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Overview
This chapter introduces some basic techniques for 
visualizing different types of scientific data sets. We will 
categorize visualization methods into classes 
distinguished by data type and learn more about how to 
visualize these kinds of data. Combinations of these 
techniques can then be used depending on the type of 
data you want to visualize.
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Categorization (continued)
Four different categories can be used to classify 
visualization techniques based on the type of data they 
operate on:

– Scalar algorithms
– Vector algorithms
– Tensor algorithms
– Modeling algorithms

Algorithms can also be classified by the type of data they 
process which can be ambiguous. For example, volume 
visualization techniques are nowadays applied to scalar, 
vector, and tensor data sets.
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Categorization (continued)
Scalar algorithms
Scalar algorithms operate on scalar data. For 
example, the generation of contour lines of 
temperature on a weather map.
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Categorization (continued)
Vector algorithms
Vector algorithms operate on vector data. 
Showing oriented arrows of airflow (direction and 
magnitude) is an example of vector visualization. 
There are more advanced techniques, such as 
topological analysis or line integral convolution 
(LIC) approaches.
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Categorization (continued)
Tensor algorithms
Tensor algorithms operate on tensor matrices. 
An example of a tensor algorithm is to show the 
components of stress or strain in a material using 
oriented icons. This is possible due to the fact 
that stress/strain tensors are symmetric, i.e. the 
eigenvalues of the describing matrices exist and 
are real. Other techniques for visualizing tensors, 
which also exploit this property, are 
hyperstreamlines.
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Scalar Algorithms
Color Mapping
Color mapping is a common scalar visualization 
technique that maps scalar data to colors, and displays 
the colors on the computer system. The scalar mapping 
is implemented by indexing into a color lookup table. 
Scalar values then serve as indices into this lookup table.
The lookup table holds an array of colors. Associated with 
the table is a minimum and maximum scalar range into 
which the scalars are mapped. Scalar values greater than 
the maximum are clamped to the maximum color, scalar 
values less than the minimum are clamped to the 
minimum value.



3-8Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Then, for each scalar value si, the index i into the color 
able with n entries is given as:
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Scalar Algorithms (continued)
Transfer Functions
A more general form of the lookup table is called transfer 
function. A transfer function is any expression that maps 
scalar values into a color specification. For example, a 
function can be used to map scalar values into separate 
intensity values for the red, green, and blue components.

red green blue

in
te

ns
ity



3-10Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
We can also use transfer functions to map scalar data 
into other information such as local transparency. This 
will be discussed later when we talk about volume 
rendering. A lookup table is a discrete sampling of a 
transfer function. We can create a lookup table from any 
transfer function by sampling the transfer function at a set 
of discrete points.
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Scalar Algorithms (continued)
Color mapping is a one-dimensional visualization 
technique. It maps one piece of information (i.e. a scalar 
value) into a color specification. However, the display of 
color information is not limited to one-dimensional 
displays. Often we use color information mapped onto
1-D, 2-D, or 3-D objects. 
This is a simple way to 
increase the information 
content of our 
visualization. In 3-D, 
cutting planes can be 
used to visualize the 
data inside.



