
1-1Department of Computer Science and Engineering

1 The Visualization Pipeline

The Visualization Pipeline

The Visualization Pipeline

1-2Department of Computer Science and Engineering

1 The Visualization Pipeline

Outline
• Object oriented programming
• VTK pipeline
• Example

1-3Department of Computer Science and Engineering

1 The Visualization Pipeline

Object Oriented Programming
VTK uses object oriented programming
• Impossible to Cover in 10 minutes … but

• Traditional programming (i.e. C, Fortran, Matlab) is
procedural:
If we have matrix a
to print it we do print(a), disp(a) etc.,

• Data/Procedures are separate, data is dumb

1-4Department of Computer Science and Engineering

1 The Visualization Pipeline

Object Oriented Programming (continued)
• In OOP data is “intelligent” i.e. data structures

encapsulate procedures i.e.

• If we have matrix a
to print it we do a.print()

• Procedures are embedded within the data structure
definition (called methods)

• Lots of good reasons for this …

1-5Department of Computer Science and Engineering

1 The Visualization Pipeline

Object Oriented Programming (continued)
Data structures are classes, e.g. in C++

class Matrix3x3 {
float a[3][3];

public:
void Print();
void Invert();
void Load(char* filename);
etc.

}

To use:
Matrix3x3 a;

a.Load(“a.matr”);

a.Print();

1-6Department of Computer Science and Engineering

1 The Visualization Pipeline

Object Oriented Programming - Inheritance
Consider now need to change file format for matrix:
INHERIT new class myMatrix3x3 from Matrix3x3 and
override Load()

class myMatrix3x3 : public Matrix3x3 {

public:

void Load(char* filename);

}

To use:
myMatrix3x3 a;

a.Load(“a.matr”);

a.Print(); This calls the Print function from Matrix3x3 class

1-7Department of Computer Science and Engineering

1 The Visualization Pipeline

Pipeline Concept
VTK follows a pipeline concept where (almost) every
class represents a filter with input and output. These
filters concatenated then form a pipeline that renders the
resulting image.
Each filter implements a method called Execute. This
method does all the computations. It can be invoked
manually or automatically by the following filter whenever
that filter needs its input.
For example, the vtkRendererWindow, that actually
displays the results invokes the Execute method
whenever it does not have any input yet or the input is no
longer current.

1-8Department of Computer Science and Engineering

1 The Visualization Pipeline

VTK Filter Objects
Each element in the pipeline is considered a filter with
input and output. As mentioned previously, the filter is
executed using the method Execute.
In addition, a method Update exists which checks if the
filter’s internal data is still current. If it is not, for example
because the filter’s input has changed, the Execute
method is called to bring the filter up-to-date.

1-9Department of Computer Science and Engineering

1 The Visualization Pipeline

VTK Filter Objects (continued)
VTK uses reference counting for its filter objects. This
means that the number of references (pointers) to a filter
object is counted. Hence, a filter object should not be
deleted from memory by simply invoke the C++ delete
command. Instead, use the method Delete that is
implemented by the filter object. This then decrements
the reference counter. Once the reference counter
becomes zero the object is removed from memory
(otherwise there would still be a reference to the filter
object; using it would cause a segmentation fault if the
filter object would have been deleted).

1-10Department of Computer Science and Engineering

1 The Visualization Pipeline

Connecting Filter Objects
In order to set up the pipeline, i.e. a concatenation of a
series of filters, the filters need to be connected in some
way. Therefore, every filter has methods to retrieve the
output and set the input:
SetInput(): set the input of a filter (the input does not

need to be available/computed yet)
GetOutput(): get the output from a filter (the output

does not need to be available/computed
yet)

To connect to filters filterA and filterB we simply
need to issue:

filterA.SetInput (filterB.GetOutput ())

1-11Department of Computer Science and Engineering

1 The Visualization Pipeline

Types of In- and Output
VTK supports multiple input as well as multiple output. In
the same way, a filter object may require more than one
input depending on its purpose. Therefore, VTK provides
the methods SetInputs and GetOutputs, so that
multiple in- and output can be handles by the filter object.

