
2-1Department of Computer Science and Engineering

2 Basic data representations

Basic data representations

Basic data representations

2-2Department of Computer Science and Engineering

2 Basic data representations

Overview
This chapter will introduce you to basic data
representations used for Scientific Visualization.

We will discuss different grid structures and ways to
represent data using these grid structures. In addition,
you will learn more about the way VTK handles different
types of grids and what you can do with it.

Finally, we will briefly discuss interpolation strategies for
deriving data values at locations where no data value is
provided directly by the data representation.

2-3Department of Computer Science and Engineering

2 Basic data representations

Motivation
How can we store scientific data?
The data structure should:
• Cover an area or volume with a set of data points
• Allow easy and fast access to the data
• Re-usable, i.e. not applicable to one example only
• Be flexible

2-4Department of Computer Science and Engineering

2 Basic data representations

Motivation
Inspired by finite element analysis, often different kinds of
cells are used where the data points are located at the
vertices of these cells or the entire cell.

2-5Department of Computer Science and Engineering

2 Basic data representations

Data Representation (vtkDataSet)

Data Set

Points
(vtkPoints)

Define Location

Cells
(vtkCellArray)

Define Topology

Point Attributes
(vtkPointData)

Point Properties
(e.g. intensity)

Cell Attributes
(vtkPointData)

Point Properties
(e.g. normal)

Arrays of
Numbers

(one per point
or cell)

vtkDataArray

2-6Department of Computer Science and Engineering

2 Basic data representations

Cell Topology
Cells specify the topology of the covered area. Different
cell types can occur:

– Polygon
– Tetrahedron
– Hexahedron
– Triangle
– Line
– etc.

2-7Department of Computer Science and Engineering

2 Basic data representations

Cells
• Cell is defined by an ordered list of points

– Triangle, quadrilateral points specified counter clockwise
– Others as shown

• Data is attached to entire cell or vertices of the cell

0

1

3

2
Tetrahedron

2

0
1

3
4

5

6
7

Hexahedron

2-8Department of Computer Science and Engineering

2 Basic data representations

VTK Dataset Types
VTK provides several different grid data structures:
• vtkImageData
• vtkStructuredPoints
• vtkRectilinearGrid
• vtkStructuredGrid
• vtkPolyData
• vtkUnstructuredGrid

2-9Department of Computer Science and Engineering

2 Basic data representations

Datasets
Organizing structure plus attributes

• Structured points

• Rectilinear Grid

• Structured Grid

2-10Department of Computer Science and Engineering

2 Basic data representations

Unstructured Grid
A collection of vertices, edges, faces and cells whose
connectivity information must be explicitly stored

2-11Department of Computer Science and Engineering

2 Basic data representations

Available Cell Types in VTK

2-12Department of Computer Science and Engineering

2 Basic data representations

Data Attributes
Data attributes are assigned to points or cells
• Scalars
• Vector

– Magnitude and direction

• Normal
– a vector of magnitude 1
– Used for lighting

• Texture Coordinate
– Mapping data points into a texture space

• Tensor

2-13Department of Computer Science and Engineering

2 Basic data representations

VTK Hierarchy
• In order to understand VTK structure we need to look at

class hierarchy
• Common functionality implemented in base-level

(parent) classes
• Specialized functionality implemented in lower-level

(children) classes

2-14Department of Computer Science and Engineering

2 Basic data representations

VTK Hierarchy (continued)
VTK class hierarchy for data structures:

2-15Department of Computer Science and Engineering

2 Basic data representations

Data Structure
Several member functions exist to access the cells and the vertices of the
cells in the class vtkDataSet:

– virtual vtkIdType GetNumberOfPoints ()=0

– virtual vtkIdType GetNumberOfCells ()=0

– virtual float *GetPoint (vtkIdType ptId)=0

– virtual void GetPoint (vtkIdType id, float x[3])

– virtual vtkCell *GetCell (vtkIdType cellId)=0

– virtual void GetCell (vtkIdType cellId, vtkGenericCell
*cell)=0

– virtual void GetCellBounds (vtkIdType cellId, float
bounds[6])

– virtual int GetCellType (vtkIdType cellId)=0

– virtual void GetCellTypes (vtkCellTypes *types)

– virtual void GetCellPoints (vtkIdType cellId, vtkIdList
*ptIds)=0

– virtual void GetPointCells (vtkIdType ptId, vtkIdList
*cellIds)=0

2-16Department of Computer Science and Engineering

2 Basic data representations

Data Structure (continued)
The class vtkDataSet has the following protected
members where it stores the data:

– vtkCellData *CellData

– vtkPointData *PointData

These arrays are then used to store all data values that
are represented by this instance of vtkDataSet
attached to the vertices or the cells itself.
These arrays are represented by the two classes
vtkCellData and vtkPointData.