3-12Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
The key to color mapping for visualization is to choose 
the lookup table entries carefully. Designing lookup tables 
is as much art as it is science. From a practical point of 
view, tables should accentuate important features, while 
minimizing less important or extraneous details. It is also 
desirable to use palettes that inherently contain scaling 
information. For example, a color rainbow scale from blue 
to red is often used to represent temperature scale, since 
many people associate blue with cold temperatures and 
red with hot temperatures.
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Scalar Algorithms (continued)
Examples:
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Scalar Algorithms (continued)
Contouring
A natural extension to color mapping is contouring. When 
we see a surface colored with data values, the eye often 
separates similarly colored areas into distinct regions. 
When we contour data, we are effectively constructing 
the boundary between these regions. These boundaries 
correspond to contour lines (2-D) or surfaces (3-D) of 
constant scalar value.
Examples of 2-D contour displays include weather maps 
annotated with lines of constant temperature (isotherms), 
or topological maps drawn with lines of constant 
elevation.
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Scalar Algorithms (continued)
Three-dimensional contours are called isosurfaces, and 
can be approximated by many polygonal primitives. 
Examples of isosurfaces include constant medical image 
intensity corresponding to body tissues such as skin, 
bone, or other organs. (The 
corresponding isovalue for the 
same tissue, however, is not 
necessarily constant among 
several different scans.) Other 
abstract isosurfaces such as 
surfaces of constant pressure 
or temperature in fluid flow also 
may be created.
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First, we will focus on 2-D contours and how to generate 
such an isocontour for a given isovalue. Consider a 
regular grid with scalar values assigned to the grid nodes. 
Contouring always begins by selecting a scalar value (the 
isovalue or contourvalue) that corresponds to the contour 
lines or surface generated. Assuming linear interpolation 
on the regular grid, we can identify those locations on the 
edges of the regular grid where the data assumes the 
isovalue. For example, if an edge has scalar values 10 
and 0 at its two end points, and if we are trying to 
generate a contour line of value 5, then the contour 
passes through the midpoint of that edge.

Scalar Algorithms (continued)
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Scalar Algorithms (continued)
Once the points on all edges are generated, we can 
connect these points into contours using a few different 
approaches. One approach detects an edge intersection, 
i.e. the contour passes through an edge, and then tracks
this contour as it moves across 
cell boundaries. We now that if 
a contour edge enters a cell, it 
must exit a cell as well. The 
contour is tracked until it closes 
back on itself, or exits a data 
set boundary.
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Marching Squares
Another approach uses a divide and conquer technique, 
treating cells independently. This marching squares algorithm 
assumes that a contour can only pass through a cell in a finite 
number of ways due to the linear interpolation used. A case 
table is constructed that enumerates all possible topological 
states of a cell, given combinations of scalar values at the cell 
points.

(dark vertices indicate scalar value is above isovalue)

Scalar Algorithms (continued)
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Ambiguities in Marching Squares
While trying this algorithm on different configurations we realize that 
some cases may be ambiguous. That is the situation for the squares 
5 and 10.

As you can see on the previous picture we are not able to take a
decision on the interpretation of this kind of situation. However, these 
exceptions do not imply any real error because the edges keep 
closed.

Scalar Algorithms (continued)
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Scalar Algorithms (continued)
Marching Cubes
Lorensen and Cline introduced Marching Cubes in 1987. 
[William E. Lorensen, Harvey E. Cline, „Marching Cubes: A High Resolution 3D 
Surface Construction Algorithm“, ACM Computer Graphics Vol. 21 No. 4 (SIGGRAPH 
1987 Proceedings)] 

Marching Cubes (MC) is an efficient method for extracting 
isosurfaces from scalar data set defined on a regular grid. 
Similar to marching squares, surface segment is 
computed for each cell of the grid that approximates the 
isosurface.
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Scalar Algorithms (continued)

Since the triangulation inside the cell only depends on 
whether edges exist that intersect the isosurface, we 
again focus on checking if an edge has values at its 
vertices in such a way, that one is smaller and one is 
larger than the isovalue.
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Scalar Algorithms (continued)

In order to find the edges that are part of the isosurface a  
lookup table can be used. In order to find the correct 
entry in this table the vertices are numbered. By setting 
the corresponding bit for each value larger than the 
isovalue we get the index referring to the lookup table. 
There are 256 different combinations possible.
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Scalar Algorithms (continued)

Similarly, the edges are numbered. By generating a bit 
mask like before using the marked edges we can use the 
resulting value to point to another lookup table for the 
triangulation. In the above case the marked edges are 1, 
3, 10, and 11.
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Scalar Algorithms (continued)

