
8-1Department of Computer Science and Engineering

8 Image Processing

Image Processing

8-2Department of Computer Science and Engineering

8 Image Processing

Intel® OPEN SOURCE COMPUTER

VISION LIBRARY

Based in part on slides by Victor Eruhimov, Itseez

8-3Department of Computer Science and Engineering

8 Image Processing

Goals

Develop a universal toolbox for

research and development in the field

of Computer Vision

8-4Department of Computer Science and Engineering

8 Image Processing

We will talk about:

Algorithmic content

Technical content

Examples of usage

Trainings

8-5Department of Computer Science and Engineering

8 Image Processing

OpenCV algorithms

8-6Department of Computer Science and Engineering

8 Image Processing

OpenCV Functionality

(more than 350 algorithms)

Basic structures and operations

Image Analysis

Structural Analysis

Object Recognition

Motion Analysis and Object Tracking

3D Reconstruction

8-7Department of Computer Science and Engineering

8 Image Processing

Basic Structures and Operations

File IO and capturing

Multidimensional array operations

Dynamic structures operations

Drawing primitives

Utility functions

8-8Department of Computer Science and Engineering

8 Image Processing

Basic Structures and Operations

Multidimensional array operations include operations on

images, matrices and histograms. In the future, when I

talk about image operations, keep in mind that all

operations are applicable to matrices and histograms as

well. Dynamic structures operations concern all vector

data storages. They will be discussed in detail in the

Technical Section. Drawing primitives allows not only to

draw primitives but to use the algorithms for pixel access.

Utility functions, in particular, contain fast

implementations of useful math functions

8-9Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
Simple OpenCV example:

#include <stdio.h>

#include <opencv2/opencv.hpp>

using namespace cv;

int main(int argc, char** argv) {

if (argc != 2) { printf("usage: DisplayImage.out

<Image_Path>\n"); return -1; }

Mat image;

image = imread(argv[1], 1);

if (!image.data) { printf("No image data \n"); return -1; }

namedWindow("Display Image", WINDOW_AUTOSIZE);

imshow("Display Image", image);

waitKey(0);

}

http://docs.opencv.org/3.1.0/d2/d75/namespacecv.html
http://docs.opencv.org/3.1.0/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56
http://docs.opencv.org/3.1.0/d3/d63/classcv_1_1Mat.html#a4d33bed1c850265370d2af0ff02e1564
http://docs.opencv.org/3.1.0/d7/dfc/group__highgui.html#ga5afdf8410934fd099df85c75b2e0888b
http://docs.opencv.org/3.1.0/d7/dfc/group__highgui.html#ggabf7d2c5625bc59ac130287f925557ac3acf621ace7a54954cbac01df27e47228f
http://docs.opencv.org/3.1.0/d7/dfc/group__highgui.html#ga453d42fe4cb60e5723281a89973ee563
http://docs.opencv.org/3.1.0/d7/dfc/group__highgui.html#ga5628525ad33f52eab17feebcfba38bd7

8-10Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing

CMake supports OpenCV as well so you can use a

configuration file similar to using VTK:

cmake_minimum_required(VERSION 2.8)

project(DisplayImage)

find_package(OpenCV REQUIRED)

include_directories(

${OpenCV_INCLUDE_DIRS})

add_executable(DisplayImage

DisplayImage.cpp)

target_link_libraries(DisplayImage

${OpenCV_LIBS})

8-11Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
OpenCV supports a long list of file formats already that it is

capable of loading directly. These include (via imdecode):

• Windows bitmaps - *.bmp, *.dib (always supported)

• JPEG files - *.jpeg, *.jpg, *.jpe (see the Notes section)

• JPEG 2000 files - *.jp2 (see the Notes section)

• Portable Network Graphics - *.png (see the Notes section)

• Portable image format - *.pbm, *.pgm, *.ppm (always

supported)

• Sun rasters - *.sr, *.ras (always supported)

• TIFF files - *.tiff, *.tif (see the Notes section)

8-12Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
As you saw from the example, images are typically

represented as matrices, i.e. a 2x2 configuration of pixels, in

OpenCV.

As data structure, OpenCV provides cv::Mat to store those

images

8-13Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing

OpenCV also supports various video codecs. There is

native support for:

Also, OpenCV can be compiled with support for ffmpg,

which supports various different formats, including:

H.264, MJPG, MPEG, Quicktime, …

AVI 'DIB ' RGB(A) Uncompressed

RGB, 24 or 32 bit

AVI 'I420' RAW I420 Uncompressed

YUV, 4:2:0 chroma

subsampled

AVI 'IYUV' RAW I420 identical to I420

8-14Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
OpenCV can also be used to capture images from recording

devices, such as cameras, directly.

Both reading and capturing images are encapsulated in the

VideoCapture class of OpenCV.

To open a file or get data from a capture devices use

bool VideoCapture::open(const string&

filename)

bool VideoCapture::open(int device)

You can release the device/close the file via

void VideoCapture::release()

8-15Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
When recording from a capture device, you can grab and then

retrieve the image:

bool VideoCapture::grab()

bool VideoCapture::retrieve(Mat& image,

int channel=0)

For reading the next image from an already opened file simply

use the read method:

bool VideoCapture::read(Mat& image)

Alternatively, you can use the usual C++ stream operators.

8-16Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
After that, you can simply apply any image processing filters

that are needed and then show the image via

void imshow(const string& winname,

InputArray mat)

Alternatively, you can convert the image and pass it onto VTK

using the code fragment on the next slides.

8-17Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
void fromMat2Vtk(cv::Mat src,

vtkImageData* dest) {

vtkImageImport *importer =

vtkImageImport::New();

Mat frame;

cvtColor(src, frame, COLOR_BGR2RGB);

if (dest) { importer->SetOutput(dest); }

importer->SetDataSpacing(1, 1, 1);

importer->SetDataOrigin(0, 0, 0);

importer->SetWholeExtent(0, frame.size().width-

1, 0, frame.size().height-1, 0, 0);

8-18Department of Computer Science and Engineering

8 Image Processing

File IO and Capturing
importer->SetDataExtentToWholeExtent();

importer->SetDataScalarTypeToUnsignedChar();

importer->SetNumberOfScalarComponents(

frame.channels());

importer->SetImportVoidPointer(frame.data);

importer->Update();

}

8-19Department of Computer Science and Engineering

8 Image Processing

Image Analysis

Thresholds

Statistics

Pyramids

Morphology

Distance transform

Flood fill

Feature detection

Contours retrieving

8-20Department of Computer Science and Engineering

8 Image Processing

Image Thresholding

Fixed threshold;

Adaptive threshold;

8-21Department of Computer Science and Engineering

8 Image Processing

Adaptive Thesholding
Fixed thresholding may not work well where image has

different lighting conditions in different areas. In that case,

we go for adaptive thresholding. In this, the algorithm

calculates the threshold for a small region of the image.

