7. NETWORK FLOW |

PEARSON
g

Addison
Wesley

max-flow and min-cut problems
Ford-Fulkerson algorithm
max-flow min-cut theorem

capacity-scaling algorithm

|
W

|

("v’ innrithm | N [nn .
AlLOLTENOT L] E” I shortest augmenting paths
f 1 :] V H b | 7 U :"‘ :

.-

JON]‘(lEINBERG - EVA TARI:bS b/OCI(ing'f/OW a/gorifhm

unit-capacity simple networks

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
Copyright © 2013 Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Sep 8, 2013 6:40 AM

7. NETWORK FLow |

» max-flow and min-cut problems

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 7.1

Flow network

« Abstraction for material flowing through the edges.
* Digraph G=(V, E) with source s€V and sink r€ V.
 Nonnegative integer capacity c(e) for each e € E.

no parallel edges
no edge enters s
no edge leaves t

capacity

15 15 10

\g w‘/

Minimum cut problem

Def. A st-cut (cut) is a partition (4, B) of the vertices with s€ A and r € B.
Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A,B) = Yy c(e)

e out of 4

capacity=lO+5+15=

Minimum cut problem

Def. A st-cut (cut) is a partition (4, B) of the vertices with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A,B) = > c(e)

e out of 4

A

capacity=lO+8+l6= ._16*

don't count edges
from B to A

Minimum cut problem

Def. A st-cut (cut) is a partition (4, B) of the vertices with s€ A and r € B.

Def. Its capacity is the sum of the capacities of the edges from 4 to B.

cap(A,B) = > c(e)

e out of 4

Min-cut problem. Find a cut of minimum capacity.

capacity=lO+8+lO= . .

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
* Foreachvev-{s,1}: Dfle) = Y f(e) [flow conservation]
eintov eout of v
flow capacity
inflowatv = 5+5+0 =10
5/9 outflowatv = 10+0 =10
Q \5 I)
69\ /25 0/15 /vb

5/8)?_10/10_)
O
o ois o

10/16

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
« Foreachvev-{s,nt: >Yf(le) = > f(e) [flow conservation]
eintov eoutof v

Def. The value of a flow £ is: val(f)= 2 f(e) .

eout of s
5/9
0/ Ky S)
AN e ~
\ V4 7
O $ o
°—5/5» 5/8 10/10 @
Z O
5 AN

7/
value=5+10+10=@ \

10/16

Maximum flow problem

Def. An st-flow (flow) fis a function that satisfies:

* Foreache€E: 0 = f(e) = c(e) [capacity]
« Foreachvev-{s,nt: >Yf(le) = > f(e) [flow conservation]
eintov eoutof v

Def. The value of a flow £ is: val(f)= 2 f(e) .

eout of s

Max-flow problem. Find a flow of maximum value.

8/9

Q 2 ¢

AN e ~

/ /7,
\Q\ Ny o
\/ .
> AN

R \

/5* “6 O

7
vaIue=8+lO+lO= \

13/16

7. NETWORK FLow |

» Ford-Fulkerson algorithm

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 7.1

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

flow capacity
network G Q 0/4 Q

O 0/2 0 0/6

@ 0/10 Q 0/9 Q

0/10

value of flow

/
@ 0

11

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G 0/4 Q

Joﬂo Q 0/9\0_3/10_)® 0+8=8

12

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G 0/4 Q

O (O 2 9/2 s 0/6 o

JO/IO Q-é/g-)@-é/lO_)@ 8 +2=10

13

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.
* Find an s~ path P where each edge has f(e) < c(e).
* Augment flow along path P.
* Repeat until you get stuck.

network G Q 0/4

14

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

ending flow value = 16

network G Q 0/4 Q

@ 6/10 Q 8/9 Q

15

Towards a max-flow algorithm

Greedy algorithm.
 Start with f(e) =0 for all edge e € E.

* Find an s~t path P where each edge has f(e) < c(e).