The table for the triangulation contains the triangulations 
for all 256 cases. Each entry has a list of triangles; the 
vertices refer to the interpolated points of intersection with 
the isosurface. The triangles should be oriented 
mathematically positively for correct backface culling. In 
our example, the triangulation is e1e3e11;e3e10e11.
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Scalar Algorithms (continued)
Even though there are 256 possible configurations which 
have to be triangulated, only 15 of them need to be 
stored. The remaining ones can be derived from these 16 
cases by rotation, mirroring, or inversion.
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Scalar Algorithms (continued)

All 15 basic cases needed for Marching Cubes
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Scalar Algorithms (continued)
Computation of normal vectors
The quality of the resulting representation of the extracted isosurface
can be improved by computing the normal vectors of all vertices. We 
can exploit the fact, that the gradient of the scalar function

is always orthogonal to the isosurface. Marching Cubes 
approximates the gradient at the vertices of the grid as

and interpolates linearly to determine the gradient at the intersection.
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Scalar Algorithms (continued)
Problems with Marching Cubes
After the article about Marching Cubes was published it 
turned out that the isosurfaces extracted using Marching 
Cubes can contain holes under certain circumstances 
due to ambiguities in the case table. Several follow-up 
papers exist to fix several issues with Marching Cubes.
Variants
There are variants of Marching Cubes for triangles and 
tetrahedra as well.
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Scalar Algorithms (continued)
Coping with the Ambiguities
The original set of cases for creating triangles within the 
cells to generate an isosurface can create holes in some 
cases. This is basically due to ambiguities, i.e. there are 
more than one way to generate triangles for some cases. 
Hence, by introducing additional cases to our case table 
we can cope with the ambiguities. Obviously, in order to 
decide which configuration to use, we also have to look at 
the neighboring cells.
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Scalar Algorithms (continued)
Consider the following two cells. The original marching 
cubes solution (left) would change the topology of the 
resulting isosurface, i.e. create holes. By introducing an 
additional case, this can be fixed.
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Scalar Algorithms (continued)
To cope with these topology errors (as holes in the 3D 
model), 6 cases have been added to the marching cubes 
cases. These cases have to be used as complementary 
cases. For instance, in the previous picture, you have to 
use the case 6c instead of the standard complementary 
of the case 6. The list of new cases is shown on the next 
slide.
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Scalar Algorithms (continued)
Additional cases:
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Scalar Algorithms (continued)
Scalar generation
The two techniques – color mapping and contouring – are 
simple, effective methods to display scalar information.  It 
is natural to turn to these techniques first when visualizing 
data. However, often our data is not in a form convenient 
to these techniques. The data may not be single-valued, 
i.e. a scalar, or it may be a mathematical or other 
complex relationship. That is part of the fun and creative 
challenge of visualization: we must tap our creative 
resources to convert data into a form we can visualize.
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Scalar Algorithms (continued)
Example
Consider a terrain data set. We assume that the data is 
given as x-y-z coordinates, where x and y represents the 
coordinates in the plane, and z represents the elevation 
above sea level. Our desired visualization is to color the 
terrain according to elevation. This requires creating a 
colormap – possibly using white for high altitude, blue for 
sea level and below, and various shades of green and 
brown corresponding to elevation between sea level and 
high altitude. We also need scalars to index into the 
colormap. The obvious choice here is to extract the z-
coordinate. That is, scalars are simply the z-coordinate.
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Scalar Algorithms (continued)
The resulting visualization may look like this:
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Scalar Algorithms (continued)
Similarly, other types of data sets can be converted to the 
scalar data format. For example, by computing the 
lengths of the vectors a vector data set can be converted 
to a scalar data sets. This approach, however, should 
only be used if such a conversion makes sense for the 
application.
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Vector Algorithms
Vector data is a three-dimensional representation of 
direction and magnitude. Vector data often results from 
the study of fluid flow, or when examining derivatives, i.e. 
rate of change, of some quantity.
Different visualization techniques are available for vector 
data sets, for example:
• Hedgehogs and oriented glyphs
• Warping
• Displacement plots
• Time animation
• Streamlines
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Vector Algorithms (continued)
A simple vector visualization technique is to draw an 
oriented, scaled line for each vector. The line begins at 
the point with which the vector is associated and is 
oriented in the direction of the vector components. 
Typically, the resulting line must be scaled up or down to 
control the size of its visual representation. This 
technique is often referred to as  hedgehog because of 
the bristly result.

