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Abstract 
A constrained Delaunay triangle mesh method is presented to recover the surface from the three-dimensional unstructured 
boundary point cloud. The surfaces of different three-dimensional object models are recovered by this triangle mesh method. 
The radius of the tested cylinder model can be accurately estimated from the derived maximum principle curvature. The 
derived minimum principle curvature of the tested cylinder model displays a zero value, which is the analytical value of a 
standard cylinder model’s minimum principle curvature. 
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                I.    INTRODUCTION 
    The surface of a three-dimensional object discussed 

in this work is a two-dimensional manifold. It is also a 
surface that is compacted, connected, orientable and can 
be triangulated. The object’s surface can be approximated 
with piecewise connected triangles. A real object surface 
with triangulation rendering is faster than ray tracing 
rendering with a modern graphics card. Delaunay 
triangulation connects points with empty circumcircle or 
circumsphere property, it is often applied to recover a 
surface from a three-dimensional point cloud of an object 
[1], [2], [3], [4]. In Delaunay triangulation [5], a simplex 
is a tetrahedron, a triangle, an edge or a vertex. All the 
simplices are Delaunay. There exists a circumcircle or 
circumsphere of each simplex, no other vertices are in 
inside this circumcircle or circumsphere. To respect every 
input boundary point and segment, Steiner points are 
often to be added with Delaunay triangulation. In a 
constrained Delaunay triangulation, a simplex must be a 
constrained Delaunay that is a relax definition of 
Delaunay, the input set of boundary points and segments 
must be respected, and no Steiner points are added.  

The advancing front technique is often used to 
generate unstructured mesh [6], [7]. The advantages of the 
advancing front technique are that a new triangle is 
formed locally from an existing edge, the third point is 
optimally located from all nearby front points, boundary 
integrity is guaranteed since the boundary discretization 
forms the initial front.  

A constrained Delaunay triangulation (CDT) meshing 
procedure with advancing front scheme is presented in 
this work to recover a surface from the unstructured point 
cloud in three dimensions without Steiner points.  

II.   RULES OF THE CDT MESH METHOD 

A.   The Definition of CDT in Three Dimensions 

    In this work, the CDT mesh method is to recover a 
surface from the surface boundary point cloud of real data 
and without new points being interpolated. Based on the 
advancing front technique, from triangles’ edges, the 
constrained Delaunay triangles are built among the three-
dimensional unstructured boundary point cloud of real 
data. The definitions of CDTs in [5], [8], [9], [10] mean 
that the input set of boundary points and segments must 
be respected, no Steiner points are added, there exists a 
circumcircle or circumsphere for each simplex that 
enclose no other points or segments that are visible from 
any point in the interior of the simplex. That is a 
“truncated empty circumcircle or circumsphere” criterion. 
A modified “truncated empty circumsphere” criterion is 
presented here. Any neighboring points or existing 
triangle edges cannot be projected inside any triangles. 
The boundary points’ normals and their reverse normals 
are taken as the projection directions onto the plane 
defined by the triangle. A point in proximity of an 
existing triangle edge’s midpoint can be a possible third 
vertex of the new triangles. The proximity region is a 
sphere with a user defined radius. Then from all the 
possible triangles satisfying this definition of CDT, the 
third vertex is chosen as the one that is the closest to the 
midpoint of the existing triangle edge. Thus this new 
triangle can be a CDT. Each edge of a triangle connects at 
most two triangles. The following describes several 
situations to decide a projected edge intersecting a 
triangle or not. 

B. Identification of a Projected Edge Intersecting a 
Triangle or not 
To an existing edge, its end points are projected onto 

the new triangle ∆�1�2�3  plane along their normal rays, 
respectively. Let �4  and �5  be the two projected end 
points of a computing edge on ∆�1�2�3 plane. The Fig. 1 
delineates the positions of �4 and �5 between ∆�1�2�3, 
for each case, line segment �4�5 intersecting ∆�1�2�3 
or not is defined. Edge �2�3  of  ∆�1�2�3  is as the 
general case for all the figures in Fig 1. 
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Fig 1.  Identify a projected edge intersects a triangle or not (a) 