In addition, the output of a filter object can be used more
than once. The output can be used as input for as many
subsequent filter objects as necessary for the application.

1-12Department of Computer Science and Engineering

1 The Visualization Pipeline

Types of Filter Objects
Different types of filter objects are available in VTK:
• Data objects
• Process objects
Each type of object serves a different purpose.

1-13Department of Computer Science and Engineering

1 The Visualization Pipeline

Data Objects
Data objects, represented by the abstract class
vtkDataSetSource, provides information. This
information can be either generated by the object or
retrieved from somewhere. For example, a data object
can load a given data set from the hard drive and provide
it to the subsequent filter object.
Several different data objects are provided by VTK
already for generating simple objects or reading files in
various file formats.

1-14Department of Computer Science and Engineering

1 The Visualization Pipeline

Process Objects
A process object, represented by the abstract class
vtkProcessObject, modifies its input data in some
way.
Lots of process objects are available in VTK for
transforming data in various ways. For example, the
vtkTransformFilter applies a transformation matrix
to the input. This can be used for scaling or moving
geometric objects that were previously generated by a
data object.

1-15Department of Computer Science and Engineering

1 The Visualization Pipeline

Implementing Your Own Filter Object
VTK allows you to implement your own filter object that
either generates data (data object) or modifies data
(process object). Such a filter can then be added to the
pipeline just like any other filter.
When implementing the filter, the main algorithm is to be
implemented in the Execute method. In addition, you
have to make sure that the methods SetInput and
GetOutput accept and provide the correct data.

1-16Department of Computer Science and Engineering

1 The Visualization Pipeline

Execution of the Pipeline
VTK uses implicit control of the visualization pipeline (or
network if more complex) execution. Execution occurs
when output is requested from an object. Key methods
here are the two methods Update and Execute. The
Update method is generally initiated when the user
requests the system to render a scene. As part of the
process the actors send a Render() method to their
mappers. At this point network execution begins. The
mapper invokes the Update() method in its input(s).
These in turn recursively invoke the Update() method on
their input(s). This process continues until a source object
(data object) is encountered.

1-17Department of Computer Science and Engineering

1 The Visualization Pipeline

Execution of the Pipeline
At this point the source object compares its modified
tome to the last time executed. If it has been modified
more recently than executed, it re-executes via the
Execute() method. The recursion then unwinds with each
filter compring its input time to its execution time.
Execute() is called where appropriate. The process
terminates when control is returned to the mapper.

1-18Department of Computer Science and Engineering

1 The Visualization Pipeline

Loops
Filter objects can be concatenated in such a way that
loops occur in the pipeline. VTK supports such a
configuration; however, the loop is only executed once an
update request is issued.

1-19Department of Computer Science and Engineering

1 The Visualization Pipeline

VTK Pipeline

Sources Filters Mappers

File Output

Props

vtkDataSet vtkDataSet

1-20Department of Computer Science and Engineering

1 The Visualization Pipeline

VTK Pipeline (continued)

Renderer Render
Window

vtkCamera,
vtkLight

Props
(e.g. Actor/Volume)

Props

Props

vtkRenderWindowInteractor

vtkProperty

1-21Department of Computer Science and Engineering

1 The Visualization Pipeline

The Graphics Model
In order to generate an image using VTK several different elements
are involved:

1. vtkRenderWindow: manages a window on the display device; one or
more renderers draw into an instance of vtkRenderWindow.

2. vtkRenderer: coordinates the rendering provess involving lights,
cameras, and actors.

3. vtkCamera: defines the view position, focal point, and other viewing
properties of the scene.

4. vtkLight: a source of light to illuminate the scene
5. vtkActor: represents an object rendered in the scene, both its

properties and position in the world coordinate system.
6. vtkProperty: defines the appearance properties of an actor including

color, transparency, and lighting properties such as specular and
diffuse. Also representational properties like wireframe and solid
surface.

