
3-1Department of Computer Science and Engineering

3 The Visualization Pipeline

The Visualization Pipeline

3-2Department of Computer Science and Engineering

3 The Visualization Pipeline

Motivation

The role of visualization is to create images that convey

various types of insight into a given process. The

visualization process consists of the sequence of steps,

or operations, that manipulate the data produced by the

process under study and ultimately deliver the desired

images. On both the conceptual and the design level, this

divide-and-conquer strategy in designing visualizations

allows one to manage the complexity of the whole

process. On the implementational level, this strategy

allows us to construct visualizations by assembling

reusable and modular data processing operations, much

as in the field of software engineering.

3-3Department of Computer Science and Engineering

3 The Visualization Pipeline

Motivation

Given this modular decomposition, the visualization

process can be seen as a pipeline consisting of several

stages, each modeled by a specific data transformation

operation. The input data flows through this pipeline,

being transformed in various ways, until it generates the

output images. Given this model, the sequence if data

transformations that take place in the visualization

process is often called the visualization pipeline.

3-4Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline

raw data import filter

map render final image

data acquisition

imported dataset

data enrichment,

transformation,

resampling, …

enriched dataset

map abstract data to

visual representations

2D/3D shape

draw visual

representations

Images courtesy of Alexandru Telea

3-5Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Importing Data

First, we have to import the data. This implies finding a

representation of the original information we want to

investigate in terms of a data set, be it continuous or

discrete. Practically, importing data means choosing a

specific dataset implementation and converting the

original information to the representation implied by the

chosen dataset. Ideally, this is a one-to-one mapping or

data copying.

3-6Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Importing Data (continued)

It is important to realize that the choices made during

data importing determine the quality of the resulting

images, and thus the effectiveness of the visualization.

For example, changing the underlying grid structure from

quads to triangles changes the interpolation method

which for some visualization algorithm changes the

resulting image. For this reason, the data importing step

should try to preserve as much of the available input

information as possible, and make as few assumptions as

possible about what is important and what is not.

3-7Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Data Filtering and Enrichment

We have to decide which are the data’s important

aspects, or features, we are interested in. In most cases

the imported data is not one-to-one with the aspects we

want to get insight into. We must distill our raw data sets

into more appropriate representations, also called

enriched datasets, which encode our features of

interest. This process is called data filtering or data

enriching. On the one hand, data is filtered to extract

relevant information. On the other hand, data is enriched

with higher-level information that supports a given task.

3-8Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Data Filtering and Enrichment (continued)

For example, medical specialists are usually interested in

seeing only specific anatomical structures related to a

certain condition, which are a subset of the entire dataset

they obtain from scanning devices, such as CT or MRI

scanners. (Note that volumetric representations of such

scans already are in a filtered form based on the X-ray

data.)

3-9Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Mapping Data

The filtering operation produces an enriched dataset that

should directly represent the features of interest for a

specific exploration task. Once we have this

representation, we must map it to the visual domain. We

do this by associating elements of the visual domain with

the data elements present in the enriched dataset. This

step of the visualization process is called mapping. The

visual domain is a multidimensional space whose axes,

or dimensions are those elements we perceive as quasi-

independent visual attributes, such as shape, position,

size, color, texture, illumination, and motion.

3-10Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Mapping Data (continued)

Typically, a visual feature is a colored, shaded, textured,

or animated 2D or 3D shape. Data mapping is probably

the operation in the visualization pipeline that is most

characteristic for the visualization process as it influences

the resulting image more than any other step. There are

many different mapping techniques the visualization can

be based on, which we will illustrate in the following

chapters by introducing various visualization algorithms.

3-11Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)
Rendering Data

The rendering operation is the final step of the
visualization process. Rendering takes the 3D scene
created by the mapping operation, together with several
user-specified viewing parameters such as the viewpoint
and lighting, and renders it to produce the desired
images. In typical visualization applications, viewing
parameters are considered part of the rendering
operation. This allows users to interactively navigate and
examine the rendered result of a given visualization.
Indeed if the viewpoint changes but the 3D scene
produced by the mapping stays the same, all we have to
do is render the scene anew with the new viewing
parameters, which is a relatively cheap operation.

