
3-1Department of Computer Science and Engineering

3 Fundamental Algorithms

Fundamental Algorithms

Fundamental Algorithms

3-2Department of Computer Science and Engineering

3 Fundamental Algorithms

Overview
This chapter introduces some basic techniques for
visualizing different types of scientific data sets. We will
categorize visualization methods into classes
distinguished by data type and learn more about how to
visualize these kinds of data. Combinations of these
techniques can then be used depending on the type of
data you want to visualize.

3-3Department of Computer Science and Engineering

3 Fundamental Algorithms

Categorization (continued)
Four different categories can be used to classify
visualization techniques based on the type of data they
operate on:

– Scalar algorithms
– Vector algorithms
– Tensor algorithms
– Modeling algorithms

Algorithms can also be classified by the type of data they
process which can be ambiguous. For example, volume
visualization techniques are nowadays applied to scalar,
vector, and tensor data sets.

3-4Department of Computer Science and Engineering

3 Fundamental Algorithms

Categorization (continued)
Scalar algorithms
Scalar algorithms operate on scalar data. For
example, the generation of contour lines of
temperature on a weather map.

3-5Department of Computer Science and Engineering

3 Fundamental Algorithms

Categorization (continued)
Vector algorithms
Vector algorithms operate on vector data.
Showing oriented arrows of airflow (direction and
magnitude) is an example of vector visualization.
There are more advanced techniques, such as
topological analysis or line integral convolution
(LIC) approaches.

3-6Department of Computer Science and Engineering

3 Fundamental Algorithms

Categorization (continued)
Tensor algorithms
Tensor algorithms operate on tensor matrices.
An example of a tensor algorithm is to show the
components of stress or strain in a material using
oriented icons. This is possible due to the fact
that stress/strain tensors are symmetric, i.e. the
eigenvalues of the describing matrices exist and
are real. Other techniques for visualizing tensors,
which also exploit this property, are
hyperstreamlines.

3-7Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms
Color Mapping
Color mapping is a common scalar visualization
technique that maps scalar data to colors, and displays
the colors on the computer system. The scalar mapping
is implemented by indexing into a color lookup table.
Scalar values then serve as indices into this lookup table.
The lookup table holds an array of colors. Associated with
the table is a minimum and maximum scalar range into
which the scalars are mapped. Scalar values greater than
the maximum are clamped to the maximum color, scalar
values less than the minimum are clamped to the
minimum value.

3-8Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Then, for each scalar value si, the index i into the color
able with n entries is given as:

⎟
⎠
⎞

⎜
⎝
⎛

−
−

⋅=

−=>
=<

minmax
min

1max
0min

i

i

i

sni

nis
is

 :otherwise

 :
 :

rgb0

rgb1

rgb2

●
●
●

rgbn-1

si color

3-9Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Transfer Functions
A more general form of the lookup table is called transfer
function. A transfer function is any expression that maps
scalar values into a color specification. For example, a
function can be used to map scalar values into separate
intensity values for the red, green, and blue components.

red green blue

in
te

ns
ity

3-10Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
We can also use transfer functions to map scalar data
into other information such as local transparency. This
will be discussed later when we talk about volume
rendering. A lookup table is a discrete sampling of a
transfer function. We can create a lookup table from any
transfer function by sampling the transfer function at a set
of discrete points.

3-11Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Color mapping is a one-dimensional visualization
technique. It maps one piece of information (i.e. a scalar
value) into a color specification. However, the display of
color information is not limited to one-dimensional
displays. Often we use color information mapped onto
1-D, 2-D, or 3-D objects.
This is a simple way to
increase the information
content of our
visualization. In 3-D,
cutting planes can be
used to visualize the
data inside.

3-12Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
The key to color mapping for visualization is to choose
the lookup table entries carefully. Designing lookup tables
is as much art as it is science. From a practical point of
view, tables should accentuate important features, while
minimizing less important or extraneous details. It is also
desirable to use palettes that inherently contain scaling
information. For example, a color rainbow scale from blue
to red is often used to represent temperature scale, since
many people associate blue with cold temperatures and
red with hot temperatures.