2-17Department of Computer Science and Engineering

2 Basic data representations

Array Representation
Both classes, vtkCellData and vtkPointData, are
derived from the same class: vtkDataSetAttributes
This class has the member function GetAttribute to
access the array data structure:
vtkDataArray *GetAttribute (int attributeType)

2-18Department of Computer Science and Engineering

2 Basic data representations

Example: vtkPolyData
vtkPolyData is a complex class which has many
members. The key ones are:

– Points of type vtkPoints – represents the
geometry of the surface (i.e. the points)

– Polys of type vtkCellArray – represents part of
the topology of the surface (i.e. the polygons)

– PointData of type vtkPointData – represents
data associated with the points (e.g. normals, colors
etc.)

– CellData of type vtkCellData – represents data
associated with the cells (e.g. normals, colors etc.)

– Lots of other members …..

2-19Department of Computer Science and Engineering

2 Basic data representations

Example: vtkPolyData (continued)
• vtkDataArray is an abstract superclass for classes representing

arrays of vectors called tuples (or numbers treated as vectors of
length 1). Each tuple consists of a set of numbers or components.

• Derived Classes include vtkUnsignedCharArray,
vtkShortArray, vtkFloatArray, vtkDoubleArray etc.

• Can function either as a dynamic array (lower performance) or a
fixed length array

• All data in VTK is stored ultimately in one of the many derived
classes of vtkDataArray, e.g. in the case of vtkImageData the
intensities are stored in a vtkDataArray having dimensions equal to
the number of voxels and vector length typically equal to 1 (3 for
color images, Number of Frames for multiframe data such as fMRI
cardiac etc.)

2-20Department of Computer Science and Engineering

2 Basic data representations

Class Hierarchy

2-21Department of Computer Science and Engineering

2 Basic data representations

A specific example: vtkFloatArray
Option 1 – Fixed Length Array
To create a vtkFloatArray:
float t[] = { 9.0 };

vtkFloatArray *arr = vtkFloatArray::New ();

arr->SetNumberOfComponents (1);

arr->SetNumberOfTuples (20);

arr->SetComponent (10, 0, 10.0);

arr->SetTuple (11, t);

float b = arr->GetComponent (10, 0);

This creates an array of 20 (number of tuples) vectors each
having size 1 (number of components)
We access elements in this array be using the SetComponent and
GetComponent methods. All indices start at 0.

2-22Department of Computer Science and Engineering

2 Basic data representations

A specific example: vtkFloatArray
Option Mode 2 – Dynamic Array
To create a vtkFloatArray:
float value;

vtkFloatArray *arr = vtkFloatArray::New ();

arr->SetNumberOfComponents (1);

value = 5;

arr->InsertNextTuple (&value);

value = 10;

arr->InsertNextTuple (&value);

flaot b = arr->GetComponent (1, 0);

This creates a dynamic array of vectors each having size 1
(number of components). The InsertNextTuple command
allocates memory dynamically and places the value there.

2-23Department of Computer Science and Engineering

2 Basic data representations

Creating Data Arrays
The following constants are often defined

You can use the generic command
vtkDataArray::CreateDataArray(type)

to create an array of type to be specified at run-time.

set VTK_VOID 0

set VTK_BIT 1

set VTK_CHAR 2

set VTK_UNSIGNED_CHAR 3

set VTK_SHORT 4

set VTK_UNSIGNED_SHORT 5

set VTK_INT 6

set VTK_UNSIGNED_INT 7

set VTK_LONG 8

set VTK_UNSIGNED_LONG 9

set VTK_FLOAT 10

set VTK_DOUBLE 11

2-24Department of Computer Science and Engineering

2 Basic data representations

Creating a Surface Manually – Step 1
// Create Points for a cube

vtkPoints *pt = vtkPoints::New ();

pt->SetNumberOfPoints (8);

pt->SetPoint (0, 0, 0, 0); pt->SetPoint (1, 1, 0, 0);

pt->SetPoint (2, 1, 1, 0); pt->SetPoint (3, 0, 1, 0);

pt->SetPoint (4, 0, 0, 1); pt->SetPoint (5, 1, 0, 1);

pt->SetPoint (6, 1, 1, 1); pt->SetPoint (7, 0, 1, 1);