* Augment flow along path P.
* Repeat until you get stuck.

but max-flow value = 19

network G Q 3/4 Q

(s) 9/10) 9/9)

16

Residual graph

Original edge: e=(u,v) € E. srtinal arash @
* Flow f(e).
()— 6 /17 —» :)
* Capacity c(e). / \
flow capacity
Residual edge.
* "Undo" flow sent.

* e=(u,v) and ef = (v, u). .
() () residual graph Gt res'd”_a'
apacity

» Residual capacity: c
\ 5/

(o) = cle)-— f(e) if e€EFE
RN VN if efE€E

Residual graph: G;=(V, E)).
» Residual edges with positive residual capacity. where flow on a reverse edge

* Er= {e:f(e)< c(e)} U {ef:f(e) > 0}.
 Key property: f'is a flow in G;iff f+f'is a flow in G.

negates flow on a forward edge

17

Augmenting path

Def. An augmenting path is a simple s~ path P in the residual graph G;.

Def. The bottleneck capacity of an augmenting P is the minimum
residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in G;.
Then f'is a flow and val(f') = val(f) + bottleneck(Gy, P).

AUGMENT (f, ¢, P)

b <« bottleneck capacity of path P.
FOREACH edge e € P

IFle€E) f(e) «— f(e) + b.
ELSE f(e®) — f(ef) — b.
RETURN f.

18

Ford-Fulkerson algorithm

Ford-Fulkerson augmenting path algorithm.
 Start with f(e) =0 for all edge e € E.

- Find an augmenting path P in the residual graph G;.

* Augment flow along path P.
* Repeat until you get stuck.

FORD-FULKERSON (G, s, ¢, ¢)

FOREACH edge e €E E : f(e) < 0.
Gy «— residual graph.
WHILE (there exists an augmenting path P in Gy)
f <« AUGMENT (f, ¢, P).
Update Gy.
RETURN f.

19

Ford-Fulkerson algorithm demo

network G

<::> 0/10

residual graph Gs

O

0/2

flow

AN

0/4

0/9

capacity

O

0/6

O

value of flow

/
0/10 <::> 0

residual capacity

‘0

10

/

®

20

Ford-Fulkerson algorithm demo

network G

@ 0/10 Q 0/9

residual graph Gs

PR S—

0/6

Ford-Fulkerson algorithm demo

network G

OO

O 2 9/2 S 0/6 —

@ 0/10 Q o/9 Q 8/10 @ 8 +2=10

residual graph Gs

: O

|
o é—9—)®—2—>@

8

22

Ford-Fulkerson algorithm demo

network G

residual graph Gs

O

2/2

0/4

@ 10+6=16

Ford-Fulkerson algorithm demo

network G

Q3 —Q

02/2 & 6/6 L)

@& 0O /90— (O 10/10—> (@) 16+2=18

residual graph Gs

24

Ford-Fulkerson algorithm demo

network G

residual graph Gs

O

0/2

O

6/6

10/10 @ 18+1=19

=

N\

o (©)

Ford-Fulkerson algorithm demo

network G

W
min cut \Q

\@ 9/10

residual graph Gs

nodes reachable from s
\Q

@ 1

O

0/2

3/4

9/9

6/6

10/10

10

26

7. NETWORK FLow |

y max-How min-cut theorem

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 7.2

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of f.

2fle) = X fe) = v(f)

eout of A einto A

net flow across cut = 5+ 10 + 10 = 25

° e

5 ‘0

° 5/5 ‘ 5/8 ‘_10/1o»t value of flow = 25

/7

W
~
\Q

® ‘/

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of f.

2fle) = X fe) = v(f)

eout of A einto A

net flow across cut = 10 + 5 + 10 = 25

5/9
0/ $ S

N e -

\ /7 7
N R o
5/5+ 5/8 10/10 t) value of flow = 25
/0/ \\Q

/5 O

10/16

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of f.