3-13Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Examples:

3-14Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Contouring
A natural extension to color mapping is contouring. When
we see a surface colored with data values, the eye often
separates similarly colored areas into distinct regions.
When we contour data, we are effectively constructing
the boundary between these regions. These boundaries
correspond to contour lines (2-D) or surfaces (3-D) of
constant scalar value.
Examples of 2-D contour displays include weather maps
annotated with lines of constant temperature (isotherms),
or topological maps drawn with lines of constant
elevation.

3-15Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Three-dimensional contours are called isosurfaces, and
can be approximated by many polygonal primitives.
Examples of isosurfaces include constant medical image
intensity corresponding to body tissues such as skin,
bone, or other organs. (The
corresponding isovalue for the
same tissue, however, is not
necessarily constant among
several different scans.) Other
abstract isosurfaces such as
surfaces of constant pressure
or temperature in fluid flow also
may be created.

3-16Department of Computer Science and Engineering

3 Fundamental Algorithms

First, we will focus on 2-D contours and how to generate
such an isocontour for a given isovalue. Consider a
regular grid with scalar values assigned to the grid nodes.
Contouring always begins by selecting a scalar value (the
isovalue or contourvalue) that corresponds to the contour
lines or surface generated. Assuming linear interpolation
on the regular grid, we can identify those locations on the
edges of the regular grid where the data assumes the
isovalue. For example, if an edge has scalar values 10
and 0 at its two end points, and if we are trying to
generate a contour line of value 5, then the contour
passes through the midpoint of that edge.

Scalar Algorithms (continued)

3-17Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Once the points on all edges are generated, we can
connect these points into contours using a few different
approaches. One approach detects an edge intersection,
i.e. the contour passes through an edge, and then tracks
this contour as it moves across
cell boundaries. We now that if
a contour edge enters a cell, it
must exit a cell as well. The
contour is tracked until it closes
back on itself, or exits a data
set boundary.

3-18Department of Computer Science and Engineering

3 Fundamental Algorithms

Marching Squares
Another approach uses a divide and conquer technique,
treating cells independently. This marching squares algorithm
assumes that a contour can only pass through a cell in a finite
number of ways due to the linear interpolation used. A case
table is constructed that enumerates all possible topological
states of a cell, given combinations of scalar values at the cell
points.

(dark vertices indicate scalar value is above isovalue)

Scalar Algorithms (continued)

3-19Department of Computer Science and Engineering

3 Fundamental Algorithms

Ambiguities in Marching Squares
While trying this algorithm on different configurations we realize that
some cases may be ambiguous. That is the situation for the squares
5 and 10.

As you can see on the previous picture we are not able to take a
decision on the interpretation of this kind of situation. However, these
exceptions do not imply any real error because the edges keep
closed.

Scalar Algorithms (continued)

3-20Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Marching Cubes
Lorensen and Cline introduced Marching Cubes in 1987.
[William E. Lorensen, Harvey E. Cline, „Marching Cubes: A High Resolution 3D
Surface Construction Algorithm“, ACM Computer Graphics Vol. 21 No. 4 (SIGGRAPH
1987 Proceedings)]

Marching Cubes (MC) is an efficient method for extracting
isosurfaces from scalar data set defined on a regular grid.
Similar to marching squares, surface segment is
computed for each cell of the grid that approximates the
isosurface.

3-21Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)

Since the triangulation inside the cell only depends on
whether edges exist that intersect the isosurface, we
again focus on checking if an edge has values at its
vertices in such a way, that one is smaller and one is
larger than the isovalue.

v0
v1

v3 v2

v4

v5

v6

v7

3-22Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)

In order to find the edges that are part of the isosurface a
lookup table can be used. In order to find the correct
entry in this table the vertices are numbered. By setting
the corresponding bit for each value larger than the
isovalue we get the index referring to the lookup table.
There are 256 different combinations possible.

v0
v1

v3 v2

v4

v5

v6

v7

3-23Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)

