8. Intractability

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Section 8.1

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Algorithm design patterns and antipatterns

Algorithm design patterns.
- Greedy.
- Divide and conquer.
- Dynamic programming.
- Duality.
- Reductions.
- Local search.
- Randomization.

Algorithm design antipatterns.
- NP-completeness. \(O(n^k) \) algorithm unlikely.
- PSPACE-completeness. \(O(n^k) \) certification algorithm unlikely.
- Undecidability. No algorithm possible.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.
Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

<table>
<thead>
<tr>
<th>yes</th>
<th>probably no</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>longest path</td>
</tr>
<tr>
<td>min cut</td>
<td>max cut</td>
</tr>
<tr>
<td>2-satisfiability</td>
<td>3-satisfiability</td>
</tr>
<tr>
<td>planar 4-colorability</td>
<td>planar 3-colorability</td>
</tr>
<tr>
<td>bipartite vertex cover</td>
<td>vertex cover</td>
</tr>
<tr>
<td>matching</td>
<td>3d-matching</td>
</tr>
<tr>
<td>primality testing</td>
<td>factoring</td>
</tr>
<tr>
<td>linear programming</td>
<td>integer linear programming</td>
</tr>
</tbody>
</table>
Classify problems

Desiderata. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.
• Given a constant-size program, does it halt in at most k steps?
• Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.
Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Diagram:
- Instance I (of X) is input to Algorithm for Y.
- Algorithm for Y solves Y and returns a solution S.
- S is then input to Algorithm for X.

The diagram illustrates how a solution to Y is used to solve X through polynomial-time reductions.
Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:
- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_p Y$.

Note. We pay for time to write down instances sent to oracle \Rightarrow instances of Y must be of polynomial size.

Caveat. Don't mistake $X \leq_p Y$ with $Y \leq_p X$.
Polynomial-time reductions

Design algorithms. If $X \leq_p Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_p Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_p Y$ and $Y \leq_p X$, we use notation $X \equiv_p Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Independent set

INDEPENDENT-SET. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \geq k$, and for each edge at most one of its endpoints is in S?

Ex. Is there an independent set of size ≥ 6?

Ex. Is there an independent set of size ≥ 7?

![Graph diagram]

independent set of size 6
Vertex cover

VERTEX-COVER. Given a graph $G = (V, E)$ and an integer k, is there a subset of vertices $S \subseteq V$ such that $|S| \leq k$, and for each edge, at least one of its endpoints is in S?

Ex. Is there a vertex cover of size ≤ 4?
Ex. Is there a vertex cover of size ≤ 3?
Vertex cover and independent set reduce to one another

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).
Vertex cover and independent set reduce to one another

Theorem. \(\text{VERTEX-COVER} \equiv_p \text{INDEPENDENT-SET} \).

Pf. We show \(S \) is an independent set of size \(k \) iff \(V - S \) is a vertex cover of size \(n - k \).

\[\Rightarrow \]

- Let \(S \) be any independent set of size \(k \).
- \(V - S \) is of size \(n - k \).
- Consider an arbitrary edge \((u, v)\).
- \(S \) independent \(\Rightarrow \) either \(u \notin S \) or \(v \notin S \) (or both)
 \[\Rightarrow \] either \(u \in V - S \) or \(v \in V - S \) (or both).
- Thus, \(V - S \) covers \((u, v)\).
Vertex cover and independent set reduce to one another

Theorem. \textsc{vertex-cover} \equiv_p \textsc{independent-set}.

Pf. We show S is an independent set of size k iff $V - S$ is a vertex cover of size $n - k$.

\[\iff \]

- Let $V - S$ be any vertex cover of size $n - k$.
- S is of size k.
- Consider two nodes $u \in S$ and $v \in S$.
- Observe that $(u, v) \notin E$ since $V - S$ is a vertex cover.
- Thus, no two nodes in S are joined by an edge $\Rightarrow S$ independent set. \blacksquare
Set cover

Set-Cover. Given a set U of elements, a collection S_1, S_2, \ldots, S_m of subsets of U, and an integer k, does there exist a collection of $\leq k$ of these sets whose union is equal to U?

Sample application.
- m available pieces of software.
- Set U of n capabilities that we would like our system to have.
- The i^{th} piece of software provides the set $S_i \subseteq U$ of capabilities.
- Goal: achieve all n capabilities using fewest pieces of software.

\[
U = \{ 1, 2, 3, 4, 5, 6, 7 \} \\
S_1 = \{ 3, 7 \} \quad S_4 = \{ 2, 4 \} \\
\text{boxed } S_2 = \{ 3, 4, 5, 6 \} \quad S_5 = \{ 5 \} \\
S_3 = \{ 1 \} \quad \text{boxed } S_6 = \{ 1, 2, 6, 7 \} \\
k = 2
\]

a set cover instance
Theorem. \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}.

