Exercise 1.

Draw a diagram showing the structure of the list and the position of the pointers \(p1 \) and \(p2 \) after executing each fragment of code in parts a-d. Some of the fragments may produce memory leaks or errors. Assume class node is defined as follows:

```cpp
class node
{
    public:
        node( int x, node* ptr )
        {
            data = x;
            next = ptr;
        }
        int data;
        node* next;
};
```

a) \(\text{node } *p1; \)
\(p1 = \text{new node}(10, \text{NULL}); \)
\(p1 = \text{new node}(20, p1); \)
\(p1 = \text{new node}(30, p1); \)

b) \(\text{node } *p1, *p2; \)
\(p1 = p2 = \text{new node}(10, \text{NULL}); \)
\(p2 = p2->\text{next} = \text{new node}(20, \text{NULL}); \)
\(p2 = p2->\text{next} = \text{new node}(30, \text{NULL}); \)

c) \(\text{node } *p1, *p2; \)
\(p1 = \text{new node}(10, \text{NULL}); \)
\(p2 = \text{new node}(20, p1); \)
\(p2->\text{next->next} = \text{new node}(30, p1); \)
\(p2->\text{next} = p2; \)
\(p2 = p2->\text{next->next}; \)

d) \(\text{node } *p1, *p2; \)
\(p1 = \text{new node}(10, \text{NULL}); \)
\(p2 = \text{new node}(20, p1); \)
\(p1->\text{next} = p2; \)
\(p2 = p2->\text{next->next->next}; \)
Exercise 2.

Assume a list exists with the following content:

```
ptr 10 20 30 40 50 NULL
```

a) Show the output produced by the function call: `mystery(ptr, 50);`
b) Show the output produced by the function call: `mystery(ptr, 10);`
c) Describe the operation performed by the mystery function in one or two sentences.

class node
{
 public:
 node(int x, node* ptr) { data = x; next = ptr; }
 int data;
 node* next;
};

void mystery(node*& head, int x)
{
 node* p2 = NULL;
 node* p1 = head;
 while (p1 != NULL && x != p1->data)
 {
 p2 = p1;
 p1 = p1->next;
 }
 if (p1 != NULL)
 {
 if (p1 == head)
 {
 head = head->next;
 }
 else
 {
 p2->next = p1->next;
 }
 delete p1;
 }
}
Exercise 3.

The file lab3.zip contains a nearly complete implementation of a simple singly linked list class. Two member functions are not implemented: print and rprint. Your tasks are to:

(a) write the member function:

    ```cpp
    void print(ostream&) const;
    ```

 that print the contents of a singly linked list.

(b) write the member function:

    ```cpp
    void rprint(ostream&) const;
    ```

 that print the contents of a singly linked list in reverse order. Hint - add a private member function that uses recursion to print the list in reverse order.