Direction can also be visualized using color coding by 
using different colors at each ends of the glyph
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Vector Algorithms (continued)
The problem with glyphs is that it easily results in clutter.



3-40Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Warping
Vector data is often associated with motion. The motion is 
in the form of velocity or displacement. An effective 
technique for displaying such vector data is to “warp” or 
deform geometry according to the vector field. For 
example, imagine representing the displacement of a 
structure under load by deforming the structure.
The warping technique should – as usual – be applied 
with the application in mind.
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Vector Algorithms (continued)
Example
The motion of a vibrating beam
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Vector Algorithms (continued)
Example
Warped planes in a structured grid data set. The planes 
are warped according to flow momentum.

Note: scaling might be required
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Vector Algorithms (continued)
Combination of techniques
We can also combine scalar and vector techniques by 
using a colormap:
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Vector Algorithms (continued)
Displacement plots
Vector displacement on the surface of an object can be 
visualized with displacement plots. A displacement plot 
shows the motion of an object in the direction 
perpendicular to its surface. The object motion is caused 
by an applied vector field. In a typical application the 
vector field is a displacement or strain field. A useful 
application of this technique is the study of vibration.
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Vector Algorithms (continued)
In order to move an object’s surface in normal direction 
using vector data, the vectors have to be converted into 
scalars by computing the dot product between the vector 
and the normal.
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Vector Algorithms (continued)
Example
Displacement plot with color map
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Vector Algorithms (continued)
Time animation
The idea is to move points (mass less particles) along the 
vector field. Basically, the particle is advected at every 
point in direction of the vector at that location (if 
necessary interpolation needs to be used), i.e. v = dx/dt.
Beginning with a sphere S centered about some point, we 
move S repeatedly to generate the bubbles below:
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Vector Algorithms (continued)
The eye tends to trace out a path by connecting the 
bubbles, giving the observer a qualitative understanding 
of the fluid flow in that area. The bubbles may be 
displayed as an animation over time (giving the illusion of 
motion) or as a multiple exposure sequence (giving the 
appearance of a path).
The choice of step size is a critical parameter in 
constructing accurate visualization of particle paths in a 
vector field. By taking large steps we are likely to jump 
over changes in the velocity. Using smaller steps we will 
end in a different position.
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Vector Algorithms (continued)
Example
Particle advection for fire simulation
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Vector Algorithms (continued)
Tracing particles
In order to determine the locations of a particle previously 
represented as a bubble, the particle needs to be traced 
throughout the vector field. 
Since we are considering a massless particle, the particle 
basically follows the integral curve, i.e.

The initial position is user-defined.
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Vector Algorithms (continued)
Although this form cannot be solved analytically for most 
real world data, its solution can be approximated using 
numerical integration techniques. Accurate numerical 
integration is a topic beyond the scope of this class, but it 
is known that the accuracy of the integration is a function 
of the step size. Since the path is an integration 
throughout the data set, the accuracy of the cell 
interpolation functions, as well as the accuracy of the 
original vector data, plays an important role in realizing 
accurate solutions.
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Vector Algorithms (continued)
Euler’s method
The simples form of numerical integration is Euler’s 
method

where xi is the position and Δt the step size.
Euler’s method has an error on the order of O(Δt2), which 
is not accurate enough for some applications.
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Vector Algorithms (continued)
Example
Integral curves computed using two different techniques 
for a rotational vector field
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Vector Algorithms (continued)
Runge-Kutta method
The family of explicit Runge-Kutta methods is given by