// Create Polygons

vtkCellArray *cl = vtkCellArray::New ();

// Insert a Square

cl->InsertNextCell (4);

cl->InsertCellPoint (0); cl->InsertCellPoint (1);

cl->InsertCellPoint (2); cl->InsertCellPoint (3);

// Insert a Triangle

cl->InsertNextCell (3);

cl->InsertCellPoint (2); cl->InsertCellPoint (3);

cl->InsertCellPoint (6);

2-25Department of Computer Science and Engineering

2 Basic data representations

Creating a Surface Manually – Step 2
// Create the Surface

vtkPolyData *sur = vtkPolyData::New ();

// Set the points and cleanup

sur->SetPoints (pt); pt->Delete ();

// Set the polygons and cleanup

sur->SetPolys (cl); cl->Delete ();

// Create a Mapper and set its input

vtkPolyDataMapper *map = vtkPolyDataMapper::New (); map->SetInput (sur);

// Create the actor and set it to display wireframes

vtkActor act = vtkActor::New (); act->SetMapper (map);

vtkProperty *property = act->GetProperty ();

property->SetColor (1, 1, 1); property->SetAmbient (1.0);

property->SetDiffuse 0.0; property->SetSpecular (0.0);

property->SetRepresentationToWireframe ();

// Create the renderer

vtkRenderer *ren = vtkRender (); ren->AddActor (act);

// Set camera mode to Orthographic as opposed to Perspective

ren->GetActiveCamera ()->ParallelProjectionOn ();

2-26Department of Computer Science and Engineering

2 Basic data representations

Creating a Surface Manually – Step 3
// Remainder is standard window/interactor etc.

// Render Window

vtkRenderWindow *renWin = vtkRenderWindow::New ();

renWin->AddRenderer (ren);

renWin->SetSize (300, 300);

// Interactor

vtkRenderWindowInteractor *iren =
vtkRenderWindowInteractor::New ();

iren->SetRenderWindow (renWin);

iren->Initialize ();

iren->Start ();

2-27Department of Computer Science and Engineering

2 Basic data representations

Finishing the Cube
// Insert rest of cube – rest of the definitions

cl->InsertNextCell (4);

cl->InsertCellPoint (0); cl->InsertCellPoint (1);

cl->InsertCellPoint (5); cl->InsertCellPoint (4);

cl->InsertNextCell (4);

cl->InsertCellPoint (0); cl->InsertCellPoint (3);

cl->InsertCellPoint (7); cl->InsertCellPoint (4);

cl->InsertNextCell (4);

cl->InsertCellPoint (1); cl->InsertCellPoint (2);

cl->InsertCellPoint (6); cl->InsertCellPoint (5);

cl->InsertNextCell (4);

cl->InsertCellPoint (4); cl->InsertCellPoint (5);

cl->InsertCellPoint (6); cl->InsertCellPoint (7);

cl->InsertNextCell (3);

cl->InsertCellPoint (3); cl->InsertCellPoint (7);

cl->InsertCellPoint (6);

2-28Department of Computer Science and Engineering

2 Basic data representations

Setting up Colors
// Create color array, colors stored as RGB values 0-255

char values[3];

vtkUnsignedCharArray *ar = vtkUnsignedCharArray::New ();

ar->SetNumberOfComponents (3);

ar->SetNumberOfTuples (8);

values[0] = 255; values[1] = 0; values[2] = 0; ar->SetTuple (0, values);

values[0] = 255; values[1] = 0; values[2] = 0; ar->SetTuple (1, values);

values[0] = 255; values[1] = 0; values[2] = 0; ar->SetTuple (2, values);

values[0] = 255; values[1] = 255; values[2] = 0; ar->SetTuple (3, values);

values[0] = 0; values[1] = 255; values[2] = 0; ar->SetTuple (4, values);

values[0] = 0; values[1] = 255; values[2] = 0; ar->SetTuple (5, values);

values[0] = 255; values[1] = 255; values[2] = 255; ar->SetTuple (6, values);

values[0] = 255; values[1] = 255; values[2] = 255; ar->SetTuple (7, values);

vtkPolyData *sur = vtkPolyData::New ();

sur->SetPoints (pt) ; pt->Delete ();

sur->SetPolys (cl); cl->Delete ();

// Set The Colors and Cleanup

sur->GetPointData ()->SetScalars (ar);

ar->Delete ();