2fle) = X fe) = v(f)

eout of A einto A

net flow acrosscut = (10+ 10 +5+10+0+0)-(5+5+0+0) =

\ edges from B to A
S

=
0/4 5

N\

T—]O/m» t value of flow = 25
N

0/15

10/16
30

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (4, B) be any cut. Then, the net
flow across (4, B) equals the value of f.

2fle) = X fe) = v(f)

eoutof A einto A
P W) = 3 fle)
eoutof s
by flow conservation, all terms
except v =s are 0 —> = E Ef(e)_ Ef(e)
vEA \eoutofv eintov

= X fle)- X fle). =

e out of A einto A

31

Relationship between flows and cuts

Weak duality. Let /' be any flow and (4, B) be any cut. Then, v(f) < cap(A, B).

Pf. v(f) = > fle)- Y fle)
/ eout of A einto A
flow-value = E f(e)
lemma eout of A
< Y c(e)
eoutof A
= cap(A,B) =
8/9
\\Q 2/15 &/’0
O
S 5/5 7/8 9/10 t
/7
<)//J\ 2/6‘ \Q\\Q
12/16

value of flow = 27

/

10
5 —3
15

N\

capacity of cut = 30

IA

32

Max-flow min-cut theorem

Augmenting path theorem. A flow fis a max-flow iff no augmenting paths.
Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (4, B) such that cap(A, B) = val(f).

ii. / is a max-flow.

iii. There is no augmenting path with respect to f.

[i=ii]
* Suppose that (4, B) is a cut such that cap(A, B) = val(f).
* Then, for any flow ', val(f) = cap(A, B) = val(f).
* Thus, fis a max-flow. = T T

weak duality by assumption

33

Max-flow min-cut theorem

Augmenting path theorem. A flow fis a max-flow iff no augmenting paths.
Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f:
i. There exists a cut (4, B) such that cap(A, B) = val(f).

ii. / is a max-flow.

iii. There is no augmenting path with respect to f.

[ii = iii] We prove contrapositive: ~iii = ~ii.
* Suppose that there is an augmenting path with respect to /.
* Can improve flow /' by sending flow along this path.
* Thus, f is not a max-flow. =

34

Max-flow min-cut theorem

[iii = i]
* Let fbe a flow with no augmenting paths.
* Let A be set of nodes reachable from s in residual graph G:.
* By definition of cut A, s € A.
* By definition of flow f, r & A.

edge e = (v, w) withveB, weA
must have f(e) =0

original network G

v(f) = X fle)- 2 fle)
/' e out of A einto A A B
flow-value _
lemma e outEofj(e) @
= cap(A,B) =

edge e = (v, w) withve A, weB
must have f(e) = c(e)

35

7. NETWORK FLow |

» capacity-scaling algorithm

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 7.3

Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f(e)
and the residual capacities c;(e) are integers.

Theorem. The algorithm terminates in at most val (f*) < nC iterations.
Pf. Each augmentation increases the value by at least 1. =

Corollary. The running time of Ford-Fulkerson is O(mn C).
Corollary. If C=1, the running time of Ford-Fulkerson is O@mn).

Integrality theorem. Then exists a max-flow f* for which every
flow value f*(e) is an integer.
Pf. Since algorithm terminates, theorem follows from invariant. =

Bad case for Ford-Fulkerson

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?

\ m, n, and log C

A. No. If max capacity is C, then algorithm can take = C iterations.
* §s—V—=wW—t

each augmenting path
<«—— sends only 1 unit of flow
¢ s Vv—oEw—t (# augmenting paths = 2C)

* s—Ww—y—>t

* sW—Y—>f

e G ——Q

¢ Ss—ew—v—>f

Choosing good augmenting paths

Use care when selecting augmenting paths.
 Some choices lead to exponential algorithms.
* Clever choices lead to polynomial algorithms.
 If capacities are irrational, algorithm not guaranteed to terminate!

Goal. Choose augmenting paths so that:
« Can find augmenting paths efficiently.
 Few iterations.