Where

(Note: the above equations have different but equivalent 
definitions in different texts).
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Vector Algorithms (continued)
To specify a particular method, one needs to provide the integer s
(the number of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for 
i = 1, 2, ..., s) and ci (for i = 2, 3, ..., s). These data are usually 
arranged in a mnemonic device, known as a Runge-Kutta tableau:

The Runge-Kutta method is consistent if 
There are also accompanying requirements if we require the method 
to have a certain order p, meaning that the truncation error is 
O(hp+1). These can be derived from the definition of the truncation 
error itself. For example, a 2-stage method has order 2 if b1 + b2 = 1, 
b2c2 = 1/2, and b2a21 = 1/2.
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Vector Algorithms (continued)
Runge-Kutta technique of order 2
Hence, we get the following formula for the Runge-Kutta
technique of order 2:
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Vector Algorithms (continued)
Streamlines
We have seen that the step size is a design parameter. 
Hence, we can choose the step size in such a way that a 
line is formed. For a static vector field, i.e. a vector field 
that does not change over time, the integral curve results 
in a streamline.
Different type types of integral curves exist:
• Pathlines
• Streaklines
• Streamlines
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Vector Algorithms (continued)
Pathline
A pathline is the line traced by a given particle. This is 
generated by injecting a dye into the fluid and following its 
path by photography or other means 
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Vector Algorithms (continued)
Streakline
A streakline concentrates on fluid particles that have 
gone through a fixed station or point. At some instant of 
time the position of all these particles are marked and a 
line is drawn through them.
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Vector Algorithms (continued)
Streamline
A streamline is one that is drawn tangential to the velocity 
vector at every point in the flow at a given instant and 
forms a powerful tool in understanding flows. Thus, it 
satisfies the equation )),((),( txsvtxs r

=′
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Vector Algorithms (continued)
Example
Flow velocity computed for a small kitchen (side view). 
Forty streamlines start along the rake positioned under 
the window. Some eventually travel over the hot stove 
and are convected upwards.
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Vector Algorithms (continued)
Example
Flow around NASA’s tapered cylinder



3-63Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Many enhancements of streamlines exist. Lines can be 
colored according to velocity magnitude to indicate speed 
of low. Other scalar quantities such as temperature or 
pressure also may be used to color the lines. We also 
may create constant time dashed lines. Each dash 
represents a constant time increment. This, in areas of 
high velocity, the length of the dash will be greater 
relative to regions of lower velocity.
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Vector Algorithms (continued)
Example
NASA’s blunt fin data set
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Tensor Algorithms
Dual vector space
The dual vector space to a real vector space V is the 
vector space of linear functions f:V→IR, denoted V*.

Tangent bundle
Every smooth manifold M has a tangent bundle TM, 
which consists of the tangent space TMp at all points p in 
M. Since a tangent space TMp is the set of all tangent 
vectors to M at p, the tangent bundle is the collection of 
all tangent vectors, along with the information of the point 
to which they are tangent. 

},:),{( pTMvMpvpTM ∈∈=



3-66Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Tensor space
A tensor space of type (r,s) can be described as a vector space 
tensor product between r copies of vector fields and s copies of the 
dual vector fields, i.e., one-forms. For example, 

is the vector bundle of (3,1)-tensors on a manifold M, where TM is the 
tangent bundle of M and T*M is its dual. Tensors of type (r,s) form a 
vector space. This description generalized to any tensor type, and an 
invertible linear map J:V→W induces a map                                 , 
where V* is the dual vector space and J the Jacobian, defined by 

where JT is the pullback map of a form is defined using the transpose 
of the Jacobian. This definition can be extended similarly to other 
tensor products of V and V*. When there is a change of coordinates, 
then tensors transform similarly, with J the Jacobian of the linear 
transformation. 
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Tensor Algorithms (continued)
Tensor
A tensor of order n in m-dimensional space is a 
mathematical object that has n indices and mn