\textbf{Pf.} Given a \textsc{Vertex-Cover} instance \(G = (V, E) \), we construct a \textsc{Set-Cover} instance \((U, S)\) that has a set cover of size \(k \) iff \(G \) has a vertex cover of size \(k \).

\textbf{Construction.}

\begin{itemize}
 \item Universe \(U = E \).
 \item Include one set for each node \(v \in V \) : \(S_v = \{ e \in E : e \text{ incident to } v \} \).
\end{itemize}
Vertex cover reduces to set cover

Lemma. \(G = (V, E) \) contains a vertex cover of size \(k \) iff \((U, S)\) contains a set cover of size \(k \).

Pf. \(\Rightarrow \) Let \(X \subseteq V \) be a vertex cover of size \(k \) in \(G \).

- Then \(Y = \{ S_v : v \in X \} \) is a set cover of size \(k \).

\[U = \{ 1, 2, 3, 4, 5, 6, 7 \} \]

\[S_a = \{ 3, 7 \} \quad S_b = \{ 2, 4 \} \]

\[S_c = \{ 3, 4, 5, 6 \} \quad S_d = \{ 5 \} \]

\[S_e = \{ 1 \} \quad S_f = \{ 1, 2, 6, 7 \} \]
Vertex cover reduces to set cover

Lemma. $G = (V, E)$ contains a vertex cover of size k iff (U, S) contains a set cover of size k.

Pf. \iff Let $Y \subseteq S$ be a set cover of size k in (U, S).
 - Then $X = \{ v : S_v \in Y \}$ is a vertex cover of size k in G. ■
Section 8.2

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Satisfiability

Literal. A boolean variable or its negation. \(x_i \) or \(\overline{x_i} \)

Clause. A disjunction of literals. \(C_j = x_1 \lor \overline{x_2} \lor x_3 \)

Conjunctive normal form. A propositional formula \(\Phi \) that is the conjunction of clauses.

\[\Phi = C_1 \land C_2 \land C_3 \land C_4 \]

SAT. Given CNF formula \(\Phi \), does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

\[\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4) \]

yes instance: \(x_1 = \text{true}, x_2 = \text{true}, x_3 = \text{false}, x_4 = \text{false} \)

Key application. Electronic design automation (EDA).
3-satisfiability reduces to independent set

Theorem. 3-**Sat** \leq_p **Independent-Set**.

Pf. Given an instance Φ of 3-**Sat**, we construct an instance (G, k) of **Independent-Set** that has an independent set of size k iff Φ is satisfiable.

Construction.
- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

$$\Phi = (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)$$
3-satisfiability reduces to independent set

Lemma. G contains independent set of size $k = |\Phi|$ iff Φ is satisfiable.

Pf. \Rightarrow Let S be independent set of size k.
- S must contain exactly one node in each triangle.
- Set these literals to true (and remaining variables consistently).
- Truth assignment is consistent and all clauses are satisfied.

Pf \Leftarrow Given satisfying assignment, select one true literal from each triangle. This is an independent set of size k.

\[
\begin{align*}
 \Phi &= (\overline{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_4)
\end{align*}
\]
Review

Basic reduction strategies.

- Simple equivalence: \textsc{Independent-Set} \equiv_p \textsc{Vertex-Cover}.
- Special case to general case: \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}.
- Encoding with gadgets: \textsc{3-Sat} \leq_p \textsc{Independent-Set}.

Transitivity. If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$.

Pf idea. Compose the two algorithms.

Ex. \textsc{3-Sat} \leq_p \textsc{Independent-Set} \leq_p \textsc{Vertex-Cover} \leq_p \textsc{Set-Cover}.
Search problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Ex. To find a vertex cover of size \(\leq k \):

- Determine if there exists a vertex cover of size \(\leq k \).
- Find a vertex \(v \) such that \(G - \{v\} \) has a vertex cover of size \(\leq k - 1 \).
 (any vertex in any vertex cover of size \(\leq k \) will have this property)
- Include \(v \) in the vertex cover.
- Recursively find a vertex cover of size \(\leq k - 1 \) in \(G - \{v\} \).