39

Choosing good augmenting paths

Choose augmenting paths with:
 Max bottleneck capacity.

« Sufficiently large bottleneck capacity.

 Fewest number of edges.

Theoretical Improvements in Algorithmic Efficiency

for Network Flow Problems

JACK EDMONDS

Unaversity of Waterloo, Waterloo, Ontario, Canada

AND

RICHARD M. KARP

University of California, Berkeley, California

ABSTRACT. This paper presents new algorithms for the maximum flow problem, the Hitcheock
transportation problem, and the general minimum-cost flow problem. Upper bounds on the

numbers of steps in these algorithms are derived, and are shown to compare favorably with
upper bounds on the numbers of steps required by earlier algorithms.

Edmonds-Karp 1972 (USA)

Dokl. Akad. Nauk SSSR Soviet Math. Dokl.
Tom 194 (1970), No. 4 Vol. 11 (1970), No.5

v

ALGORITHM FOR SOLUTION OF A PROBLEM OF MAXIMUM FL.OW IN A NETWORK WITH
POWER ESTIMATION
UDC 518.5 .
E. A. DINIC

Different varjants of the formulation of the problem of maximal stationary flow in a network and
its many applications ate given in [1]. There also is given an algorithm solving the problem in the
case where the initial data are integers (or, what is equivalent, commensurable). In the general case
this algorithm requires preliminary rounding off of the initial data, i.e. only an approximate solution
of the problem is possible. In this connection the rapidity of convergence of the algorithm is inverse-

ly proportional to the relative precision.

Dinic 1970 (Soviet Union)

40

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity:
it increases flow by max possible amount in given iteration.
* Don't worry about finding exact highest bottleneck path.
* Maintain scaling parameter A.
* Let G(A) be the subgraph of the residual graph consisting only of
arcs with capacity = A.

O 0, N ‘0,
Q | O Q @
2 a5 %, O

G Gs(A), A =100

41

Capacity-scaling algorithm

CAPACITY-SCALING(G, s, t, ¢)

FOREACH edge e € E : f(e) «— 0.

A « largest power of 2 < C.

WHILE (A > 1)
Gr(A) < A-residual graph.
WHILE (there exists an augmenting path P in Gr(A))
f < AUGMENT (f, c, P).
Update Gr(A).
A—A/2.

RETURN f.

42

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.
Integrality invariant. All flow and residual capacity values are integral.
Theorem. If capacity-scaling algorithm terminates, then fis a max-flow.
Pf.

* By integrality invariant, when A=1 = G;(A) =G;.
* Upon termination of A =1 phase, there are no augmenting paths. =

43

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats 1 + [log, C| times.
Pf. Initially C/2 < A < C; A decreases by a factor of 2 in each iteration. =

Lemma 2. Let fbe the flow at the end of a A-scaling phase. Then,
the value of the max-flow < val(f) + m A. <— proof on next slide

Lemma 3. There are at most 2m augmentations per scaling phase.
Pf.

* Let fbe the flow at the end of the previous scaling phase.

* LEMMA 2 = val(f*) <= val(f)+2mA .

* Each augmentation in a A-phase increases val(f) by at least A. =

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)

augmentations. It can be implemented to run in O(m? log C) time.
Pf. Follows from LEMMA 1 and LEMMA 3. =

44

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let fbe the flow at the end of a A-scaling phase. Then,

the value of the max-flow < val(f) + m A.

Pf.

* We show there exists a cut (A, B) such that cap(A, B)

< val(f) + m A.