Similarly, the edges are numbered. By generating a bit
mask like before using the marked edges we can use the
resulting value to point to another lookup table for the
triangulation. In the above case the marked edges are 1,
3, 10, and 11.

e0

e1

e2

e3

e9

e8

e11
e10

e6

e4

e7
e5

3-24Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)

The table for the triangulation contains the triangulations
for all 256 cases. Each entry has a list of triangles; the
vertices refer to the interpolated points of intersection with
the isosurface. The triangles should be oriented
mathematically positively for correct backface culling. In
our example, the triangulation is e1e3e11;e3e10e11.

e0

e1

e2

e3

e9

e8

e11
e10

e6

e4

e7
e5

3-25Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Even though there are 256 possible configurations which
have to be triangulated, only 15 of them need to be
stored. The remaining ones can be derived from these 16
cases by rotation, mirroring, or inversion.

e2e3e10

e0

e1
e3

e9

e8

e11
e10

e6

e4

e7
e5

e2

e0

e1
e3

e9

e8

e11
e10

e6

e4

e7
e5

e2

e2e3e10

3-26Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)

All 15 basic cases needed for Marching Cubes

3-27Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Computation of normal vectors
The quality of the resulting representation of the extracted isosurface
can be improved by computing the normal vectors of all vertices. We
can exploit the fact, that the gradient of the scalar function

is always orthogonal to the isosurface. Marching Cubes
approximates the gradient at the vertices of the grid as

and interpolates linearly to determine the gradient at the intersection.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂
∂
∂
∂
∂

=∇

),,(

),,(

),,(

),,(

zyx
z
f

zyx
y
f

zyx
x
f

zyxf

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

Δ
−−+

Δ
−−+

Δ
−−+

=∇

z
kjiDjjiD

y
kjiDjjiD

x
kjiDjjiD

zyxf

)1,,()1,,(

),1,(),1,(

),,1(),,1(

),,(

3-28Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Problems with Marching Cubes
After the article about Marching Cubes was published it
turned out that the isosurfaces extracted using Marching
Cubes can contain holes under certain circumstances
due to ambiguities in the case table. Several follow-up
papers exist to fix several issues with Marching Cubes.
Variants
There are variants of Marching Cubes for triangles and
tetrahedra as well.

3-29Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Coping with the Ambiguities
The original set of cases for creating triangles within the
cells to generate an isosurface can create holes in some
cases. This is basically due to ambiguities, i.e. there are
more than one way to generate triangles for some cases.
Hence, by introducing additional cases to our case table
we can cope with the ambiguities. Obviously, in order to
decide which configuration to use, we also have to look at
the neighboring cells.

3-30Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Consider the following two cells. The original marching
cubes solution (left) would change the topology of the
resulting isosurface, i.e. create holes. By introducing an
additional case, this can be fixed.

3-31Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
To cope with these topology errors (as holes in the 3D
model), 6 cases have been added to the marching cubes
cases. These cases have to be used as complementary
cases. For instance, in the previous picture, you have to
use the case 6c instead of the standard complementary
of the case 6. The list of new cases is shown on the next
slide.

3-32Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Additional cases:

3-33Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Scalar generation
The two techniques – color mapping and contouring – are
simple, effective methods to display scalar information. It
is natural to turn to these techniques first when visualizing
data. However, often our data is not in a form convenient
to these techniques. The data may not be single-valued,
i.e. a scalar, or it may be a mathematical or other
complex relationship. That is part of the fun and creative
challenge of visualization: we must tap our creative
resources to convert data into a form we can visualize.

3-34Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Example
Consider a terrain data set. We assume that the data is
given as x-y-z coordinates, where x and y represents the
coordinates in the plane, and z represents the elevation
above sea level. Our desired visualization is to color the
terrain according to elevation. This requires creating a
colormap – possibly using white for high altitude, blue for
sea level and below, and various shades of green and
brown corresponding to elevation between sea level and
high altitude. We also need scalars to index into the
colormap. The obvious choice here is to extract the z-
coordinate. That is, scalars are simply the z-coordinate.