3-12Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Implementation Perspective

Since the individual steps of the visualization pipeline can

be encapsulated in individual modules, many

visualization software packages, such as VTK, provide

filters that can take data as input and convert it in some

way. For example, VTK implements generic setInput

and getOutput methods so that the filters can be

combined in almost any way.

Each filter implements a method called Execute. This

method does all the computations. It can be invoked

manually or automatically by the following filter whenever

that filter needs its input.

3-13Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Implementation Perspective (continued)

All filters combined than produce an interactive

visualization of the input data:

3-14Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Implementation Perspective (continued)

Multiple visualization applications based on VTK are

available, such as VolView or ParaView. Some

approaches even allow a user to interactively set up the

visualization pipeline to create the resulting visualization,

for example VISSION by Telea and van Wijk. A similar

approach is followed by AVS and Aviso/Amira, even

though not based on VTK, where the user can combine

different building blocks to form the application network.

3-15Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Implementation Perspective (continued)

AVS:

3-16Department of Computer Science and Engineering

3 The Visualization Pipeline

Visualization Pipeline (continued)

Implementation Perspective (continued)

Other software packages implement the different

modules as algorithms that can manipulate the data or

generate new data or generate a visual representation of

the data. For example, FAnToM developed by

researchers at the Universities of Kaiserslautern and

Leipzig follows this approach. Initially developed for

vector data, it now supports various different types of

data, such as scalar, vector, and tensor data.

3-17Department of Computer Science and Engineering

3 The Visualization Pipeline

Implementation Perspective: VTK

• Object oriented programming

• VTK pipeline

• Example

3-18Department of Computer Science and Engineering

3 The Visualization Pipeline

Object Oriented Programming

VTK uses object oriented programming

• Impossible to Cover in 10 minutes … but

• Traditional programming (i.e. C, Fortran, Matlab) is

procedural:

If we have matrix a

to print it we do print(a), disp(a) etc.,

• Data/Procedures are separate, data is dumb

3-19Department of Computer Science and Engineering

3 The Visualization Pipeline

Object Oriented Programming (continued)

• In OOP data is “intelligent” i.e. data structures

encapsulate procedures i.e.

• If we have matrix a

to print it we do a.print()

• Procedures are embedded within the data structure

definition (called methods)

• Lots of good reasons for this …

3-20Department of Computer Science and Engineering

3 The Visualization Pipeline

Object Oriented Programming (continued)

Data structures are classes, e.g. in C++

class Matrix3x3 {

float a[3][3];

public:

void Print();

void Invert();

void Load(char* filename);

etc.

}

To use:

Matrix3x3 a;

a.Load(“a.matr”);

a.Print();

3-21Department of Computer Science and Engineering

3 The Visualization Pipeline

Object Oriented Programming - Inheritance

Consider now need to change file format for matrix:

INHERIT new class myMatrix3x3 from Matrix3x3 and
override Load()

class myMatrix3x3 : public Matrix3x3 {

public:

void Load(char* filename);

}

To use:

myMatrix3x3 a;

a.Load(“a.matr”);

a.Print(); This calls the Print function from Matrix3x3 class

3-22Department of Computer Science and Engineering

3 The Visualization Pipeline

Pipeline Concept

VTK follows a pipeline concept where (almost) every

class represents a filter with input and output. These

filters concatenated then form a pipeline that renders

the resulting image.

Each filter implements a method called Execute. This

method does all the computations. It can be invoked

manually or automatically by the following filter

whenever that filter needs its input.

For example, the vtkRendererWindow, that actually

displays the results invokes the Execute method

whenever it does not have any input yet or the input is

no longer current.

3-23Department of Computer Science and Engineering

3 The Visualization Pipeline

VTK Filter Objects

Each element in the pipeline is considered a filter with

input and output. As mentioned previously, the filter is

executed using the method Execute.

In addition, a method Update exists which checks if the

filter’s internal data is still current. If it is not, for

example because the filter’s input has changed, the

Execute method is called to bring the filter up-to-date.