Bottom line. \textsc{Vertex-Cover} \(\equiv_p \textsc{Find-Vertex-Cover} \).
Optimization problems

Decision problem. Does there exist a vertex cover of size \(\leq k \)?

Search problem. Find a vertex cover of size \(\leq k \).

Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:
 • (Binary) search for size \(k^* \) of min vertex cover.
 • Solve corresponding search problem.

Bottom line. \(\text{VERTEX-COVER} \equiv_p \text{FIND-VERTEX-COVER} \equiv_p \text{OPTIMAL-VERTEX-COVER} \).
8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Ham-Cycle. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?
Hamilton cycle

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?

![Graph Diagram]

no
Directed hamilton cycle reduces to hamilton cycle

Dir-Ham-Cycle: Given a digraph $G = (V, E)$, does there exist a simple directed cycle Γ that contains every node in V?

Theorem. $\text{Dir-Ham-Cycle} \leq_p \text{Ham-Cycle}.$

Pf. Given a digraph $G = (V, E)$, construct a graph G' with $3n$ nodes.

![Diagram of graphs G and G']
Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. \Rightarrow

• Suppose G has a directed Hamilton cycle Γ.
• Then G' has an undirected Hamilton cycle (same order).

Pf. \Leftarrow

• Suppose G' has an undirected Hamilton cycle Γ'.
• Γ' must visit nodes in G' using one of following two orders:
 ... B, G, R, B, G, R, B, G, R, B, ...
 ... B, R, G, B, R, G, B, R, G, B, ...
• Blue nodes in Γ' make up directed Hamilton cycle Γ in G,
or reverse of one. □
3-satisfiability reduces to directed hamilton cycle

Theorem. 3-$\text{SAT} \leq_p \text{DIR-HAM-CYCLE}$.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create a graph that has 2^n Hamilton cycles which correspond in a natural way to 2^n possible truth assignments.
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.

- Construct G to have 2^n Hamilton cycles.
- Intuition: traverse path i from left to right \iff set variable $x_i = true$.

\[
\begin{align*}
3k + 3
\end{align*}
\]
3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
- For each clause, add a node and 6 edges.

$C_1 = x_1 \lor \overline{x}_2 \lor x_3$

clause node 1

$C_2 = \overline{x}_1 \lor \overline{x}_2 \lor \overline{x}_3$

clause node 2

$3k + 3$
3-satisfiability reduces to directed hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Rightarrow \)

• Suppose 3-SAT instance has satisfying assignment \(x^* \).
 • Then, define Hamilton cycle in \(G \) as follows:
 - if \(x^*_i = \text{true} \), traverse row \(i \) from left to right
 - if \(x^*_i = \text{false} \), traverse row \(i \) from right to left
 - for each clause \(C_j \), there will be at least one row \(i \) in which we are going in "correct" direction to splice clause node \(C_j \) into cycle
 (and we splice in \(C_j \) exactly once)
3-satisfiability reduces to directed hamilton cycle

Lemma. \(\Phi \) is satisfiable iff \(G \) has a Hamilton cycle.

Pf. \(\Leftarrow \)

\begin{itemize}
 \item Suppose \(G \) has a Hamilton cycle \(\Gamma \).
 \item If \(\Gamma \) enters clause node \(C_j \), it must depart on mate edge.
 \begin{itemize}
 \item nodes immediately before and after \(C_j \) are connected by an edge \(e \in E \)
 \item removing \(C_j \) from cycle, and replacing it with edge \(e \) yields Hamilton cycle on \(G – \{ C_j \} \)
 \end{itemize}
 \item Continuing in this way, we are left with a Hamilton cycle \(\Gamma' \) in \(G – \{ C_1, C_2, \ldots, C_k \} \).
 \item Set \(x^*_{i} = true \) iff \(\Gamma' \) traverses row \(i \) left to right.
 \item Since \(\Gamma \) visits each clause node \(C_j \), at least one of the paths is traversed in "correct" direction, and each clause is satisfied.
\end{itemize}
3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph \(G = (V, E) \), does there exist a simple path consisting of at least \(k \) edges?

Theorem. \(3\text{-Sat} \leq_p \text{LONGEST-PATH} \).

Pf 1. Redo proof for \textsc{Dir-Ham-Cycle}, ignoring back-edge from \(t \) to \(s \).

Pf 2. Show \(\textsc{Ham-Cycle} \leq_p \text{LONGEST-PATH} \).
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u,v)$, is there a tour of length $\leq D$?
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

11,849 holes to drill in a programmed logic array
http://www.tsp.gatech.edu
Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?
Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

HAM-CYCLE. Given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V?