* Choose A to be the set of nodes reachable from s in G/(A).
* By definition of cut A, s € A.
* By definition of flow f, ¢t & A.

val(f)

v

v

Y fle)-= 3 fle)

e out of A einto A

2 (-8 - 3 A

eout of A einto A
> ce)- Y A- YA
eoutof A eoutof A einto A

cap(A,B) - mA .

edge e= (v, w) withveB, weA
must have f(e) < A

original network

/

edge e = (v, w) withve A, weB
must have f(e) = c(e) - A

45

7. NETWORK FLow |

» shortest augmenting paths

SECTION 17.2

Shortest augmenting path

Q. Which augmenting path?
A. The one with the fewest number of edges.

N

can find via BFS

SHORTEST-AUGMENTING-PATH(G, s, ¢, ¢)

FOREACH e €E E : f(e) « 0.
Gy «— residual graph.
WHILE (there exists an augmenting path in Gy)
P < BREADTH-FIRST-SEARCH (G, s, ?).
f < AUGMENT (f, c, P).
Update Gr.
RETURN .

47

Shortest augmenting path: overview of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m? n) time.
Pf.
* O(m+ n) time to find shortest augmenting path via BFS.
* O(m) augmentations for paths of length «.
 If there is an augmenting path, there is a simple one.
= 1 <k <n

= O(m n) augmentations. =

48

Shortest augmenting path: analysis

Def. Given a digraph G =(V, E) with source s, its level graph is defined by:
* ¢ (v) = number of edges in shortest path from s to v.
 L;=(V,E) is the subgraph of G that contains only those edges (v,w) EE
with ¢ (w)= ¢ (v) + 1.

graph G O O

© O

o O
@

level graph Lc O

(=)
O
O
@

Shortest augmenting path: analysis

Def. Given a digraph G =(V, E) with source s, its level graph is defined by:
* ¢ (v) = number of edges in shortest path from s to v.
 L;=(V,E) is the subgraph of G that contains only those edges (v,w) EE
with ¢ (w)= ¢ (v) + 1.

Property. Can compute level graph in O(m + n) time.
Pf. Run BFS; delete back and side edges.

Key property. P is a shortest s~v path in G iff P is an s~v path L.

level graph Lc O O

50

Shortest augmenting path: analysis

L1. Throughout the algorithm, length of the shortest path never decreases.
* Let fand f' be flow before and after a shortest path augmentation.
* Let L and L' be level graphs of Grand G,..
* Only back edges added to G,
(any path with a back edge is longer than previous length) =

level graph L Q Q

F— O O

¢=0 0=1 0=2 ¢=3

level graph L' O O

© O O ® -

Shortest augmenting path: analysis

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

* The bottleneck edge(s) is deleted from L after each augmentation.

* No new edge added to L until length of shortest path strictly increases. =

level graph L Q Q

F— O O

¢=0 0=1 0=2 ¢=3

level graph L' O O

© O O ® .

Shortest augmenting path: review of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest
augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m? n) time.
Pf.

* O(m+ n) time to find shortest augmenting path via BFS.

* O(m) augmentations for paths of exactly k edges.

* O(mn) augmentations. =

53

Shortest augmenting path: improving the running time

Note. ©O(m n) augmentations necessary on some networks.
* Try to decrease time per augmentation instead.
* Simple idea = O@mn?) [Dinic 1970]
* Dynamic trees = O(mnlogn) [Sleator-Tarjan 1983]

A Data Structure for Dynamic Trees

DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN

Bell Laboratories, Murray Hill, New Jersey 07974
Received May 8, 1982; revised October 18, 1982

A data structure is proposed to maintain a collection of vertex-disjoint trees under a
sequence of two kinds of operations: a link operation that combines two trees into one by
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each
operation requires O(log) time. Using this data structure, new fast algorithms are obtained
for the following problems:

(1) Computing nearest common ancestors.

(2) Solving various network flow problems including finding maximum flows, blocking
flows, and acyclic flows.

(3) Computing certain kinds of constrained minimum spanning trees.
(4) Implementing the network simplex algorithm for minimum-cost flows.
The most significant application is (2); an O(mn log n)-time algorithm is obtained to find a

maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest
algorithm previously known for sparse graphs.