3-35Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
The resulting visualization may look like this:

3-36Department of Computer Science and Engineering

3 Fundamental Algorithms

Scalar Algorithms (continued)
Similarly, other types of data sets can be converted to the
scalar data format. For example, by computing the
lengths of the vectors a vector data set can be converted
to a scalar data sets. This approach, however, should
only be used if such a conversion makes sense for the
application.

3-37Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms
Vector data is a three-dimensional representation of
direction and magnitude. Vector data often results from
the study of fluid flow, or when examining derivatives, i.e.
rate of change, of some quantity.
Different visualization techniques are available for vector
data sets, for example:
• Hedgehogs and oriented glyphs
• Warping
• Displacement plots
• Time animation
• Streamlines

3-38Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
A simple vector visualization technique is to draw an
oriented, scaled line for each vector. The line begins at
the point with which the vector is associated and is
oriented in the direction of the vector components.
Typically, the resulting line must be scaled up or down to
control the size of its visual representation. This
technique is often referred to as hedgehog because of
the bristly result.

Direction can also be visualized using color coding by
using different colors at each ends of the glyph

3-39Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
The problem with glyphs is that it easily results in clutter.

3-40Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Warping
Vector data is often associated with motion. The motion is
in the form of velocity or displacement. An effective
technique for displaying such vector data is to “warp” or
deform geometry according to the vector field. For
example, imagine representing the displacement of a
structure under load by deforming the structure.
The warping technique should – as usual – be applied
with the application in mind.

3-41Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
The motion of a vibrating beam

3-42Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
Warped planes in a structured grid data set. The planes
are warped according to flow momentum.

Note: scaling might be required

3-43Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Combination of techniques
We can also combine scalar and vector techniques by
using a colormap:

3-44Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Displacement plots
Vector displacement on the surface of an object can be
visualized with displacement plots. A displacement plot
shows the motion of an object in the direction
perpendicular to its surface. The object motion is caused
by an applied vector field. In a typical application the
vector field is a displacement or strain field. A useful
application of this technique is the study of vibration.

3-45Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
In order to move an object’s surface in normal direction
using vector data, the vectors have to be converted into
scalars by computing the dot product between the vector
and the normal.

3-46Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
Displacement plot with color map

3-47Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Time animation
The idea is to move points (mass less particles) along the
vector field. Basically, the particle is advected at every
point in direction of the vector at that location (if
necessary interpolation needs to be used), i.e. v = dx/dt.
Beginning with a sphere S centered about some point, we
move S repeatedly to generate the bubbles below:

3-48Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
The eye tends to trace out a path by connecting the
bubbles, giving the observer a qualitative understanding
of the fluid flow in that area. The bubbles may be
displayed as an animation over time (giving the illusion of
motion) or as a multiple exposure sequence (giving the
appearance of a path).
The choice of step size is a critical parameter in
constructing accurate visualization of particle paths in a
vector field. By taking large steps we are likely to jump
over changes in the velocity. Using smaller steps we will
end in a different position.

3-49Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
Particle advection for fire simulation

3-50Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Tracing particles
In order to determine the locations of a particle previously
represented as a bubble, the particle needs to be traced
throughout the vector field.
Since we are considering a massless particle, the particle
basically follows the integral curve, i.e.

The initial position is user-defined.

)),((),(txsvtxs r
=′

v

s

3-51Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Although this form cannot be solved analytically for most
real world data, its solution can be approximated using
numerical integration techniques. Accurate numerical
integration is a topic beyond the scope of this class, but it
is known that the accuracy of the integration is a function
of the step size. Since the path is an integration
throughout the data set, the accuracy of the cell
interpolation functions, as well as the accuracy of the
original vector data, plays an important role in realizing
accurate solutions.

3-52Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Euler’s method
The simples form of numerical integration is Euler’s
method

where xi is the position and Δt the step size.
Euler’s method has an error on the order of O(Δt2), which
is not accurate enough for some applications.

txvxx iii Δ⋅+=+)(1
rrrr

3-53Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
Integral curves computed using two different techniques
for a rotational vector field

3-54Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Runge-Kutta method
The family of explicit Runge-Kutta methods is given by

Where

(Note: the above equations have different but equivalent
definitions in different texts).