So we get different thresholds for different regions of the

same image and it gives us better results for images with

varying illumination:

cv2.ADAPTIVE_THRESH_MEAN_C

threshold value is the mean of neighborhood area.

cv2.ADAPTIVE_THRESH_GAUSSIAN_C

threshold value is the weighted sum of neighborhood

values where weights are a Gaussian window.

8-22Department of Computer Science and Engineering

8 Image Processing

Adaptive Thesholding
Example:

8-23Department of Computer Science and Engineering

8 Image Processing

Image Thresholding Examples

Source picture Fixed threshold Adaptive threshold

8-24Department of Computer Science and Engineering

8 Image Processing

Statistics

min, max, mean value, standard deviation over

the image

Norms C, L1, L2

Multidimensional histograms

Spatial moments up to order 3 (central,

normalized, Hu)

In addition to simple norm calculation, there is a

function that finds the norm of the difference

between two images.

8-25Department of Computer Science and Engineering

8 Image Processing

Multidimensional Histograms
Histogram operations : calculation, normalization,

comparison, back project

Histograms types:
Dense histograms

Signatures (balanced tree)

EMD (earth mover distance) algorithm:

The EMD computes the distance between two distributions (sets of
weighted points), which are represented by signatures.

The signatures are sets of weighted features that capture the distributions.
The features can be of any type and in any number of dimensions, and are
defined by the user.

The EMD is defined as the minimum amount of work needed to change one
signature into the other

8-26Department of Computer Science and Engineering

8 Image Processing

EMD – a method for the histograms

comparison

.),(

,

,

),(

),(

,1,,1,

,

,

jiji

ij

ji

ij

ji

jiij

ji

qandpelementsthebetweendistancetheqpd

tscoefficienweightf

f

qpdf

QPEMD

historamstwoQjQqPiPp

8-27Department of Computer Science and Engineering

8 Image Processing

Image Pyramids

Gaussian and
Laplacian pyramids

Image segmentation
by pyramids

8-28Department of Computer Science and Engineering

8 Image Processing

Gaussian
Use a Gaussian filter to blur image or

down-sample it. A Gaussian filter simply

uses the Gaussian distribution function to

derive a filter matrix that describes how

neighboring pixels are averaged.

8-29Department of Computer Science and Engineering

8 Image Processing

Laplacian

Laplacian Pyramids are formed from the Gaussian

Pyramids. There is no exclusive function for that.

Laplacian pyramid images are like edge images only.

Most of its elements are zeros. They are used in image

compression. A level in Laplacian Pyramid is formed by

the difference between that level in Gaussian Pyramid

and expanded version of its upper level in Gaussian

Pyramid.

Laplacian function: Filter kernel for Laplacian:

8-30Department of Computer Science and Engineering

8 Image ProcessingImage Pyramids

Gaussian and Laplacian

8-31Department of Computer Science and Engineering

8 Image Processing

Pyramid-based color

segmentation
On still pictures And on movies

8-32Department of Computer Science and Engineering

8 Image ProcessingMorphological Operations

Two basic morphology operations using
structuring element:

 erosion

 dilation

More complex morphology operations:

opening

closing

morphological gradient

 top hat

black hat

8-33Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Morphological transformations are some simple

operations based on the image shape. It is normally

performed on binary images. It needs two inputs, one is

our original image, second one is called structuring

element or kernel which decides the nature of operation.

Two basic morphological operators are Erosion and

Dilation. Then its variant forms like Opening, Closing,

Gradient etc also comes into play. We will see them one-

by-one with help of following image:

8-35Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Erosion

The basic idea of erosion is just like soil erosion only, it

erodes away the boundaries of foreground object (Always

try to keep foreground in white). So what it does? The

kernel slides through the image (as in 2D convolution). A

pixel in the original image (either 1 or 0) will be

considered 1 only if all the pixels under the kernel is 1,

otherwise it is eroded (made to zero).

8-36Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Dilation

It is just opposite of erosion. Here, a pixel element is '1' if atleast one

pixel under the kernel is '1'. So it increases the white region in the

image or size of foreground object increases. Normally, in cases like

noise removal, erosion is followed by dilation. Because, erosion

removes white noises, but it also shrinks our object. So we dilate it.

Since noise is gone, they won't come back, but our object area

increases. It is also useful in joining broken parts of an object.

8-37Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Opening

Opening is just another name of erosion followed by

dilation. It is useful in removing noise, as we explained

above. Here we use the function,cv2.morphologyEx()

http://docs.opencv.org/3.1.0/d4/d86/group__imgproc__filter.html#ga67493776e3ad1a3df63883829375201f

8-38Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Closing

Closing is reverse of Opening, Dilation followed by

Erosion. It is useful in closing small holes inside the

foreground objects, or small black points on the object.

8-39Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Morphological Gradient

It is the difference between dilation and erosion of an

image.

The result will look like the outline of the object.

8-40Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Top Hat

It is the difference between input image and Opening of

the image. Below example is done for a 9x9 kernel.

8-41Department of Computer Science and Engineering

8 Image Processing

Morphological Operations

Black Hat

It is the difference between the closing of the input image

and input image.