7. NETWORK FLow |

» blocking-flow algorithm

SECTION 18.1

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

O O

© O O ®

level graph Lg

56

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

advance O O

P 0—>0—>0

level graph Lg

57

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

augment O O

S— O O

level graph Lg

58

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

advance O O

*—>0—>0 ®

level graph Lg

59

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

retreat O O

> —>0 ®

level graph Lg

60

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

advance O

(S ®

level graph Lg

61

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

augment O

(S—> ®

level graph Lg

62

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

advance . O

O ®

level graph Lg

63

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

retreat . O

O ®

level graph Lg

64

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

retreat O

@ O ®

level graph Lg

65

Blocking-flow algorithm

Two types of augmentations.
 Normal: length of shortest path does not change.
« Special: length of shortest path strictly increases.

Phase of normal augmentations.
« Explicitly maintain level graph L.

e Start at s, advance along an edge in Ls until reach r or get stuck.

* If reach ¢, augment and and update L.
 |If get stuck, delete node from L, and go to previous node.

end of phase O

: O ®

level graph Lg

66

Blocking-flow algorithm

INITIALIZE(G, s, ¢, f, ¢)

L <« level-graph of Gr.
P — O

GOTO ADVANCE(S).

RETREAT(V)

[F (v=1s) STOP.

ELSE
Delete v (and all incident edges) from L.
Remove last edge (u, v) from P.

GOTO ADVANCE(u).

ADVANCE(V)

IF (v=1)
AUGMENT(P).

Remove saturated edges from Lg.

P —O.

GOTO ADVANCE(S).
IF (there exists edge (v, w) € Li)
Add edge (v, w) to P.

GOTO ADVANCE(w).

ELSE GOTO RETREAT(Vv).

67

Blocking-flow algorithm: analysis

Lemma. A phase can be implemented in O(mn) time.
Pf.
* Initialization happens once per phase. <«—— O(m) using BFS
* At most m augmentations per phase. <«—— 0(mn) per phase
(because an augmentation deletes at least one edge from L)
* At most n retreats per phase. «——— O(m + n) per phase
(because a retreat deletes one node from L)
* At most mn advances per phase. B G e
(because at most n advances before retreat or augmentation) =

Theorem. [Dinic 1970] The blocking-flow algorithm runs in O(mn?) time.

Pf.
* By lemma, O(mn) time per phase.
* At most n phases (as in shortest augment path analysis). =

68

Choosing good augmenting paths: summary

Assumption. Integer capacities between 1 and C.

augmenting path nC O(mn C)
fattest augmenting path m log (mC) O(m? log n log (mC))
capacity scaling mlog C O(m? log C)
improved capacity scaling mlog C O(mnlog C)
shortest augmenting path mn O(m? n)
improved shortest augmenting path mn O(mn?)

dynamic trees mn O(mnlogn)

69

Maximum flow algorithms: theory

1951 simplex O(m3 C) Dantzig
1955 augmenting path O(m? C) Ford-Fulkerson
1970 shortest augmenting path O(m3) Dinic, Edmonds-Karp
1970 fattest augmenting path O(m? log mlog(m C)) Dinic, Edmonds-Karp
1977 blocking flow O(m>7?) Cherkasky
1978 blocking flow O(m773) Galil
1983 dynamic trees O(m? log m) Sleator-Tarjan
1985 capacity scaling O(m? log C) Gabow
1997 length function O(m3?2 log m log C) Goldberg-Rao
2012 compact network O(m? / log m) Orlin

? ? O(m) ?

max-flow algorithms for sparse digraphs with m edges, integer capacities between 1 and C

70

Maximum flow algorithms: practice

Push-relabel algorithm (SECTION 7.4). [Goldberg-Tarjan 1988]
Increases flow one edge at a time instead of one augmenting path at a time.