3-24Department of Computer Science and Engineering

3 The Visualization Pipeline

VTK Filter Objects (continued)

VTK uses reference counting for its filter objects. This

means that the number of references (pointers) to a

filter object is counted. Hence, a filter object should not

be deleted from memory by simply invoke the C++

delete command. Instead, use the method Delete

that is implemented by the filter object. This then

decrements the reference counter. Once the reference

counter becomes zero the object is removed from

memory (otherwise there would still be a reference to

the filter object; using it would cause a segmentation

fault if the filter object would have been deleted).

3-25Department of Computer Science and Engineering

3 The Visualization Pipeline

Connecting Filter Objects

In order to set up the pipeline, i.e. a concatenation of a
series of filters, the filters need to be connected in
some way. Therefore, every filter has methods to
retrieve the output and set the input:

SetInput(): set the input of a filter (the input does not
need to be available/computed yet)

GetOutput(): get the output from a filter (the output
does not need to be available/computed
yet)

To connect to filters filterA and filterB we simply
need to issue:

filterA.SetInput (filterB.GetOutput ())

3-26Department of Computer Science and Engineering

3 The Visualization Pipeline

Types of In- and Output

VTK supports multiple input as well as multiple output. In

the same way, a filter object may require more than

one input depending on its purpose. Therefore, VTK

provides the methods SetInputs and GetOutputs,

so that multiple in- and output can be handles by the

filter object.

In addition, the output of a filter object can be used more

than once. The output can be used as input for as

many subsequent filter objects as necessary for the

application.

3-27Department of Computer Science and Engineering

3 The Visualization Pipeline

Types of Filter Objects

Different types of filter objects are available in VTK:

• Data objects

• Process objects

Each type of object serves a different purpose.

3-28Department of Computer Science and Engineering

3 The Visualization Pipeline

Data Objects

Data objects, represented by the abstract class

vtkDataSetSource, provides information. This

information can be either generated by the object or

retrieved from somewhere. For example, a data object

can load a given data set from the hard drive and

provide it to the subsequent filter object.

Several different data objects are provided by VTK

already for generating simple objects or reading files in

various file formats.

3-29Department of Computer Science and Engineering

3 The Visualization Pipeline

Process Objects

A process object, represented by the abstract class

vtkProcessObject, modifies its input data in some

way.

Lots of process objects are available in VTK for

transforming data in various ways. For example, the

vtkTransformFilter applies a transformation

matrix to the input. This can be used for scaling or

moving geometric objects that were previously

generated by a data object.

3-30Department of Computer Science and Engineering

3 The Visualization Pipeline

Implementing Your Own Filter Object

VTK allows you to implement your own filter object that

either generates data (data object) or modifies data

(process object). Such a filter can then be added to the

pipeline just like any other filter.

When implementing the filter, the main algorithm is to be

implemented in the Execute method. In addition, you

have to make sure that the methods SetInput and

GetOutput accept and provide the correct data.

3-31Department of Computer Science and Engineering

3 The Visualization Pipeline

Execution of the Pipeline

VTK uses implicit control of the visualization pipeline (or

network if more complex) execution. Execution occurs

when output is requested from an object. Key methods

here are the two methods Update and Execute. The

Update method is generally initiated when the user

requests the system to render a scene. As part of the

process the actors send a Render() method to their

mappers. At this point network execution begins. The

mapper invokes the Update() method in its input(s).

These in turn recursively invoke the Update() method

on their input(s). This process continues until a source

object (data object) is encountered.

3-32Department of Computer Science and Engineering

3 The Visualization Pipeline

Execution of the Pipeline

At this point the source object compares its modified

tome to the last time executed. If it has been modified

more recently than executed, it re-executes via the

Execute() method. The recursion then unwinds with

each filter compring its input time to its execution time.

Execute() is called where appropriate. The process

terminates when control is returned to the mapper.

3-33Department of Computer Science and Engineering

3 The Visualization Pipeline

Loops

Filter objects can be concatenated in such a way that

loops occur in the pipeline. VTK supports such a

configuration; however, the loop is only executed once

an update request is issued.