components and obeys certain transformation rules. Each 
index of a tensor ranges over the number of dimensions 
of space. Tensors are generalizations of scalars (that 
have no indices), vectors (that have exactly one index), 
and matrices (that have exactly two indices) to an 
arbitrary number of indices.
Tensors provide a natural and concise mathematical 
framework for formulating and solving problems in areas 
of physics such as elasticity, fluid mechanics, and general 
relativity.
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Tensor Algorithms (continued)
Tensors of different orders
The easiest form of a tensor is a tensor of order 0. Since 
it does not have any indices it is basically a simple scalar.
A tensor of order 1 has one index, i.e. it can represent a 
vector.
Tensors of order 2 (the ones we deal mostly in this 
chapter) have 2 indices and 32 entries and are usually 
represented as a matrix.
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Tensor Algorithms (continued)
Two common examples for second order tensors in 3-D 
spaces are stress and strain tensors:

stress tensor strain tensor
Normal stresses in x-y-z coordinate directions are 
indicated as σx,σy,σz, shear stresses indicated as τij. 
Material displacements are represented by u, v, w
components.
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Tensor Algorithms (continued)
According to Linear Algebra, a 3×3 real symmetric matrix 
can be characterized by three vectors in 3-D called 
eigenvectors, and three numbers called the eigenvalues
of the matrix. The eigenvectors form a 3-D coordinate 
system whose axes are mutually perpendicular.
In some applications, particularly the study of materials, 
these aces also are referred to as the principle aces of 
the tensor and are physically significant. For example, if 
the tensor is a stress tensor, then the principle axes are 
the directions of normal stress and no shear stress.
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Tensor Algorithms (continued)
Associated with each eigenvector is an eigenvalue. The 
eigenvalues are often physically significant as well. In the 
study of vibration, eigenvalues correspond to the 
resonant frequencies of a structure, and the eigenvectors 
are associated mode shapes.
Mathematically we can represent eigenvalues and 
eigenvectors as follows. Given a matrix A, the 
eigenvector x and eigenvalue λ must satisfy the relation

For this equation to hold, the matrix determinant must 
satisfy

xxA λ=⋅

0=− IA λ
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Tensor Algorithms (continued)
Expanding this determinant yields a n-th degree 
polynomial (the characteristic polynomial) in λ whose 
roots are the eigenvalues. Thus, there are always n
eigenvalues, although they may not be distinct (note that 
this is only guaranteed because the tensor is symmetric!).
Once we determine the eigenvalues, we can substitute 
each into the equation to solve for the 
associated eigenvectors.

0=− IA λ
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Tensor Algorithms (continued)
We can express the eigenvectors of the 3×3 system as

With ei a unit vector in the direction of the eigenvector and 
λi the eigenvalues of the system.
If we order the eigenvalues such that

then we refer to the corresponding eigenvectors v1, v2, 
and v3 as the major, medium, and minor eigenvectors. 
We use the same terminology for the eigenvalues.

3,2,1== iev iii    with, λ

321 λλλ ≥≥
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Tensor Algorithms (continued)
Tensor visualization
Due to the high-dimensionality of tensors, 
almost all visualization techniques try to break 
a tensor down to a representation that is easier 
to understand. Usually, the eigenvectors and 
eigenvalues of the tensor are used.
For example, the directions represented by the 
eigenvectors can be used to define a ellipsoid 
visualizing the tensor as a glyph. The 
eigenvalues are then used to scale the 
ellipsoid accordingly in each direction of the 
eivenvalue. Other types of glyphs can be used 
as well, such as quads.
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Tensor Algorithms (continued)
Tensor glyphs
Tensor glyphs were initially often used for DT-MRI 
images where isotropic and anisotropic tensors occur.
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Tensor Algorithms (continued)
Example

Courtesy of Gordon Kindlmann
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Fiber tracking

Courtesy of MIT Computer Science and AI Lab (CSAIL) Medical Vision Group
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This category basically represents the default category 
and contains those visualization methods that do not 
really fit into one of the previously presented techniques.