3-55Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
To specify a particular method, one needs to provide the integer s
(the number of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bi (for
i = 1, 2, ..., s) and ci (for i = 2, 3, ..., s). These data are usually
arranged in a mnemonic device, known as a Runge-Kutta tableau:

The Runge-Kutta method is consistent if
There are also accompanying requirements if we require the method
to have a certain order p, meaning that the truncation error is
O(hp+1). These can be derived from the definition of the truncation
error itself. For example, a 2-stage method has order 2 if b1 + b2 = 1,
b2c2 = 1/2, and b2a21 = 1/2.

3-56Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Runge-Kutta technique of order 2
Hence, we get the following formula for the Runge-Kutta
technique of order 2:

))()((
2 11 ++ +
Δ

+= iiii xvxvtxx rrrrrr

3-57Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Streamlines
We have seen that the step size is a design parameter.
Hence, we can choose the step size in such a way that a
line is formed. For a static vector field, i.e. a vector field
that does not change over time, the integral curve results
in a streamline.
Different type types of integral curves exist:
• Pathlines
• Streaklines
• Streamlines

3-58Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Pathline
A pathline is the line traced by a given particle. This is
generated by injecting a dye into the fluid and following its
path by photography or other means

3-59Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Streakline
A streakline concentrates on fluid particles that have
gone through a fixed station or point. At some instant of
time the position of all these particles are marked and a
line is drawn through them.

3-60Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Streamline
A streamline is one that is drawn tangential to the velocity
vector at every point in the flow at a given instant and
forms a powerful tool in understanding flows. Thus, it
satisfies the equation)),((),(txsvtxs r

=′

3-61Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
Flow velocity computed for a small kitchen (side view).
Forty streamlines start along the rake positioned under
the window. Some eventually travel over the hot stove
and are convected upwards.

3-62Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
Flow around NASA’s tapered cylinder

3-63Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Many enhancements of streamlines exist. Lines can be
colored according to velocity magnitude to indicate speed
of low. Other scalar quantities such as temperature or
pressure also may be used to color the lines. We also
may create constant time dashed lines. Each dash
represents a constant time increment. This, in areas of
high velocity, the length of the dash will be greater
relative to regions of lower velocity.

3-64Department of Computer Science and Engineering

3 Fundamental Algorithms

Vector Algorithms (continued)
Example
NASA’s blunt fin data set

3-65Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms
Dual vector space
The dual vector space to a real vector space V is the
vector space of linear functions f:V→IR, denoted V*.

Tangent bundle
Every smooth manifold M has a tangent bundle TM,
which consists of the tangent space TMp at all points p in
M. Since a tangent space TMp is the set of all tangent
vectors to M at p, the tangent bundle is the collection of
all tangent vectors, along with the information of the point
to which they are tangent.

},:),{(pTMvMpvpTM ∈∈=

3-66Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Tensor space
A tensor space of type (r,s) can be described as a vector space
tensor product between r copies of vector fields and s copies of the
dual vector fields, i.e., one-forms. For example,

is the vector bundle of (3,1)-tensors on a manifold M, where TM is the
tangent bundle of M and T*M is its dual. Tensors of type (r,s) form a
vector space. This description generalized to any tensor type, and an
invertible linear map J:V→W induces a map ,
where V* is the dual vector space and J the Jacobian, defined by

where JT is the pullback map of a form is defined using the transpose
of the Jacobian. This definition can be extended similarly to other
tensor products of V and V*. When there is a change of coordinates,
then tensors transform similarly, with J the Jacobian of the linear
transformation.