8-42Department of Computer Science and Engineering

8 Image Processing

Morphological Operations Examples

Morphology - applying Min-Max. Filters and its combinations

Opening IoB= (IB)BDilatation IBErosion IBImage I

Closing I•B= (IB)B TopHat(I)= I - (IB) BlackHat(I)= (IB) - IGrad(I)= (IB)-(IB)

8-43Department of Computer Science and Engineering

8 Image Processing

Distance Transform

Calculate the distance for all non-feature points to the
closest feature point

Two-pass algorithm, 3x3 and 5x5 masks, various metrics
predefined

8-44Department of Computer Science and Engineering

8 Image Processing

Flood Filling

Simple

Gradient

8-45Department of Computer Science and Engineering

8 Image Processing

Feature Detection

Fixed filters (Sobel operator, Laplacian);

Optimal filter kernels with floating point
coefficients (first, second derivatives,
Laplacian)

Special feature detection (corners)

Canny operator

Hough transform (find lines and line segments)

Gradient runs

8-46Department of Computer Science and Engineering

8 Image Processing

Sobel filter

Edges in an image become apparent when looking at the

change between neighboring pixels. The Sobel filter is

designed to detect just that. It approximates the image

gradient, i.e. change of pixels, by applying a filter kernel

in horizontal and vertical direction and then combining the

results:

8-47Department of Computer Science and Engineering

8 Image Processing

Sobel filter: result

8-48Department of Computer Science and Engineering

8 Image Processing

Canny Edge Detector

8-49Department of Computer Science and Engineering

8 Image Processing

Canny Edge Detector
Non-maximum Suppression

After getting gradient magnitude and direction, a full scan

of image is done to remove any unwanted pixels which

may not constitute the edge. For this, at every pixel, pixel

is checked if it is a local maximum in its neighborhood in

the direction of gradient.

8-50Department of Computer Science and Engineering

8 Image Processing

Canny Edge Detector
Hysteresis Thresholding

This stage decides which are all edges are really edges and which are not.

For this, we need two threshold values, minVal and maxVal. Any edges with

intensity gradient more than maxVal are sure to be edges and those below

minVal are sure to be non-edges, so discarded. Those who lie between

these two thresholds are classified edges or non-edges based on their

connectivity. If they are connected to "sure-edge" pixels, they are considered

to be part of edges. Otherwise, they are also discarded.

8-51Department of Computer Science and Engineering

8 Image ProcessingCanny Edge Detector

8-52Department of Computer Science and Engineering

8 Image Processing

Harris Corner Detection

This algorithm basically finds the difference in intensity for

a displacement of (u,v) in all directions:

We have to maximize this function E(u,v) for corner

detection. That means, we have to maximize the second

term. Applying Taylor Expansion to above equation and

using some mathematical steps, we get the final equation

as:

Here, Ix and Iy are image derivatives in x and y directions

respectively, which can be computed via Sobel.

8-53Department of Computer Science and Engineering

8 Image Processing

Harris Corner Detection

We can then look at the

eigenvalues λ1 and λ2, which

decide whether a region is corner,

edge or flat.

• When |R| is small, which

happens when λ1 and λ2 are

small, the region is flat.

• When R<0, which happens

when λ1 >> λ2 or vice versa,

the region is edge.

• When R is large, which

happens when λ1 and λ2 are

large and λ1 ~ λ2, the region is

a corner.

8-54Department of Computer Science and Engineering

8 Image Processing

Harris Corner Detection

Result:

8-55Department of Computer Science and Engineering

8 Image Processing

Hough Transform

Any line can be represented in two terms, (ρ, θ), where ρ

is the perpendicular distance from origin to the line, and θ

is the angle formed by this perpendicular line and

horizontal axis measured in counter-clockwise. So first it

creates a 2D array or accumulator (to hold values of two

parameters) and it is set to 0 initially. Let rows denote the

ρ and columns denote the θ. Size of array depends on

the accuracy you need. Suppose you want the accuracy

of angles to be 1 degree, you need 180 columns. For ρ,

the maximum distance possible is the diagonal length of

the image. So taking one pixel accuracy, number of rows

can be diagonal length of the image.

8-56Department of Computer Science and Engineering

8 Image Processing
Hough Transform

Detects lines in a binary image

•Probabilistic

Hough Transform•Standard Hough

Transform

8-58Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

Background subtraction is a common and widely used

technique for generating a foreground mask (namely, a

binary image containing the pixels belonging to moving

objects in the scene) by using static cameras.

8-59Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

The threshold parameter is important as two images

taken with even the same camera will likely not be

identical. Thus, a threshold parameter allows for some

variance. Often times, blurring the images, e.g. with a

Gaussian filter, is used to make this approach work with

similar but not identical images.

OpenCV provides different approaches for such a

background subtraction algorithm.

8-60Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

BackgroundSubtractorMOG

It is a Gaussian Mixture-based Background/Foreground

Segmentation Algorithm. It was introduced in the paper

"An improved adaptive background mixture model for

real-time tracking with shadow detection" by P.

KadewTraKuPong and R. Bowden in 2001. It uses a

method to model each background pixel by a mixture of K

Gaussian distributions (K = 3 to 5). The weights of the

mixture represent the time proportions that those colors

stay in the scene. The probable background colors are

the ones which stay longer and more static.

8-61Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

BackgroundSubtractorMOG - Result

import numpy as np

import cv2

cap = cv2.VideoCapture('vtest.avi')

fgbg = cv2.createBackgroundSubtractorMOG()

while(1):

ret, frame = cap.read()

fgmask = fgbg.apply(frame)

cv2.imshow('frame',fgmask)

k = cv2.waitKey(30) & 0xff

if k == 27:

break

cap.release()

cv2.destroyAllWindows()

8-62Department of Computer Science and Engineering

8 Image Processing

Background Subtraction
BackgroundSubtractorMOG2

It is also a Gaussian Mixture-based

Background/Foreground Segmentation Algorithm. It is

based on two papers by Z.Zivkovic, "Improved adaptive

Gaussian mixture model for background subtraction" in

2004 and "Efficient Adaptive Density Estimation per

Image Pixel for the Task of Background Subtraction" in

2006. One important feature of this algorithm is that it

selects the appropriate number of Gaussian distribution

for each pixel. (Remember, in last case, we took a K

Gaussian distributions throughout the algorithm). It

provides better adaptability to varying scenes due

illumination changes etc.