Theorem. HAM-CYCLE \leq_P TSP.

Pf.

- Given instance $G = (V, E)$ of HAM-CYCLE, create n cities with distance function

 $$d(u, v) = \begin{cases}
 1 & \text{if } (u, v) \in E \\
 2 & \text{if } (u, v) \notin E
 \end{cases}$$

- TSP instance has tour of length $\leq n$ iff G has a Hamilton cycle.

Remark. TSP instance satisfies triangle inequality: $d(u, w) \leq d(u, v) + d(v, w)$.

Polynomial-time reductions

constraint satisfaction

- 3-Sat
 - INDEPENDENT-SET
 - VERTEX-COVER
 - SET-COVER
 - DIR-HAM-CYCLE
 - HAM-CYCLE
 - TSP
 - GRAPH-3-COLOR
 - SUBSET-SUM
 - SCHEDULING

packing and covering
sequencing
partitioning
numerical
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
3D-Matching. Given \(n \) instructors, \(n \) courses, and \(n \) times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>instructor</th>
<th>course</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11–12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3–4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11–12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11–12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

$$X = \{ x_1, x_2, x_3 \}, \quad Y = \{ y_1, y_2, y_3 \}, \quad Z = \{ z_1, z_2, z_3 \}$$

$$T_1 = \{ x_1, y_1, z_2 \}, \quad T_2 = \{ x_1, y_2, z_1 \}, \quad T_3 = \{ x_1, y_2, z_2 \}$$

$$T_4 = \{ x_2, y_2, z_3 \}, \quad T_5 = \{ x_2, y_3, z_3 \},$$

$$T_7 = \{ x_3, y_1, z_3 \}, \quad T_8 = \{ x_3, y_1, z_1 \}, \quad T_9 = \{ x_3, y_2, z_1 \}$$

an instance of 3d-matching (with $n = 3$)

Remark. Generalization of bipartite matching.
3-dimensional matching

3D-MATCHING. Given 3 disjoint sets \(X, Y, \) and \(Z, \) each of size \(n \) and a set \(T \subseteq X \times Y \times Z \) of triples, does there exist a set of \(n \) triples in \(T \) such that each element of \(X \cup Y \cup Z \) is in exactly one of these triples?

Theorem. 3-SAT \(\leq_p \) 3D-MATCHING.

Pf. Given an instance \(\Phi \) of 3-SAT, we construct an instance of 3D-MATCHING that has a perfect matching iff \(\Phi \) is satisfiable.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)
- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
3-satisfiability reduces to 3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_i with $2k$ core elements and $2k$ tip ones.
- No other triples will use core elements.
- In gadget for x_i, any perfect matching must use either all gray triples (corresponding to $x_i = true$) or all blue ones (corresponding to $x_i = false$).

3-satisfiability reduces to 3-dimensional matching number of clauses

$k = 2$ clauses

$n = 3$ variables

true

false

clause 1 tips

clause 2 tips

core

clause 2 tips
3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)
- Create gadget for each clause C_j with two elements and three triples.
- Exactly one of these triples will be used in any 3d-matching.
- Ensures any perfect matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

$$C_1 = x_1 \lor \overline{x_2} \lor x_3$$
3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)

- There are $2nk$ tips: nk covered by blue/gray triples; k by clause triples.
- To cover remaining $(n-1)k$ tips, create $(n-1)k$ cleanup gadgets: same as clause gadget but with $2nk$ triples, connected to every tip.

\[C_1 = x_1 \lor \overline{x_2} \lor x_3 \]
Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X\), \(Y\), and \(Z\)?
Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Q. What are \(X, Y,\) and \(Z\)?
A. \(X = \text{red}, Y = \text{green},\) and \(Z = \text{blue}\).
3-satisfiability reduces to 3-dimensional matching

Lemma. Instance \((X, Y, Z)\) has a perfect matching iff \(\Phi\) is satisfiable.

Pf. \(\Rightarrow\) If 3d-matching, then assign \(x_i\) according to gadget \(x_i\).

Pf. \(\Leftarrow\) If \(\Phi\) is satisfiable, use any true literal in \(C_j\) to select gadget \(C_j\) triple.

\[C_1 = x_1 \lor \overline{x_2} \lor x_3\]
8. INTRACTABILITY I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems

Section 8.7
3-colorability

3-COLOR. Given an undirected graph G, can the nodes be colored red, green, and blue so that no adjacent nodes have the same color?

yes instance
Application: register allocation

Register allocation. Assign program variables to machine registers so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names; edge between u and v if there exists an operation where both u and v are "live" at the same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.