2-29Department of Computer Science and Engineering

2 Basic data representations

Viewing Surface with Solid Faces
vtkUnsignedCharArray *ar = vtkUnsignedCharArray::New ();

ar->SetNumberOfComponents (3);

ar->SetNumberOfTuples (7);

values[0] = 255; values[1] = 255; values[2] = 0; ar->SetTuple (0, values);

values[0] = 255; values[1] = 192; values[2] = 0; ar->SetTuple (1, values);

values[0] = 255; values[1] = 128; values[2] = 0; ar->SetTuple (2, values);

values[0] = 255; values[1] = 64; values[2] = 0; ar->SetTuple (3, values);

values[0] = 255; values[1] = 0; values[2] = 0; ar->SetTuple (4, values);

values[0] = 255; values[1] = 255; values[2] = 255; ar->SetTuple (5, values);

values[0] = 0; values[1] = 255; values[2] = 255; ar->SetTuple (6, values);

vtkPolyData *sur = vtkPolyData::New ();

sur->SetPoints (pt); pt->Delete ();

sur->SetPolys (cl); cl->Delete ();

// Add Colors to polygons not points (i.e. use Cell Data)

sur->GetCellData ()->SetScalars (ar);

ar->Delete ();

2-30Department of Computer Science and Engineering

2 Basic data representations

Viewing Surface with Solid Faces (cont.)
vtkFloatArray *ar = vtkFloatArray ();

float value;

ar->SetNumberOfComponents (1);

ar->SetNumberOfTuples (7);

value = 0; ar->SetTuple (0, &value); value = 0; ar->SetTuple (1, &value);

value = 2; ar->SetTuple (2, &value); value = 3; ar->SetTuple (3, &value);

value = 4; ar->SetTuple (4, &value); value = 5; ar->SetTuple (5, &value);

value = 6; ar->SetTuple (6, &value);

// Colors are Red/Green/Blue/Opacity in range 0 to 1

vtkLookupTable *lkup = vtkLookupTable::New ();

lkup->SetNumberOfTableValues (7);

lkup->SetTableRange (0, 6);

lkup->SetTableValue (0, 1.0, 1.00, 0.0, 1.0);

lkup->SetTableValue (1, 1.0, 0.75, 0.0, 1.0);

lkup->SetTableValue (2, 1.0, 0.50, 0.0, 1.0);

lkup->SetTableValue (3, 1.0, 0.25, 0.0, 1.0);

lkup->SetTableValue (4, 1.0, 0.0, 0.0, 1.0);

lkup->SetTableValue (5, 1.0, 1.0, 1.0, 1.0);

lkup->SetTableValue (6, 0.0, 1.0, 1.0, 1.0);

2-31Department of Computer Science and Engineering

2 Basic data representations

Viewing Surface with Solid Faces (cont.)
vtkPolyData sur

sur->SetPoints (pt);

pt->Delete ();

sur->SetPolys (cl);

cl->Delete ();

// Add Colors to polygons not points (i.e. use Cell Data)

sur->GetCellData->SetScalars (ar);

ar->Delete ();

vtkPolyDataMapper *map = vtkPolyDataMapper::New ();

map->SetInput (sur);

map->SetLookupTable (lkup);

map->SetScalarRange (0, 6);

map->SetScalarModeToUseCellData ();

2-32Department of Computer Science and Engineering

2 Basic data representations

Image Data

vtkImageData

Points
(vtkPoints)

Define Location

Cells
(vtkCellArray)

Define Topology

Point Attributes
(vtkPointData)

Point Properties
(e.g. intensity)

Cell Attributes
(vtkCellData)

Cell Properties
(e.g. normal)

Arrays of
Numbers

(one per point
or cell)

vtkDataArray

Implicitly Defined by Image Specification
Rarely Used

2-33Department of Computer Science and Engineering

2 Basic data representations

vtkImageData
vtkImageData is the basic VTK class for storing
images. It is defined by 4 key elements:

– Dimensions - these define the size of the image
– Origin - the position in 3D space of point (0, 0, 0)
– Spacing - the voxel dimensions
– Scalar type - the data type of the image (e.g. float,

short etc.)
An 4x4x4 image has 4x4x4=64 points and 3x3x3=27
cubic cells (both are implicitly defined)

2-34Department of Computer Science and Engineering

2 Basic data representations

Manually Creating an Image
vtkImageData *img = vtkImageData::New ();

img->SetDimensions (10, 10, 2);

img->SetOrigin (0, 0, 0);

img->SetSpacing (0.78, 0.78, 1.5);

img->SetScalarType (VTK_SHORT);

img->SetNumberOfScalarComponents (1);

img->AllocateScalars ();