8-63Department of Computer Science and Engineering

8 Image Processing

Background Subtraction
BackgroundSubtractorMOG2 - Results

import numpy as np

import cv2

cap = cv2.VideoCapture('vtest.avi')

fgbg = cv2.createBackgroundSubtractorMOG2()

while(1):

ret, frame = cap.read()

fgmask = fgbg.apply(frame)

cv2.imshow('frame',fgmask)

k = cv2.waitKey(30) & 0xff

if k == 27:

break

cap.release()

cv2.destroyAllWindows()

8-64Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

BackgroundSubtractorGMG

This algorithm combines statistical background image

estimation and per-pixel Bayesian segmentation. It was

introduced by Andrew B. Godbehere, Akihiro Matsukawa,

Ken Goldberg in their paper "Visual Tracking of Human

Visitors under Variable-Lighting Conditions for a

Responsive Audio Art Installation" in 2012. As per the

paper, the system ran a successful interactive audio art

installation called “Are We There Yet?” from March 31 -

July 31 2011 at the Contemporary Jewish Museum in

San Francisco, California.

8-65Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

BackgroundSubtractorGMG (continued)

It uses first few (120 by default) frames for background

modelling. It employs a probabilistic foreground

segmentation algorithm that identifies possible

foreground objects using Bayesian inference. The

estimates are adaptive; newer observations are more

heavily weighted than old observations to accommodate

variable illumination. Several morphological filtering

operations like closing and opening are done to remove

unwanted noise. You will get a black window during first

few frames.

8-66Department of Computer Science and Engineering

8 Image Processing

Background Subtraction
BackgroundSubtractorGMG - Results
import numpy as np

import cv2

cap = cv2.VideoCapture('vtest.avi')

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3))

fgbg = cv2.createBackgroundSubtractorGMG()

while(1):

ret, frame = cap.read()

fgmask = fgbg.apply(frame)

fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)

cv2.imshow('frame',fgmask)

k = cv2.waitKey(30) & 0xff

if k == 27:

break

cap.release()

cv2.destroyAllWindows()

8-67Department of Computer Science and Engineering

8 Image Processing

Background Subtraction

Further clean-up of the

image may be

necessary. For

example, a tree waiving

in the wind will likely

leave residue in the

image after background

connection. This type of

noise can be cleaned

up by despeckle filters

or the connected-

components algorithm.

8-68Department of Computer Science and Engineering

8 Image Processing

Contour Retrieving

The contour representation:

Chain code (Freeman code)

Polygonal representation

Initial Point

Chain code for the curve:

34445670007654443

Contour representation

8-69Department of Computer Science and Engineering

8 Image Processing

Hierarchical representation of contours

Image Boundary

(W1) (W2) (W3)

(B2) (B3) (B4)

(W5) (W6)

8-70Department of Computer Science and Engineering

8 Image Processing

Contours Examples

Source Picture

(300x600 = 180000 pts total)
Retrieved Contours

(<1800 pts total)

After Approximation

(<180 pts total)

And it is rather fast: ~70 FPS for 640x480 on complex scenes

8-71Department of Computer Science and Engineering

8 Image Processing

Contour algorithms

OpenCV implements different types of contour algorithms.

A polynomial contour can be retrieved like this:

epsilon = 0.1*cv2.arcLength(cnt,True)

approx = cv2.approxPolyDP(cnt,epsilon,True)

epsilon = 0.01*cv2.arcLength(cnt,True)

approx = cv2.approxPolyDP(cnt,epsilon,True)

0.1% 0.01%

8-72Department of Computer Science and Engineering

8 Image Processing

Contour algorithms

Convex Hull:

hull = cv2.convexHull(points, hull,

clockwise, returnPoints))

8-73Department of Computer Science and Engineering

8 Image Processing

Contour algorithms

Bounding Rectangle (straight or rotated):

x,y,w,h = cv2.boundingRect(cnt)

cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)

rect = cv2.minAreaRect(cnt)

box = cv2.boxPoints(rect)

box = np.int0(box)

cv2.drawContours(img,[box],

0,(0,0,255),

2)

8-74Department of Computer Science and Engineering

8 Image Processing

Contour algorithms

Minimum Enclosing Circle:

(x,y),radius = cv2.minEnclosingCircle(cnt)

center = (int(x),int(y))

radius = int(radius)

cv2.circle(img,center,

radius,(0,255,0),2)

8-75Department of Computer Science and Engineering

8 Image Processing

Contour algorithms

Fitting an Ellipse:

ellipse = cv2.fitEllipse(cnt)

cv2.ellipse(img,ellipse,(0,255,0),2)

8-76Department of Computer Science and Engineering

8 Image Processing

Contour algorithms

Fitting a Line:

rows,cols = img.shape[:2]

[vx,vy,x,y] = cv2.fitLine(cnt,

cv2.DIST_L2,0,0.01,0.01)

lefty = int((-x*vy/vx) + y)

righty = int(((cols-x)*vy/vx)+y)

cv2.line(img,(cols-

1,righty),(0,lefty),(0,255,0),2)

8-77Department of Computer Science and Engineering

8 Image Processing

OpenCV Functionality

Basic structures and operations

 Image Analysis

• Structural Analysis

Object Recognition

Motion Analysis and Object Tracking

3D Reconstruction

8-78Department of Computer Science and Engineering

8 Image Processing

Structural Analysis

Contours processing

Approximation

Hierarchical representation

Shape characteristics

Matching

Geometry

Contour properties

Fitting with primitives

PGH: pair-wise geometrical histogram for the contour.

8-79Department of Computer Science and Engineering

8 Image Processing

Contour Processing

Approximation:

 RLE algorithm (chain code)

 Teh-Chin approximation (polygonal)

 Douglas-Peucker approximation (polygonal);

Contour moments (central and normalized up to order 3)

Hierarchical representation of contours

Matching of contours

8-80Department of Computer Science and Engineering

8 Image Processing

Hierarchical Representation of Contours
A contour is represented with a binary tree

Given the binary tree, the contour can be retrieved with arbitrary precision

The binary tree is quasi invariant to translations, rotations and scaling

8-81Department of Computer Science and Engineering

8 Image Processing

Contours matching
Matching based on hierarchical representation of

contours

8-82Department of Computer Science and Engineering

8 Image Processing

Geometry

Properties of contours: (perimeter, area, convex

hull, convexity defects, rectangle of minimum

area)

Fitting: (2D line, 3D line, circle, ellipse)

Pair-wise geometrical histogram

8-83Department of Computer Science and Engineering

8 Image Processing

Pair-wise geometrical histogram

(PGH)

PGH can measure

similarity between

objects. It is a

generalization of the

chain code histogram

(CCH):

Count the number of

each kind of steps in

the Freeman chain

code representation of

the contour

8-84Department of Computer Science and Engineering

8 Image Processing

Pair-wise geometrical histogram

(PGH)
The PGH is constructed as follows: Each of the edges of the

polygon is successively chosen to be the “base edge”. Then

each oif the other edges is considered relative to that base

edge and three values are computed: dmin, dmax, and θ. Dmin

is the smallest distance between the two edges, dmax is the

largest, and θ is the angle between them. The PGH is the 2D

histogram whose dimensions are the angle and the distance.