Fact. 3-COLOR \leq_p K-REGISTER-ALLOCATION for any constant $k \geq 3$.
3-satisfiability reduces to 3-colorability

Theorem. 3-SAT \leq_p 3-COLOR.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.
3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle.
(iv) Connect each literal to B.
(v) For each clause C_j, add a gadget of 6 nodes and 13 edges.

\[x_1 \quad x_2 \quad x_3 \quad \cdots \quad x_n \quad \bar{x}_1 \quad \bar{x}_2 \quad \bar{x}_3 \quad \cdots \quad \bar{x}_n\]

true

false

base

B

\[T \quad F\]

\text{to be described later}
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.
 - Consider assignment that sets all T literals to true.
 - (iv) ensures each literal is T or F.
 - (ii) ensures a literal and its negation are opposites.
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.
- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph G is 3-colorable.

- Consider assignment that sets all T literals to true.
- (iv) ensures each literal is T or F.
- (ii) ensures a literal and its negation are opposites.
- (v) ensures at least one literal in each clause is T.

$$C_j = x_1 \lor \overline{x_2} \lor x_3$$

G not 3-colorable if literal nodes all are red

contradiction

true T false F
3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. \Leftarrow Suppose 3-SAT instance Φ is satisfiable.

- Color all true literals T.
- Color node below green node F, and node below that B.
- Color remaining middle row nodes B.
- Color remaining bottom nodes T or F as forced. \blacksquare

\[C_j = x_1 \lor \overline{x_2} \lor x_3 \]

\[a \text{ literal set to true in 3-SAT assignment} \]

![Diagram showing the 3-satisfiability reduces to 3-colorability with nodes and edges representing clauses and literals.](image)
Polynomial-time reductions

constraint satisfaction

3-Sat

INDEPENDENT-SET

IND-SET poly-time reduces to INDEPENDENT-SET

DIR-HAM-CYCLE

GRAPH-3-COLOR

SUBSET-SUM

VERTEX-COVER

HAM-CYCLE

PLANAR-3-COLOR

SCHEDULING

SET-COVER

TSP

packing and covering

sequencing

partitioning

numerical
Section 8.8

8. Intractability I

- poly-time reductions
- packing and covering problems
- constraint satisfaction problems
- sequencing problems
- partitioning problems
- graph coloring
- numerical problems
Subset sum

SUBSET-SUM. Given natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Ex. \{ 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 \}, $W = 3754$.

Yes. $1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.
Subset sum

Theorem. 3-SAT \leq_P SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.
3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each of $n + k$ digits:

- Include one digit for each variable x_i and for each clause C_j.
- Include two numbers for each variable x_i.
- Include two numbers for each clause C_j.
- Sum of each x_i digit is 1;
- sum of each C_j digit is 4.

Key property. No carries possible \Rightarrow each digit yields one equation.

\[C_1 = \neg x_1 \lor x_2 \lor x_3 \]
\[C_2 = x_1 \lor \neg x_2 \lor x_3 \]
\[C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3 \]
Lemma. \(\Phi \) is satisfiable iff there exists a subset that sums to \(W \).

Pf. \(\Rightarrow \) Suppose \(\Phi \) is satisfiable.

- Choose integers corresponding to each true literal.
- Since \(\Phi \) is satisfiable, each \(C_j \) digit sums to at least 1 from \(x_i \) rows.
- Choose dummy integers to make clause digits sum to 4.

\[
C_1 = \neg x_1 \vee x_2 \vee x_3 \\
C_2 = x_1 \vee \neg x_2 \vee x_3 \\
C_3 = \neg x_1 \vee \neg x_2 \vee \neg x_3
\]

\[
\begin{array}{cccccc}
\hline
x_1 & x_2 & x_3 & C_1 & C_2 & C_3 \\
\hline
x_1 & 1 & 0 & 0 & 0 & 1 & 0 & 100,010 \\
\neg x_1 & 1 & 0 & 0 & 1 & 0 & 1 & 100,101 \\
x_2 & 0 & 1 & 0 & 1 & 0 & 0 & 10,100 \\
\neg x_2 & 0 & 1 & 0 & 0 & 1 & 1 & 10,011 \\
x_3 & 0 & 0 & 1 & 1 & 1 & 0 & 1,110 \\
\neg x_3 & 0 & 0 & 1 & 0 & 0 & 1 & 1,001 \\
\hline
\end{array}
\]
3-satisfiability reduces to subset sum

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. \iff Suppose there is a subset that sums to W.