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG
Massachusetts Institute of Technology, Cambridge, Massachusetts

AND
ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efficient maximum-flow algorithms work by finding augmenting paths,
either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length
augmenting paths at once (using the layered network approach of Dinic). An alternative method based
on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount
flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow
in the original network and pushes local flow excess toward the sink along what are estimated to be
shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as
any other known method on dense graphs, achieving an O(»*) time bound on an r-vertex graph. By
incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm
running in Q(nm log(n*/m)) time on an x-vertex, m-edge graph. This is as fast as any known method
for any graph density and faster on graphs of moderate density. The algorithm also admits efficient
distributed and parallel implementations, A parallel implementation running in O(n%log n) time using
n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin
algorithm, which also uses n processors but requires O(n?) space.

Maximum flow algorithms: practice

Warning. Worst-case running time is generally not useful for predicting or

comparing max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: O(m 3?).

On Implementing Push-Relabel Method
for the Maximum Flow Problem

Boris V. Cherkassky! and Andrew V. Goldberg?

! Central Institute for Economics and Mathematics,
Krasikova St. 32, 117418, Moscow, Russia
cher@cemi.msk.su
2 Computer Science Department, Stanford University
Stanford, CA 94305, USA
goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method
for the maximum flow problem. The resulting codes are faster than the
previous codes, and much faster on some problem families. The speedup
is due to the combination of heuristics used in our implementations. We
also exhibit a family of problems for which the running time of all known
methods seem to have a roughly quadratic growth rate.

EUROPEAN
JOURNAL
89 OF OPERATIONAL
S YA

ELSEVIER

European Journal of Operational Research 97 (1997) 509-542

Theory and Methodology
Computational investigations of maximum flow algorithms

Ravindra K. Ahuja *, Murali Kodialam °, Ajay K. Mishra ¢, James B. Orlin **

* Department of Industrial and Management Engineering, Indian Institute of Technology. Kanpur. 208 016, India
® AT &T Bell Laboratories, Holmdel, NJ 07733, USA
¢ KATZ Graduate School of Business, University of Pittshurgh. Pittsburgh, PA 15260, USA
¢ Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 30 August 1995; accepted 27 June 1996

RESEARCH

72

Maximum flow algorithms: practice

Computer vision. Different algorithms work better for some dense

problems that arise in applications to computer vision.

An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision

Yuri Boykov and Vladimir Kolmogorov*

Abstract

After [15, 31, 19, 8, 25, 5] minimum cut/maximum flow algorithms on graphs emerged as
an increasingly useful tool for exact or approximate energy minimization in low-level vision.
The combinatorial optimization literature provides many min-cut/max-flow algorithms with
different polynomial time complexity. Their practical efficiency, however, has to date been
studied mainly outside the scope of computer vision. The goal of this paper is to provide an
experimental comparison of the efficiency of min-cut/max flow algorithms for applications
in vision. We compare the running times of several standard algorithms, as well as a
new algorithm that we have recently developed. The algorithms we study include both
Goldberg-Tarjan style “push-relabel” methods and algorithms based on Ford-Fulkerson
style “augmenting paths”. We benchmark these algorithms on a number of typical graphs
in the contexts of image restoration, stereo, and segmentation. In many cases our new
algorithm works several times faster than any of the other methods making near real-time
performance possible. An implementation of our max-flow/min-cut algorithm is available

upon request for research purposes.

VERMA, BATRA: MAXFLOW REVISITED

MaxFlow Revisited:
An Empirical Comparison of Maxflow
Algorithms for Dense Vision Problems

Tanmay Verma IIIT-Delhi

tanmay08054@iiitd.ac.in Delhi, India

Dhruv Batra TTI-Chicago

dbatra@ttic.edu Chicago, USA
Abstract

Algorithms for finding the maximum amount of flow possible in a network (or max-
flow) play a central role in computer vision problems. We present an empirical compari-
son of different max-flow algorithms on modern problems. Our problem instances arise
from energy minimization problems in Object Category Segmentation, Image Deconvo-
lution, Super Resolution, Texture Restoration, Character Completion and 3D Segmen-
tation. We compare 14 different implementations and find that the most popularly used
implementation of Kolmogorov [5] is no longer the fastest algorithm available, especially
for dense graphs.