8-85Department of Computer Science and Engineering

8 Image Processing

Pair-wise geometrical histogram

(PGH)
),(jip

.),(/),()(

,),(/),()(

,)](),2(),1(),(),2(),1([

ii

c

jj

r

T

cccrrrPGH

jipjipijE

jipjipjiE

MEEENEEEf

8-86Department of Computer Science and Engineering

8 Image Processing

OpenCV Functionality

Basic structures and operations

 Image Analysis

Structural Analysis

• Object Recognition

Motion Analysis and Object Tracking

3D Reconstruction

8-87Department of Computer Science and Engineering

8 Image Processing

Object Recognition

Eigen objects

Hidden Markov Models

8-88Department of Computer Science and Engineering

8 Image Processing

Eigenfaces for recognition

Matthew Turk and Alex Pentland

J. Cognitive Neuroscience

1991

8-89Department of Computer Science and Engineering

8 Image Processing

Linear subspaces

Classification can be expensive:

Big search prob (e.g., nearest neighbors) or store large PDF’s

Suppose the data points are arranged as above

Idea—fit a line, classifier measures distance to line

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- distance to line

- use it for classification—near 0 for orange pts

- position along line

- use it to specify which orange point it is

8-90Department of Computer Science and Engineering

8 Image Processing

Dimensionality reduction

Dimensionality reduction

• We can represent the orange points with only their v1 coordinates

(since v2 coordinates are all essentially 0)

• This makes it much cheaper to store and compare points

• A bigger deal for higher dimensional problems

8-91Department of Computer Science and Engineering

8 Image Processing

Linear subspaces

Consider the variation along direction v

among all of the orange points:

What unit vector v minimizes var?

What unit vector v maximizes var?

Solution: v1 is eigenvector of A with largest eigenvalue

v2 is eigenvector of A with smallest eigenvalue

8-92Department of Computer Science and Engineering

8 Image Processing

Suppose each data point is N-dimensional

Same procedure applies:

The eigenvectors of A define a new coordinate system

eigenvector with largest eigenvalue captures the most variation

among training vectors x

eigenvector with smallest eigenvalue has least variation

We can compress the data using the top few eigenvectors

corresponds to choosing a “linear subspace”

represent points on a line, plane, or “hyper-plane”

these eigenvectors are known as the principal components

Principal component analysis

8-93Department of Computer Science and Engineering

8 Image Processing

The space of faces

An image is a point in a high dimensional space

An N x M image is a point in RNM

We can define vectors in this space as we did in the 2D case

+=

8-94Department of Computer Science and Engineering

8 Image Processing

94

Dimensionality reduction

The set of faces is a “subspace” of the set of images

We can find the best subspace using PCA

This is like fitting a “hyper-plane” to the set of faces

spanned by vectors v1, v2, ..., vK

any face

8-95Department of Computer Science and Engineering

8 Image Processing

Eigenfaces

PCA extracts the eigenvectors of A

Gives a set of vectors v1, v2, v3, ...

Each vector is a direction in face space

what do these look like?

8-96Department of Computer Science and Engineering

8 Image Processing

Projecting onto the eigenfaces

The eigenfaces v1, ..., vK span the space of faces

A face is converted to eigenface coordinates by

8-97Department of Computer Science and Engineering

8 Image Processing

Recognition with eigenfaces

Algorithm

1. Process the image database (set of images with labels)

• Run PCA—compute eigenfaces

• Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K

coefficients

3. Detect if x is a face

4. If it is a face, who is it?

Find closest labeled face in database

nearest-neighbor in K-dimensional space

8-98Department of Computer Science and Engineering

8 Image Processing

CSE 576,

Spring 2008

Choosing the dimension K

K NMi =

eigenvalues

How many eigenfaces to use?

Look at the decay of the eigenvalues

the eigenvalue tells you the amount of variance “in the direction”

of that eigenface

ignore eigenfaces with low variance

8-99Department of Computer Science and Engineering

8 Image Processing

Eigen objects (continued)

8-100Department of Computer Science and Engineering

8 Image Processing

Hidden Markov Model

Hidden Markov Models (HMMs) are a class of statistical

models used to characterize the observable properties of

a signal. HMMs consist of two interrelated processes:

• an underlying, unobservable Markov chain with a finite

number of states governed by a state transition

probability matrix and an initial state probability

distribution, and

• a set of observations, defined by the observation

density functions associated with each state.

8-101Department of Computer Science and Engineering

8 Image Processing

Hidden Markov Model

Face detection and cropping block: this is the first stage of any

face recognition system and the key difference between a semi-

automatic and a fully automatic face recognizer. In order to make the

recognition system fully automatic, the detection and extraction of

faces from an image should also be automatic. Face detection also

represents a very important step before face recognition, because

the accuracy of the recognition process is a direct function of the

accuracy of the detection process

8-102Department of Computer Science and Engineering

8 Image Processing

Hidden Markov Model

Pre-processing block: the face image can be treated with a series

of pre-processing techniques to minimize the effect of factors that can

adversely influence the face recognition algorithm. The most critical

of these are facial pose and illumination

8-103Department of Computer Science and Engineering

8 Image Processing

Hidden Markov Model

Feature extraction block: in this step the features used in the

recognition phase are computed. These features vary depending on

the automatic face recognition system used. For example, the first

and most simplistic features used in face recognition were the

geometrical relations and distances between important points in a

face, and the recognition ’algorithm’ matched these distances

8-104Department of Computer Science and Engineering

8 Image Processing

Hidden Markov Model

Face recognition block: this consists of 2 separate stages:

a training process, where the algorithm is fed samples of the subjects

to be learned and a distinct model for each subject is determined;

and an evaluation process where a model of a newly acquired test

subject is compared against all existing models in the database and

the most closely corresponding model is determined. If these are

sufficiently close a recognition event is triggered.