7. vtkMapper: the geometric representation for an actor. More than
one actor may refer to the same mapper.

1-22Department of Computer Science and Engineering

1 The Visualization Pipeline

The Graphics Model (continued)

1-23Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: cone
Source code:
vtkConeSource *cone = vtkConeSource::New();

cone->SetHeight(3.0);

cone->SetRadius(1.0);

cone->SetResolution(10);

vtkPolyDataMapper *coneMapper =
vtkPolyDataMapper::New();

coneMapper->SetInput(cone->GetOutput());

vtkActor *coneActor = vtkActor::New();

coneActor->SetMapper(coneMapper);

vtkRenderer *ren1= vtkRenderer::New();

ren1->AddActor(coneActor);

ren1->SetBackground(0.1, 0.2, 0.4);

1-24Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: cone (continued)
Source code (continued):
vtkRenderWindow *renWin = vtkRenderWindow::New();

renWin->AddRenderer(ren1);

renWin->SetSize(300, 300);

vtkRenderWindowInteractor *iren =
vtkRenderWindowInteractor::New();

iren->SetRenderWindow(renWin);

vtkInteractorStyleTrackballCamera *style =

vtkInteractorStyleTrackballCamera::New();

iren->SetInteractorStyle(style);

iren->Initialize();

iren->Start();

1-25Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: cone (continued)
Source code (continued):
cone->Delete();

coneMapper->Delete();

coneActor->Delete();

ren1->Delete();

renWin->Delete();

iren->Delete();

style->Delete();

return 0;

1-26Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: cone (continued)
The VTK pipeline:

vtkConeSource vtkPolyDataMapper

First, we create an instance of
vtkConeSource and set some of
its properties. The instance of
vtkConeSource "cone" is part of a
visualization pipeline (it is a
source process object); it
produces data (output type is
vtkPolyData) which other filters
may process.

In this example we terminate the pipeline
with a mapper process object.
(Intermediate filters such as
vtkShrinkPolyData could be inserted in
between the source and the mapper.) We
create an instance of vtkPolyDataMapper
to map the polygonal data into graphics
primitives. We connect the output of the
cone souece to the input of this mapper.

1-27Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: cone (continued)

vtkRenderer vtkRenderWindowvtkActor

Create an actor to represent
the cone. The actor
orchestrates rendering of the
mapper's graphics primitives.
An actor also refers to
properties via a vtkProperty
instance, and includes an
internal transformation matrix.
We set this actor's mapper to
be coneMapper which we
created above.

Create the Renderer
and assign actors to it.
A renderer is like a
viewport. It is part or all
of a window on the
screen and it is
responsible for drawing
the actors it has. We
also set the
background
color here.

Finally we create
the render window
which will show up
on the screen. We
put our renderer
into the render
window using
AddRenderer. We
also set the size
to be 300 pixels
by 300.

1-28Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: cone (continued)
Resulting rendering

1-29Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: Mace

1-30Department of Computer Science and Engineering

1 The Visualization Pipeline

Example: Model

	The Visualization Pipeline
	Outline
	Object Oriented Programming
	Object Oriented Programming (continued)
	Object Oriented Programming (continued)
	Object Oriented Programming - Inheritance
	Pipeline Concept
	VTK Filter Objects
	VTK Filter Objects (continued)
	Connecting Filter Objects
	Types of In- and Output
	Types of Filter Objects
	Data Objects
	Process Objects
	Implementing Your Own Filter Object
	Execution of the Pipeline
	Execution of the Pipeline
	Loops
	VTK Pipeline
	VTK Pipeline (continued)
	The Graphics Model
	The Graphics Model (continued)
	Example: cone
	Example: cone (continued)
	Example: cone (continued)
	Example: cone (continued)
	Example: cone (continued)
	Example: cone (continued)
	Example: Mace
	Example: Model