MTTMTMTMT *)1,3(⊗⊗⊗=

,))(()(~ *
2

1
1

*
21 vJJvvvJ T −⊗=⊗

**:~ WWVVJ ⊗→⊗

3-67Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Tensor
A tensor of order n in m-dimensional space is a
mathematical object that has n indices and mn

components and obeys certain transformation rules. Each
index of a tensor ranges over the number of dimensions
of space. Tensors are generalizations of scalars (that
have no indices), vectors (that have exactly one index),
and matrices (that have exactly two indices) to an
arbitrary number of indices.
Tensors provide a natural and concise mathematical
framework for formulating and solving problems in areas
of physics such as elasticity, fluid mechanics, and general
relativity.

3-68Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Tensors of different orders
The easiest form of a tensor is a tensor of order 0. Since
it does not have any indices it is basically a simple scalar.
A tensor of order 1 has one index, i.e. it can represent a
vector.
Tensors of order 2 (the ones we deal mostly in this
chapter) have 2 indices and 32 entries and are usually
represented as a matrix.

3-69Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Two common examples for second order tensors in 3-D
spaces are stress and strain tensors:

stress tensor strain tensor
Normal stresses in x-y-z coordinate directions are
indicated as σx,σy,σz, shear stresses indicated as τij.
Material displacements are represented by u, v, w
components.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

zzyzx

yzyyx

xzxyx

σττ
τστ
ττσ

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

z
w

y
w

z
v

x
w

z
u

y
w

z
v

y
v

z
v

y
u

x
w

z
u

z
v

y
u

x
u

3-70Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
According to Linear Algebra, a 3×3 real symmetric matrix
can be characterized by three vectors in 3-D called
eigenvectors, and three numbers called the eigenvalues
of the matrix. The eigenvectors form a 3-D coordinate
system whose axes are mutually perpendicular.
In some applications, particularly the study of materials,
these aces also are referred to as the principle aces of
the tensor and are physically significant. For example, if
the tensor is a stress tensor, then the principle axes are
the directions of normal stress and no shear stress.

3-71Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Associated with each eigenvector is an eigenvalue. The
eigenvalues are often physically significant as well. In the
study of vibration, eigenvalues correspond to the
resonant frequencies of a structure, and the eigenvectors
are associated mode shapes.
Mathematically we can represent eigenvalues and
eigenvectors as follows. Given a matrix A, the
eigenvector x and eigenvalue λ must satisfy the relation

For this equation to hold, the matrix determinant must
satisfy

xxA λ=⋅

0=− IA λ

3-72Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Expanding this determinant yields a n-th degree
polynomial (the characteristic polynomial) in λ whose
roots are the eigenvalues. Thus, there are always n
eigenvalues, although they may not be distinct (note that
this is only guaranteed because the tensor is symmetric!).
Once we determine the eigenvalues, we can substitute
each into the equation to solve for the
associated eigenvectors.

0=− IA λ

3-73Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
We can express the eigenvectors of the 3×3 system as

With ei a unit vector in the direction of the eigenvector and
λi the eigenvalues of the system.
If we order the eigenvalues such that

then we refer to the corresponding eigenvectors v1, v2,
and v3 as the major, medium, and minor eigenvectors.
We use the same terminology for the eigenvalues.

3,2,1== iev iii with, λ

321 λλλ ≥≥

3-74Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Tensor visualization
Due to the high-dimensionality of tensors,
almost all visualization techniques try to break
a tensor down to a representation that is easier
to understand. Usually, the eigenvectors and
eigenvalues of the tensor are used.
For example, the directions represented by the
eigenvectors can be used to define a ellipsoid
visualizing the tensor as a glyph. The
eigenvalues are then used to scale the
ellipsoid accordingly in each direction of the
eivenvalue. Other types of glyphs can be used
as well, such as quads.

3-75Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Tensor glyphs
Tensor glyphs were initially often used for DT-MRI
images where isotropic and anisotropic tensors occur.

3-76Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Example

Courtesy of Gordon Kindlmann

3-77Department of Computer Science and Engineering

3 Fundamental Algorithms

Tensor Algorithms (continued)
Fiber tracking

Courtesy of MIT Computer Science and AI Lab (CSAIL) Medical Vision Group

3-78Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms
This category basically represents the default category
and contains those visualization methods that do not
really fit into one of the previously presented techniques.