- Digit x_i forces subset to select either row x_i or $\neg x_i$ (but not both).
- Digit C_j forces subset to select at least one literal in clause.
- Assign $x_i = true$ iff row x_i selected. ■

3-Sat instance

- $C_1 = \neg x_1 \lor x_2 \lor x_3$
- $C_2 = x_1 \lor \neg x_2 \lor x_3$
- $C_3 = \neg x_1 \lor \neg x_2 \lor \neg x_3$

Subset-Sum instance

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>C_1</th>
<th>C_2</th>
<th>C_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_1$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_2$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$\neg x_3$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Dummies to get clause columns to sum to 4
My hobby

EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURANT

APPETIZERS

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixed Fruit</td>
<td>2.15</td>
</tr>
<tr>
<td>French Fries</td>
<td>2.75</td>
</tr>
<tr>
<td>Side Salad</td>
<td>3.35</td>
</tr>
<tr>
<td>Hot Wings</td>
<td>3.55</td>
</tr>
<tr>
<td>Mozzarella Sticks</td>
<td>4.20</td>
</tr>
<tr>
<td>Sampler Plate</td>
<td>5.80</td>
</tr>
</tbody>
</table>

SANDWICHES

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbecue</td>
<td>6.55</td>
</tr>
</tbody>
</table>

WE'D LIKE EXACTLY $15.05 WORTH OF APPETIZERS, PLEASE.

EXACTLY? UHH...

HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE SIX OTHER TABLES TO GET TO—

AS FAST AS POSSIBLE, OF COURSE. WANT SOMETHING ON TRAVELING SALESMAN?

Randall Munro
http://xkcd.com/c287.html
Partition

Subset-Sum. Given natural numbers w_1, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Partition. Given natural numbers v_1, \ldots, v_m, can they be partitioned into two subsets that add up to the same value $\frac{1}{2} \sum v_i$?

Theorem. $\text{Subset-Sum} \leq_p \text{Partition}$.

Pf. Let W, w_1, \ldots, w_n be an instance of Subset-Sum.

- Create instance of Partition with $m = n + 2$ elements.
 - $v_1 = w_1, v_2 = w_2, \ldots, v_n = w_n, \ v_{n+1} = 2 \sum w_i - W, \ v_{n+2} = \sum w_i + W$
- Lemma: there exists a subset that sums to W iff there exists a partition since elements v_{n+1} and v_{n+2} cannot be in the same partition. □

\[
\begin{align*}
 &v_{n+1} = 2 \sum w_i - W & W \\
 &v_{n+2} = \sum w_i + W & \sum w_i - W
\end{align*}
\]

\[
\text{subset A} \quad \text{subset B}
\]
Scheduling with release times

SCHEDULE. Given a set of \(n \) jobs with processing time \(t_j \), release time \(r_j \), and deadline \(d_j \), is it possible to schedule all jobs on a single machine such that job \(j \) is processed with a contiguous slot of \(t_j \) time units in the interval \([r_j, d_j]\)?

Ex.
Scheduling with release times

Theorem. \(\text{SUBSET-SUM} \leq_p \text{SCHEDULE.} \)

Pf. Given \(\text{SUBSET-SUM} \) instance \(w_1, \ldots, w_n \) and target \(W \), construct an instance of \(\text{SCHEDULE} \) that is feasible iff there exists a subset that sums to exactly \(W \).

Construction.

- Create \(n \) jobs with processing time \(t_j = w_j \), release time \(r_j = 0 \), and no deadline \((d_j = 1 + \sum j w_j) \).
- Create job 0 with \(t_0 = 1 \), release time \(r_0 = W \), and deadline \(d_0 = W + 1 \).
- Lemma: subset that sums to \(W \) iff there exists a feasible schedule. □
Polynomial-time reductions

constraint satisfaction

3-SAT

IND INDEPENDENT-SET

VER VERTEX-COVER

SET SET-COVER

DIR DIR-HAM-CYCLE

HAM HAM-CYCLE

TSP

GRAPH GRAPH-3-COLOR

PLAN PLANAR-3-COLOR

SUB SUBSET-SUM

SCHED SCHEDULING

packing and covering

sequencing

partitioning

numerical
Dick Karp (1972)
1985 Turing Award

Karp's 21 NP-complete problems

FIGURE 1 - Complete Problems