73

7. NETWORK FLOW |

» unit-capacity simple networks

Bipartite matching

Q. Which max-flow algorithm to use for bipartite matching?
* Generic augmenting path: O(m|f*1) = O(mn).
* Capacity scaling: O(m?log U) = O(m?).
* Shortest augmenting path: O(m n2).

Q. Suggests "more clever" algorithms are not as good as we first thought?
A. No, just need more clever analysis!

Next. We prove that shortest augmenting path algorithm can be
implemented in O(mn'2) time.

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY*

SHIMON EVENTY anp R. ENDRE TARJAN{

Abstract. An algorithm of Dinic for finding the maximum flow in a network is described. It is
then shown that if the vertex capacities are all equal to one, the algorithm requires at most O(|V|'/? - |E|)
time, and if the edge capacities are all equal to one, the algorithm requires at most O(|V|*? - |E|) time.
Also, these bounds are tight for Dinic’s algorithm.

These results are used to test the vertex connectivity of a graph in O(V|"/?-|E|?) time and the
edge connectivity in O(V|*/? -|E|) time.

75

Unit-capacity simple networks

Def. A network is a unit-capacity simple network if:
* Every edge capacity is 1.
* Every node (other than s or 1) has either (i) at most one entering edge
or (ii) at most one leaving edge.

Property. Let G be a simple unit-capacity network and let f be a 0-1 flow,
then Gyris a unit-capacity simple network.

Ex. Bipartite matching.

76

Unit-capacity simple networks

Shortest augmenting path algorithm.
 Normal augmentation: length of shortest path does not change.
« Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In unit-capacity simple networks, the shortest
augmenting path algorithm computes a maximum flow in O@m n!’2) time.
Pf.

* L1. Each phase of normal augmentations takes O(m) time.

* L2. After at most n!'2 phases, | fl = | f*| — nl2,

* L3. After at most n!2 additional augmentations, flow is optimal. =

77

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

advance

N
\

N\

level graph Lg

78

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

augment

N
\

W

level graph Lg

79

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

advance

N,

level graph Lg

80

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

retreat

N,

level graph Lg

81

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

advance

N, ~_ 7

level graph Lg

82

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

augment

N, ~_ 7

level graph Lg

83

Unit-capacity simple networks

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L;. «—— delete all edges in augmenting path from Lg
* |If get stuck, delete node from L, and go to previous node.

end of phase

level graph Lg

84

Unit-capacity simple networks: analysis

Phase of normal augmentations.
» Explicitly maintain level graph L.
e Start at s, advance along an edge in Ls until reach ¢ or get stuck.
* If reach 7, augment and and update L.
* |If get stuck, delete node from L, and go to previous node.

LEMMA 1. A phase of normal augmentations takes O@m) time.
Pf.
* O(m) to create level graph L.

* O(1) per edge since each edge traversed and deleted at most once.

* O(1) per node since each node deleted at most once. =

85

Unit-capacity simple networks: analysis

LEMMA 2. After at most n!2 phases, | fl = | f*| — nl2,
* After n!'2 phases, length of shortest augmenting path is > n!”2.
* Level graph has more than »n!2 levels.
* Let 1 < h< n'2 be layer with min number of nodes: |V,l < n!2,

level graph L¢ for flow f

1/2
A

86

Unit-capacity simple networks: analysis

LEMMA 2. After at most n!2 phases, | fl = | f*| — nl2,

* After n!'2 phases, length of shortest augmenting path is > n!”2.
Level graph has more than »n!2 levels.

Let 1 < h< n'2 be layer with min number of nodes: |V,l< n!2,

letA = {v: ¢ (v)< h}U{v: ¢ (v)=hand v has <1 outgoing residual edge}.
capr(A,B) = | Vil = nl2 = |fl = |f* — nl2, =

residual graph Gr residual edges

1/2
A
87

