point data sets is particularly easy

due to the equidistant arrangements of grid points. In

order to find the cell containing the point p = (x, y, z) we

can exploit this:

i = int ((x-x0)/(x1-x0))

j = int ((y-y0)/(y1-y0))

k = int ((z-z0)/(z1-y0))

Thus, we get the cell id by simply rounding to the nearest

integer value.

3-59Department of Computer Science and Engineering

3 Data Representation

Searching (continued)

Topological operations

Many visualization algorithms work more efficiently if
more information about the grid structure is available. For
example, a streamline integrator that traverses one cell
after another. Once a cell is left by the streamline the
integration process continues at the next, neighboring
cell. One way would be to use the search data structure
to identify this next cell. However, it is much more
efficient if the cells know their neighbors directly.

This connectivity information within the cells is called the
topology of the grid. Hence, operations that provide this
neighborhood information are called topological
operations.