8-105Department of Computer Science and Engineering

8 Image Processing

Hidden Markov Model

Based on the extracted features of a face (eyes, nose,

mouth, …), the HMM can then be trained to recognize

specific faces. For this, an enhanced version of the so-

called Viterbi algorithm known as double embedded

Viterbi was developed. It involves applying the Viterbi

algorithm to both the embedded HMMs and to the global,

or top-level HMM, hence the name.

8-106Department of Computer Science and Engineering

8 Image ProcessingEmbedded HMM for

Face Recognition

Model-

- Face ROI partition

8-107Department of Computer Science and Engineering

8 Image ProcessingFace recognition
using Hidden Markov Models

 One person – one HMM

 Stage 1 – Train every HMM

 Stage 2 – Recognition

Pi - probability

Choose max(Pi)

…
1

n

i

8-108Department of Computer Science and Engineering

8 Image Processing

OpenCV Functionality

Basic structures and operations

 Image Analysis

Structural Analysis

Object Recognition

• Motion Analysis and Object Tracking

3D Reconstruction

8-109Department of Computer Science and Engineering

8 Image ProcessingMotion Analysis and Object

Tracking

Motion templates

Optical flow

Active contours

Estimators

8-110Department of Computer Science and Engineering

8 Image Processing

Motion Segmentation Algorithm

Two-pass algorithm labeling all motion segments

8-111Department of Computer Science and Engineering

8 Image Processing

Motion Templates Example

•Motion templates allow to

retrieve the dynamic

characteristics of the moving

object

8-112Department of Computer Science and Engineering

8 Image Processing

Optical Flow

Block matching technique

Horn & Schunck technique

Lucas & Kanade technique

Pyramidal LK algorithm

6DOF (6 degree of freedom) algorithm

y

x

t

yyx

yxx

I

I
Ib

III

III
GyxX

bXG

dtdyyIdtdxxItI

tyxIdttdyydxxI

,

,

,
),,(

,

);/(/)/(//

);,,(),,(

2

2

Optical flow equations:

8-113Department of Computer Science and Engineering

8 Image ProcessingPyramidal Implementation of the
optical flow algorithm

J image I image

Image Pyramid

Representation

Iterative Lucas –

Kanade Scheme

Generic Image

(L-1)-th Level

L-th Level

Location of point u on image uL=u/2L

Spatial gradient matrix

Standard Lucas – Kanade scheme for

optical flow computation at level L dL

Guess for next pyramid level L – 1

Finally,

Image pyramid building

Optical flow computation

2

2

,

,

yyx

yxx

III

III
G

)(2
1 LLL

dgg

00
gdd

dUV

8-114Department of Computer Science and Engineering

8 Image Processing

6DOF Algorithm

).(sX

N

i ROI

T

it

N

i ROI

i

T

i IIdsII

sXIsII

i

11

///

Parametrical optical flow equations:

8-115Department of Computer Science and Engineering

8 Image Processing

Active Contours

Snake energy:

Internal energy:

External energy:

Two external energy types:

extEEE int

curvcont EEE int

conimgext EEE

min

,)(

,

imgcurvcont

img

img

EEEE

IgradE

IE

8-116Department of Computer Science and Engineering

8 Image ProcessingEstimators

Kalman filter

ConDensation filter

8-117Department of Computer Science and Engineering

8 Image Processing

Kalman object tracker

The idea of using a Kalman filter for object tracking is to

attenuate the noise associated with the position detection of

the object based on estimating the system state. It can also be

used to predict the position based on the state transition

model when no new measurements are available

8-118Department of Computer Science and Engineering

8 Image Processing

OpenCV Functionality

Basic structures and operations

 Image Analysis

Structural Analysis

Object Recognition

Motion Analysis and Object Tracking

• 3D Reconstruction

8-119Department of Computer Science and Engineering

8 Image Processing

3D reconstruction
Camera Calibration

View Morphing

POSIT

8-120Department of Computer Science and Engineering

8 Image Processing

Camera Calibration

Define intrinsic and extrinsic camera parameters.

Define Distortion parameters

],[],,,[,,,

100

0

0

,][

3

2

1

333231

232221

131211

vupZYXP

t

t

t

T

rrr

rrr

rrr

Rcf

cf

A

PRTAp

yy

xx

.

)],2/(2[)(
~

)],2/(2[)(
~

222

2

12

4

2

2

1

2

21

4

2

2

1

yxr

yyrpxprkrkcvvv

xxrpyprkrkcuuu

y

x

8-121Department of Computer Science and Engineering

8 Image ProcessingCamera Calibration

Now, camera calibration can be done by holding

checkerboard in front of the camera for a few seconds.

And after that you’ll get:

3D view of etalon
Un-distorted image

8-122Department of Computer Science and Engineering

8 Image Processing

View Morphing

8-123Department of Computer Science and Engineering

8 Image Processing

POSIT Algorithm

Perspective projection:

 Weak-perspective projection:

iiiiii YZfyXZfx)/(,)/(

./,, ZfsYsyXsx iiii

8-124Department of Computer Science and Engineering

8 Image ProcessingOpenCV web sites

http://www.intel.com/research/mrl/research/opencv/

http://sourceforge.net

http://www.intel.com/research/mrl/research/opencv/

8-125Department of Computer Science and Engineering

8 Image ProcessingReferences

Gunilla Borgefors. Distance Transformations in Digital Images.Computer Vision,
Graphics and Image Processing 34, 344-371,(1986).

G. Bradski and J. Davis. Motion Segmentation and Pose Recognition with
Motion History Gradients. IEEE WACV'00, 2000.

P. J. Burt, T. H. Hong, A. Rosenfeld. Segmentation and Estimation of Image
Region Properties Through Cooperative Hierarchical Computation. IEEE
Tran. On SMC, Vol. 11, N.12, 1981, pp.802-809.