Examples for modeling algorithms are
• Source objects
• Visualizing mathematical descriptions
• Cutting

3-79Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Source objects
As we have seen in previous examples, source objects
begin the visualization pipeline. Source objects are
geometry used to support the visualization context or to
read in data files. Some examples for source objects are:
• Modeling simple geometry
• Supporting geometry
• Visualizing mathematical descriptions

3-80Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Modeling simple geometry
Spheres, cones, cubes, and other simple geometric
objects can be used alone or in combination to model
geometry. Often we use real-world applications such as
air flow in a room and need to show real-world objects
such as furniture, windows, or doors. Real-world objects
often can be represented using these simple geometric
representations. Alternatively, we may use a reader
object to access geometric data defined in data files.
These data files may contain more complex geometry,
such as that produced by a 3-D CAD (Computer Aided
Design) system.

3-81Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Supporting geometry
During the visualization process we may use source
objects to create supporting geometry. This may be as
simple as three lines to represent a coordinate axis or as
complex as tubes around line segments to thicken and
enhance their appearance. Another common use us as
supplemental input that defines a set of points. For
streamlines, the points determine the initial position for
generating the streamlines. The probe filter uses the
points as the position to compute attribute values, such
as scalars, vectors, or tensors.

3-82Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Data attribute creation
Source objects can be used as procedures to create data
attributes. For example, we can procedurally create
textures and texture coordinates. Another use is to create
scalar values over a uniform grid. If the scalar values are
generated from a mathematical function, then we can use
the visualization technique described here to visualize the
function. For example, implicit functions are described by
a mathematical formula and can be visualized directly.

3-83Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Visualizing mathematical descriptions
Some functions, often discrete or probabilistic in nature,
cannot be cast into the form of an implicit function.
However, by applying some creative thinking we can
often generate scalar values that can be visualized. An
interesting example of this is the so-called strange
attractor. Strange attractors arise in the study of nonlinear
dynamics and chaotic systems. In these systems, the
usual types of dynamic motion – equilibrium, periodic
motion, or quasi-periodic motion – are not present.
Instead the system exhibits chaotic motion. Small
perturbations can radically change the behavior of the
system.

3-84Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Lorentz attractor
A classical strange attractor was developed by Lorentz in
1963. Lorentz developed a simple model for thermally
induced fluid convection in the atmosphere. Convection
causes rings of rotating fluid and can be developed from
the general Navier-Stokes partial differential equations for
fluid flow.

Visualization of an isosurface of the number of visits at each voxel

3-85Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Cutting
Often we want to cut through a data set with a surface
and then display the interpolated data values on the
surface. We refer to this technique as data cutting or
simply cutting. The data cutting operation requires two
pieces of information: a definition for the surface and a
data set to cut. The easiest way for the algorithm is to
define the cutting surface as an implicit function

F(x, y, z) = 0.

3-86Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
The cutting algorithm proceeds as follows. For each cell,
function values are generated by evaluating F(x, y, z) = 0
for each cell point. If all the points evaluate positive or
negative, then the surface does not cut the cell. However,
if the points evaluate positive and negative, then the
surface passes through the cell. We can use the cell
contouring operation to generate the isosurface F(x, y, z)
= 0. Data attribute values can then be computed by
interpolating along the cut edges.

3-87Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Examples

3-88Department of Computer Science and Engineering

3 Fundamental Algorithms

Modeling Algorithms (continued)
Cutting can also be used to emulate volume rendering.
By introducing a series of cutting planes perpendicular to
the camera’s view plane normal and rendering the planes
from back to front with an opacity of, for example, 0.05
we get a volume renderer.

	Fundamental Algorithms
	Overview
	Categorization (continued)
	Categorization (continued)
	Categorization (continued)
	Categorization (continued)
	Scalar Algorithms
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Scalar Algorithms (continued)
	Vector Algorithms
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Vector Algorithms (continued)
	Tensor Algorithms
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Tensor Algorithms (continued)
	Modeling Algorithms
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)
	Modeling Algorithms (continued)