Intensity values can be accessed using the scalar array i.e. Point 0 is (0,0,0),
point 1 is (1,0,0), point 10 is (0,1,0), point 100 is (0,0,1)
vtkDataArray *data = img->GetPointData->GetScalars ();

data->SetComponent (10, 0, 5.0);

float v = data->GetComponent (10, 0);

float v2 = img->GetScalarComponentAsFloat (0, 1, 0, 0);

(this unfortunately is the nearest vtk comes to a getvoxel, no set voxel
command)

2-35Department of Computer Science and Engineering

2 Basic data representations

The Image as a Function
• VTK treats an image as a function which takes values

equal to those specified at the points and interpolates
in-between

• Standard interpolation is (tri-)linear
• In some cases (vtkImageReslice) other interpolation

schemes are available.

2-36Department of Computer Science and Engineering

2 Basic data representations

Image File Read/Write
• VTK supports by default a number of standard image file formats

for read/write
– Binary – vtkImageReader

– JPEG – vtkJPEGReader, vtkJPEGWriter
– PNG – vtkPNGReader, vtkPNGWriter (ppm,pgm)
– TIFF – vtkTIFFReader, vtkTIFFWriter
– BMP – vtkBMPReader, vtkBMPWriter

• There are local extensions for reading Analyze, Signa LX/SPR,
Prism (SPECT) etc

2-37Department of Computer Science and Engineering

2 Basic data representations

ImageToImage Filters
• There a number of ImageToImage Filters which are analogous to

the surface to surface filters we have met before.
• There are exist standard filters derived from
vtkImageToImageFilter for among others

– Smoothing – vtkImageGaussianSmooth,
vtkImageMedian3D

– Computing Gradiens/Laplacians – vtkImageGradient,
vtkImageLaplacian

– Fourier Operations – vtkImageFFT, vtkImageRFFT

– Resampling/Reslicing – vtkImageResample,
vtkImageReslice (vtkImageReslice on its own is reason
enough to learn VTK, it implements enough operations that would
take more than a year to code from scratch!)

– Flipping, Permuting – vtkImageFlip, vtkImagePermute

2-38Department of Computer Science and Engineering

2 Basic data representations

Visualizing Images
• Images are displayed as textures mapped on polygons
• In OpenGL all textures must have dimensions that are

powers of two
• Images are interpolated before display, hence some

(small) loss of sharpness takes place (only visible in
small images)

– E.g. an 100x50 image will be resampled to 128x64
before display

• Similar issues for color display, i.e. scalars vs. lookup
tables as in surfaces

• We will examine image display later in this course

2-39Department of Computer Science and Engineering

2 Basic data representations

Data in-between
Let us assume the data values are given at the vertices of
a triangular or rectangular grid (the two most common
cases).

Since the data values are only known at the vertices the
data set has “holes” that need to be filled in. Interpolation
is a technique that does exactly that: determine a
continuous function based on values that are only
discretely defined.

2-40Department of Computer Science and Engineering

2 Basic data representations

Interpolation
Several interpolation methods are available that can be
applied here. We will cover the linear case; however,
other interpolation techniques, such as Hermite
interpolation, can be used as well. See the course
Computer Graphics II for more details on interpolation.

2-41Department of Computer Science and Engineering

2 Basic data representations

Linear Interpolation
In 1-D, linear interpolation is equivalent to a weighted
average of two points connected by a straight line:

The value for the point in question can then be computed
as c = (1 – t) ·a + t · b.

a c b
t 1 - t

2-42Department of Computer Science and Engineering

2 Basic data representations

Bi-linear Interpolation
Bi-linear interpolation can be used for rectangular cells.
The interpolation process is simply applied several times.
First, an interpolated value along one edge is computed;
another one is determined at the parallel edge. Then, the
linearly interpolated value between the previously
determined ones is computed resulting in the final value g
at (u,v):

e = (1 – u) · a + u · d
f = (1 – u) · b + u · c
g = (1 – v) · f + v · e

a

c

d

b

g

e

f
u

v

2-43Department of Computer Science and Engineering

2 Basic data representations

Tri-linear Interpolation
Tri-linear interpolation is suitable for cuboid-shaped cells.
The interpolation process is applied to two parallel faces
just like in the 2-D case for interpolation as seen before.
After that, the resulting data value is derived by linearly
interpolating between the two values we just computed:

a c b
t 1 - t

2-44Department of Computer Science and Engineering

2 Basic data representations

Interpolation in Triangles
When using triangles as the basic grid element, linear
interpolation can be used directly without applying several
linear interpolations as a sequence. Just like in the 1-D
linear interpolation, weights are determined so that the
resulting value can be computed as the weighted average
between the data values at the vertices of the triangle.

v = t1 · v1 + t2 · v2 + t3 · v3

In order to determine these weights barycentric
coordinates can be used.