Examples for modeling algorithms are
• Source objects
• Visualizing mathematical descriptions
• Cutting
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Modeling Algorithms (continued)
Source objects
As we have seen in previous examples, source objects 
begin the visualization pipeline. Source objects are 
geometry used to support the visualization context or to 
read in data files. Some examples for source objects are:
• Modeling simple geometry
• Supporting geometry
• Visualizing mathematical descriptions
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Modeling Algorithms (continued)
Modeling simple geometry
Spheres, cones, cubes, and other simple geometric 
objects can be used alone or in combination to model 
geometry. Often we use real-world applications such as 
air flow in a room and need to show real-world objects 
such as furniture, windows, or doors. Real-world objects 
often can be represented using these simple geometric 
representations. Alternatively, we may use a reader 
object to access geometric data defined in data files. 
These data files may contain more complex geometry, 
such as that produced by a 3-D CAD (Computer Aided 
Design) system.
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Modeling Algorithms (continued)
Supporting geometry
During the visualization process we may use source 
objects to create supporting geometry. This may be as 
simple as three lines to represent a coordinate axis or as 
complex as tubes around line segments to thicken and 
enhance their appearance. Another common use us as 
supplemental input that defines a set of points. For 
streamlines, the points determine the initial position for 
generating the streamlines. The probe filter uses the 
points as the position to compute attribute values, such 
as scalars, vectors, or tensors.
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Modeling Algorithms (continued)
Data attribute creation
Source objects can be used as procedures to create data 
attributes. For example, we can procedurally create 
textures and texture coordinates. Another use is to create 
scalar values over a uniform grid. If the scalar values are 
generated from a mathematical function, then we can use 
the visualization technique described here to visualize the 
function. For example, implicit functions are described by 
a mathematical formula and can be visualized directly.



3-83Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Visualizing mathematical descriptions
Some functions, often discrete or probabilistic in nature, 
cannot be cast into the form of an implicit function. 
However, by applying some creative thinking we can 
often generate scalar values that can be visualized. An 
interesting example of this is the so-called strange 
attractor. Strange attractors arise in the study of nonlinear 
dynamics and chaotic systems. In these systems, the 
usual types of dynamic motion – equilibrium, periodic 
motion, or quasi-periodic motion – are not present. 
Instead the system exhibits chaotic motion. Small 
perturbations can radically change the behavior of the 
system.
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Lorentz attractor
A classical strange attractor was developed by Lorentz in 
1963. Lorentz developed a simple model for thermally 
induced fluid convection in the atmosphere. Convection 
causes rings of rotating fluid and can be developed from 
the general Navier-Stokes partial differential equations for 
fluid flow.

Visualization of an isosurface of the number of visits at each voxel
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Cutting
Often we want to cut through a data set with a surface 
and then display the interpolated data values on the 
surface. We refer to this technique as data cutting or 
simply cutting. The data cutting operation requires two 
pieces of information: a definition for the surface and a 
data set to cut. The easiest way for the algorithm is to 
define the cutting surface as an implicit function

F(x, y, z) = 0.
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Modeling Algorithms (continued)
The cutting algorithm proceeds as follows. For each cell, 
function values are generated by evaluating F(x, y, z) = 0
for each cell point. If all the points evaluate positive or 
negative, then the surface does not cut the cell. However, 
if the points evaluate positive and negative, then the 
surface passes through the cell. We can use the cell 
contouring operation to generate the isosurface F(x, y, z) 
= 0. Data attribute values can then be computed by 
interpolating along the cut edges.
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Modeling Algorithms (continued)
Examples
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Modeling Algorithms (continued)
Cutting can also be used to emulate volume rendering. 
By introducing a series of cutting planes perpendicular to 
the camera’s view plane normal and rendering the planes 
from back to front with an opacity of, for example, 0.05 
we get a volume renderer.
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