J.Canny.A Computational Approach to Edge Detection, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 8(6), pp.679-698 (1986).

J. Davis and Bobick. The Representation and Recognition of Action Using
Temporal Templates. MIT Media Lab Technical Report 402,1997.

Daniel F. DeMenthon and Larry S. Davis. Model-Based Object Pose in 25 Lines
of Code. In Proceedings of ECCV '92, pp. 335-343, 1992.

Andrew W. Fitzgibbon, R.B.Fisher. A Buyer’s Guide to Conic Fitting.Proc.5 th
British Machine Vision Conference, Birmingham, pp. 513-522, 1995.

Berthold K.P. Horn and Brian G. Schunck. Determining Optical Flow. Artificial
Intelligence, 17, pp. 185-203, 1981.

8-126Department of Computer Science and Engineering

8 Image ProcessingReferences

M.Hu.Visual Pattern Recognition by Moment Invariants, IRE Transactions on
Information Theory, 8:2, pp. 179-187, 1962.

B. Jahne. Digital Image Processing. Springer, New York, 1997.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models,
International Journal of Computer Vision, pp. 321-331, 1988.

J.Matas, C.Galambos, J.Kittler. Progressive Probabilistic Hough Transform.
British Machine Vision Conference, 1998.

A. Rosenfeld and E. Johnston. Angle Detection on Digital Curves. IEEE Trans.
Computers, 22:875-878, 1973.

Y.Rubner.C.Tomasi,L.J.Guibas.Metrics for Distributions with Applications to
Image Databases. Proceedings of the 1998 IEEE International Conference
on Computer Vision, Bombay, India, January 1998, pp. 59-66.

Y. Rubner. C. Tomasi, L.J. Guibas. The Earth Mover’s Distance as a Metric for
Image Retrieval. Technical Report STAN-CS-TN-98-86, Department of
Computer Science, Stanford University, September, 1998.

Y.Rubner.C.Tomasi.Texture Metrics. Proceeding of the IEEE International
Conference on Systems, Man, and Cybernetics, San-Diego, CA, October
1998, pp. 4601- 4607. http://robotics.stanford.edu/~rubner/publications.html

8-127Department of Computer Science and Engineering

8 Image ProcessingReferences

J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

Bernt Schiele and James L. Crowley. Recognition without Correspondence
Using Multidimensional Receptive Field Histograms. In International Journal
of Computer Vision 36 (1), pp. 31-50, January 2000.

S. Suzuki, K. Abe. Topological Structural Analysis of Digital Binary Images by
Border Following. CVGIP, v.30, n.1. 1985, pp. 32-46.

C.H.Teh, R.T.Chin.On the Detection of Dominant Points on Digital Curves. -
IEEE Tr. PAMI, 1989, v.11, No.8, p. 859-872.

Emanuele Trucco, Alessandro Verri. Introductory Techniques for 3-D Computer
Vision. Prentice Hall, Inc., 1998.

D. J. Williams and M. Shah. A Fast Algorithm for Active Contours and Curvature
Estimation. CVGIP: Image Understanding, Vol. 55, No. 1, pp. 14-26, Jan.,
1992. http://www.cs.ucf.edu/~vision/papers/shah/92/WIS92A.pdf.

A.Y.Yuille, D.S.Cohen, and P.W.Hallinan. Feature Extraction from Faces Using
Deformable Templates in CVPR, pp. 104-109, 1989.

Zhengyou Zhang. Parameter Estimation Techniques: A Tutorial with Application
to Conic Fitting, Image and Vision Computing Journal, 1996.

8-129Department of Computer Science and Engineering

8 Image ProcessingUsing contours and geometry to classify

shapes

Given the contour

classify the geometrical

figure shape (triangle,

circle, etc)

8-130Department of Computer Science and Engineering

8 Image Processing

OpenCV shape classification capabilities

Contour approximation

Moments (image&contour)

Convexity analysis

Pair-wise geometrical histogram

Fitting functions (line, ellipse)

8-131Department of Computer Science and Engineering

8 Image Processing

Contour approximation

Min-epsilon approximation (Imai&Iri)

Min#-approximation (Douglas-Peucker
method)

Hawk

8-132Department of Computer Science and Engineering

8 Image Processing

Moments

Image moments (binary,
grayscale)

Contour moments (faster)

Hu invariants

8-133Department of Computer Science and Engineering

8 Image Processing

Line and ellipse fitting

Algebraic ellipse fitting

Fitting lines by m-estimators

8-134Department of Computer Science and Engineering

8 Image Processing

Using OpenCV to do color segmentation

Locate all

nonoverlapping

geometrical figures of

the same unknown color

8-135Department of Computer Science and Engineering

8 Image Processing

OpenCV segmentation capabilities

Edge-based approach

Histogram

Color segmentation

8-136Department of Computer Science and Engineering

8 Image Processing

Edge-based segmentation
Smoothing functions (gaussian filterIPL, bilateral filter)

Apply edge detector (sobel, laplace, canny, gradient

strokes)

Find connected components in an inverted image

8-137Department of Computer Science and Engineering

8 Image Processing

Pyramid segmentation

Water down the color space in order to join up the neighbor

image pixels that are close to each other in XY and color

spaces

Call Hawk here

8-138Department of Computer Science and Engineering

8 Image Processing

Histogram

Calculate the histogram

Separate the object and background histograms

Find the objects of the selected histogram in the image

Call Hawk here

8-139Department of Computer Science and Engineering

8 Image ProcessingUsing OpenCV to detect the 3D object’s

position

Calibrate the camera

Reconstruct the position and orientation of the

rigid 3D body given it’s geometry

8-140Department of Computer Science and Engineering

8 Image Processing

Camera calibration routines, ActiveX

8-141Department of Computer Science and Engineering

8 Image Processing

Reconstruction task

Given
camera model

3D coordinates of the feature points

and 2D coordinates corresponding projections on
the image

Reconstruct the 3D position and
orientation

8-142Department of Computer Science and Engineering

8 Image Processing

Reconstruction task (continued)
POSIT algorithm for 3D objects

FindExtrinsicCameraParams for arbitrary objects

8-145Department of Computer Science and Engineering

8 Image Processing

Technical content
Software requirements

OpenCV structure

Data types

Error Handling

I/O libraries (HighGUI, CvCAM)