2-45Department of Computer Science and Engineering

2 Basic data representations

Barycentric Coordinates
Barycentric coordinates, discovered by Möbius in 1827,
define a coordinate system for points in reference to three
given points, for example the vertices of a triangle.
To find the barycentric coordinates for an arbitrary point
P, find t2 and t3 from the point Q at the intersection of the
line A1P with the side A2A3, and then determine t1 as the
mass at A1 that will balance a mass t2 + t3 at Q, thus
making P the centroid (left figure). Furthermore, the areas
of the triangles ΔA1A2P, ΔA1A3P, and ΔA2A3P are
proportional to the barycentric coordinates t1, t2, and t3 of
P.
In case of t1 + t2 + t3 = 1 we speak of homogeneous
barycentric coordinates (this is what we will use).

2-46Department of Computer Science and Engineering

2 Basic data representations

Barycentric Coordinates (continued)

2-47Department of Computer Science and Engineering

2 Basic data representations

Barycentric Coordinates (continued)
Computing homogeneous barycentric coordinates
In order to compute homogeneous barycentric
coordinates, a system of linear equation needs to be
solved:

t1 + t2 + t3 = 1
A1 · t1 + A2 · t2 + A3 · t3 = P

This looks similar to what we are looking for, i.e. we can
use as weights t1, t2, and t3 to form the weighted average
and compute the interpolated value:

v = t1 · v1 + t2 · v2 + t3 · v3

2-48Department of Computer Science and Engineering

2 Basic data representations

Cramer’s Rule
For solving the system of linear equation Cramer’s rule usually
results in better performance compared to Gaussian solvers.
Systems of linear equations can be solved using Cramer’s rule and
computing determinants:

nk
D
Dx

aadaa

aadaa
D

aaa

aaa
D

d

d

x

x

aaa

aaa

k
k

nnknnknn

nkk

k

nnnn

n

nnnnnn

n

≤≤=

==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+−

+−

1

::

)1()1(1

1)1(11)1(111

21

11211

11

21

11211

 for

:computed be can equations linear of system the of solution the Then,

 ,
LL

MMMMM

LL

L

MOMM

L

MM

L

MOMM

L

2-49Department of Computer Science and Engineering

2 Basic data representations

Interpolation in Tetrahedra
The same scheme that was used for interpolation in
triangles can be applied to tetrahedra. The only difference
is that the system of linear equations consists of more
equations due to the higher dimensionality:

t1 + t2 + t3 + t4 = 1
A1 · t1 + A2 · t2 + A3 · t3 + A4 · t4 = P

v = t1 · v1 + t2 · v2 + t3 · v3 + t4 · v4

	Basic data representations
	Overview
	Motivation
	Motivation
	Data Representation (vtkDataSet)
	Cell Topology
	Cells
	VTK Dataset Types
	Datasets
	Unstructured Grid
	Available Cell Types in VTK
	Data Attributes
	VTK Hierarchy
	VTK Hierarchy (continued)
	Data Structure
	Data Structure (continued)
	Array Representation
	Example: vtkPolyData
	Example: vtkPolyData (continued)
	Class Hierarchy
	A specific example: vtkFloatArray
	A specific example: vtkFloatArray
	Creating Data Arrays
	Creating a Surface Manually – Step 1
	Creating a Surface Manually – Step 2
	Creating a Surface Manually – Step 3
	Finishing the Cube
	Setting up Colors
	Viewing Surface with Solid Faces
	Viewing Surface with Solid Faces (cont.)
	Viewing Surface with Solid Faces (cont.)
	Image Data
	vtkImageData
	Manually Creating an Image
	The Image as a Function
	Image File Read/Write
	ImageToImage Filters
	Visualizing Images
	Data in-between
	Interpolation
	Linear Interpolation
	Bi-linear Interpolation
	Tri-linear Interpolation
	Interpolation in Triangles
	Barycentric Coordinates
	Barycentric Coordinates (continued)
	Barycentric Coordinates (continued)
	Cramer’s Rule
	Interpolation in Tetrahedra