3-34Department of Computer Science and Engineering

3 The Visualization Pipeline

VTK Pipeline

Sources Filters Mappers

File Output

Props

vtkDataSet vtkDataSet

3-35Department of Computer Science and Engineering

3 The Visualization Pipeline

VTK Pipeline (continued)

Renderer
Render

Window

vtkCamera,

vtkLight

Props

(e.g. Actor/Volume)

Props

Props

vtkRenderWindowInteractor

vtkProperty

3-36Department of Computer Science and Engineering

3 The Visualization Pipeline

The Graphics Model
In order to generate an image using VTK several different elements

are involved:

1. vtkRenderWindow: manages a window on the display device; one or
more renderers draw into an instance of vtkRenderWindow.

2. vtkRenderer: coordinates the rendering provess involving lights,
cameras, and actors.

3. vtkCamera: defines the view position, focal point, and other viewing
properties of the scene.

4. vtkLight: a source of light to illuminate the scene

5. vtkActor: represents an object rendered in the scene, both its
properties and position in the world coordinate system.

6. vtkProperty: defines the appearance properties of an actor including
color, transparency, and lighting properties such as specular and
diffuse. Also representational properties like wireframe and solid
surface.

7. vtkMapper: the geometric representation for an actor. More than
one actor may refer to the same mapper.

3-37Department of Computer Science and Engineering

3 The Visualization Pipeline

The Graphics Model (continued)

3-38Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: cone

Source code:
vtkConeSource *cone = vtkConeSource::New();

cone->SetHeight(3.0);

cone->SetRadius(1.0);

cone->SetResolution(10);

vtkPolyDataMapper *coneMapper =
vtkPolyDataMapper::New();

coneMapper->SetInput(cone->GetOutput());

vtkActor *coneActor = vtkActor::New();

coneActor->SetMapper(coneMapper);

vtkRenderer *ren1= vtkRenderer::New();

ren1->AddActor(coneActor);

ren1->SetBackground(0.1, 0.2, 0.4);

3-39Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: cone (continued)

Source code (continued):

vtkRenderWindow *renWin = vtkRenderWindow::New();

renWin->AddRenderer(ren1);

renWin->SetSize(300, 300);

vtkRenderWindowInteractor *iren =

vtkRenderWindowInteractor::New();

iren->SetRenderWindow(renWin);

vtkInteractorStyleTrackballCamera *style =

vtkInteractorStyleTrackballCamera::New();

iren->SetInteractorStyle(style);

iren->Initialize();

iren->Start();

3-40Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: cone (continued)

Source code (continued):

cone->Delete();

coneMapper->Delete();

coneActor->Delete();

ren1->Delete();

renWin->Delete();

iren->Delete();

style->Delete();

return 0;

3-41Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: cone (continued)

The VTK pipeline:

vtkConeSource vtkPolyDataMapper

First, we create an instance of

vtkConeSource and set some of

its properties. The instance of

vtkConeSource "cone" is part of a

visualization pipeline (it is a

source process object); it

produces data (output type is

vtkPolyData) which other filters

may process.

In this example we terminate the pipeline

with a mapper process object.

(Intermediate filters such as

vtkShrinkPolyData could be inserted in

between the source and the mapper.) We

create an instance of vtkPolyDataMapper to

map the polygonal data into graphics

primitives. We connect the output of the

cone souece to the input of this mapper.

3-42Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: cone (continued)

vtkRenderer vtkRenderWindowvtkActor

Create an actor to represent

the cone. The actor

orchestrates rendering of the

mapper's graphics primitives.

An actor also refers to

properties via a vtkProperty

instance, and includes an

internal transformation matrix.

We set this actor's mapper to

be coneMapper which we

created above.

Create the Renderer

and assign actors to it.

A renderer is like a

viewport. It is part or all

of a window on the

screen and it is

responsible for drawing

the actors it has. We

also set the background

color here.

Finally we create

the render window

which will show up

on the screen. We

put our renderer

into the render

window using

AddRenderer. We

also set the size to

be 300 pixels by

300.

3-43Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: cone (continued)

Resulting rendering

3-44Department of Computer Science and Engineering

3 The Visualization Pipeline

Example: Mace