Scripting

Hawk

Using OpenCV in MATLAB

OpenCV lab (code samples)

8-146Department of Computer Science and Engineering

8 Image Processing

Software Requirements

Win32 platforms:
Win9x/WinNT/Win2000

C++ Compiler (makefiles for Visual C++ 6.0,Intel C++ Compiler
5.x,Borland C++ 5.5, Mingw GNU C/C++ 2.95.3 are included) for
core libraries

Visual C++ to build the most of demos

DirectX 8.x SDK for directshow filters

ActiveTCL 8.3.3 for TCL demos

IPL 2.2+ for the core library tests

Linux/*NIX:
C++ Compiler (tested with GNU C/C++ 2.95.x, 2.96, 3.0.x)

TCL 8.3.3 + BWidgets for TCL demos

Video4Linux + Camera drivers for most of demos

IPL 2.2+ for the core library tests

8-147Department of Computer Science and Engineering

8 Image ProcessingOpenCV structure

Switcher

OpenCV(C++ classes, High-level C functions)

IPP

(Optimized low level functions)

DShow filters, Demo apps,

Scripting Environment

Low level C-functions

OpenCV

Intel Image

Processing

Library

8-148Department of Computer Science and Engineering

8 Image Processing

Data Types

Image (IplImage);

Matrix (CvMat);

Histogram (CvHistogram);

Dynamic structures (CvSeq, CvSet, CvGraph);

Spatial moments (CvMoments);

Helper data types (CvPoint, CvSize, CvTermCriteria,

IplConvKernel and others).

Multi-

dimensional

array

8-149Department of Computer Science and Engineering

8 Image Processing

Error Handling

There are no return error codes

There is a global error status that can be set or checked

via special functions

By default a message box appears if error happens

8-150Department of Computer Science and Engineering

8 Image Processing

Portable GUI library (HighGUI)

Reading/Writing images in several formats
(BMP,JPEG,TIFF,PxM,Sun Raster)

Creating windows and displaying images in it.
HighGUI windows remember their content (no
need to implement repainting callbacks)

Simple interaction facilities: trackbars, getting
input from keyboard

and mouse (new in Win32 version).

8-151Department of Computer Science and Engineering

8 Image Processing

Portable Video Capture Library (CvCAM)

Single interface for video capture and

playback under Linux and Win32

Provides callback for subsequent processing

of frames from camera or AVI-file

Easy stereo from 2 USB cameras or stereo-

camera

8-152Department of Computer Science and Engineering

8 Image Processing

Scripting I: Hawk

Visual Environment

ANSI C interpreter (EiC)

as a core

Plugin support

Interface to OpenCV,IPL

and HighGUI via

plugins

Video support

8-153Department of Computer Science and Engineering

8 Image Processing

Scripting II:

OpenCV + MATLAB
Design principles and data types organization

Working with images

Working with dynamic structures

Example

8-154Department of Computer Science and Engineering

8 Image ProcessingDesign Principles and

Data Types Organization

Simplicity: Use of native MATLAB types (matrices, structures), rather

than introducing classes

Compatibility: … with Image Processing Toolbox

Irredundancy: matrix and basic image processing operations are not

wrapped

[dst …] = cv<func>(src …)myscript.m:

// data type conv., error handling

void mexFunction (…) { … }
cvmex.dll:

mxArray’s, matlab error codes

cvFunc(src …, dst …) {…}cv.dll:

IplImage’s, CvSeq …, CV error codes

8-155Department of Computer Science and Engineering

8 Image Processing

Working with Images

Morphology: Erosion, Dilation, Open, Close …

% erosion with 3x3 rectangular element

B=cverode(A,[3,3,1,1],’rect’,1);

Feature Detection: Canny, MinEigenVal, GoodFeaturesToTrack …

% strong corners detection (quality level = 0.1, min distance = 10)

corners=cvgoodfeaturestotrack(A,0.1,10[,region_mask]);

Point Tracking:

% Optical Flow on pyramids: window 10*2+1x10*2+1, 4 scales

ptsB=cvoptflowpyrlk(imgA,imgB,ptsA,10,4);

CAMSHIFT:

% Color object tracking, default termination criteria (epsilon = 1):

[new_window,angle,size]=cvcamshift(img, window[, 1]);

As well as pyramids, color segmentation, motion templates, floodfill, moments, adaptive

threshold, template matching, hough transform, distance transform …

8-156Department of Computer Science and Engineering

8 Image Processing

Working with Dynamic Structures

Contours: retrieving, drawing, approximation …

% get all the connected components of binary image,

% don’t approximate them

contours=cvfindcontours(img,’ccomp’,’none’);

r1 = contours(1).rect; % get bounding box of the first contour

ch21 = contours(2).child(1) % get the first child of the second contour

p = ch21.pt; % get Nx2 array of vertices of the child

img = cvdrawcontours(img, p, ‘g’); % draw the child contour

% on the image with green

new_contours = cvapprox(contours,’dp’,2) % approximate all contours using Douglas-

Peucker method with accuracy = 2.

Geometry: skeletons, convex hulls, matching contours

% compare contours via pair-wise histogram comparison

err = cvmatchcontours(contours(1), contours2(5), ‘pgh’)

8-157Department of Computer Science and Engineering

8 Image Processing

Example:

% Camshift tracker, enhanced with noise filter

function new_window = track_obj(img, obj_hist, window, thresh)

probimg = cvcalcbackproject(img, obj_hist);

probimg = cvclose(probimg, 3, 2); % remove small holes via morphological
‘close’ operation

probimg = cvthresh(probimg, thresh);

contours = cvfindcontours(probimg, ‘external’);

mask_img = zeros(size(contours));

for i = 1:length(contours)

if contous(i).rect(3)*contous(i).rect(4) < 30

contours(i).pt = []; % remove small contours;

end

end

mask_img = cvfillcontours(mask_img, contours, ‘w’);

new_window = cvcamshift(mask_img, window);

8-158Department of Computer Science and Engineering

8 Image Processing

Victor Eruhimov:

Questions?

8-159Department of Computer Science and Engineering

8 Image Processing

Trainings

Go to lab…

lab/