1) According to the normal of ∆�1�2�3 , Fig. 1 (a) is 
the case that �4  and �5  are both on the side of one 
triangle edge �2�3 , which has no ∆�1�2�3 , then line 
segment �4�5 does not intersect ∆�1�2�3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.  Identify a projected edge intersects a triangle or not (b) and (c) 

2) In Fig. 1 (b) and (c), �4 and �5 are both on the side 
of edge  �2�3, which includes ∆�1�2�3, they are on the 
different side of the other two triangle edges, respectively. 
The normal of ∆�1�2�3 is ��⃗ = (�2 − �1) × (�3 − �1), 
edge �1�2 is the first item of this vector product. �4 is at 
the side of edge �1�2, which has no ∆�1�2�3,  �5 is on 
the side of edge �1�2 , which has ∆�1�2�3. A virtual 
triangle ∆�1�4�5 is composed, its normal is ��⃗ ��	
�� =
(�4 − �1) × (�5 − �1). �4 substitutes the position of �2 
and �5 substitutes the position of �3. If ��⃗ ∙ ��⃗ ��	
�� ≤ 0 
as Fig. 1(b), line segment �4�5  is not intersecting 
∆�1�2�3. If ��⃗ ∙ ��⃗ ��	
�� > 0  as Fig. 1(c), line segment 
�4�5 is intersecting ∆�1�2�3.  

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig 1.  Identify a projected edge intersects a triangle or not (d)  

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig 1.  Identify a projected edge intersects a triangle or not (e) 

3) In Fig. 1(d), �4 and �5 are on the different side of 
the three triangle edges, respectively. As the method in 
Fig. 1(b) and Fig. 1(c), line segment �4�5 composes three 
virtual triangles with three vertices of ∆�1�2�3 , since 
three normals of the new triangle at three vertices are 
��⃗ = (�2 − �1) × (�3 − �1) , ��⃗ = (�3 − �2) ×
(�1 − �2)  and ��⃗ = (�1 − �3) × (�2 − �3) . In the 
normal equations above, positions of vertices are arranged 
in circular shift manner. Three normals of its virtual 
triangles are ��⃗ ��	
��,� = (�4 − �1) × (�5 − �1) , 
��⃗ ��	
��,� = (�5 − �2) × (�4 − �2)  and ��⃗ ��	
��,� =
(�5 − �3) × (�4 − �3) . If all three dot products are 
greater than zero, ��⃗ ∙ ��⃗ ��	
��,� > 0, ��⃗ ∙ ��⃗ ��	
��,� > 0 and 
��⃗ ∙ ��⃗ ��	
��,� > 0  at the same time as Fig. 1(d), line 
segment �4�5  intersects ∆�1�2�3 . If one of three dot 
products is less than zero, ��⃗ ∙ ��⃗ ��	
��,� < 0 , or ��⃗ ∙
��⃗ ��	
��,� < 0 , or ��⃗ ∙ ��⃗ ��	
��,� < 0  as Fig. 1(e), line 
segment �4�5 does not intersect ∆�1�2�3.  

4) One of three dot products can be equal to zero, 
��⃗ ∙ ��⃗ ��	
��,� = 0, or ��⃗ ∙ ��⃗ ��	
��,� = 0, or ��⃗ ∙ ��⃗ ��	
��,� =
0  as Fig. 1(f) and Fig. 1(g). For example, if ��⃗ ∙
��⃗ ��	
��,� = 0, and �4 or �5  resides at the side of edge 
�2�3  with ∆�1�2�3 , and the side of edge �1�3  with 
∆�1�2�3  at the same time, line segment �4�5  will 
intersect ∆�1�2�3 , as Fig. 1(f). If none of �4  and �5 
resides at the side of edge �2�3 with ∆�1�2�3, and the 
side of edge �1�3 with ∆�1�2�3 at the same time, line 
segment �4�5 will not intersect ∆�1�2�3, as Fig. 1(g). 
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Fig 1.  Identify a projected edge intersects a triangle or not (f) and (g) 

C. Requirements of the Third Point to a CDT 
Since the triangle is only a small surface patch, the 

normals’ directions of the triangle’s vertices are very 
similar, and they have to be conformed to the triangle’s 
normal direction. The following conditions have to be 
satisfied.  

 1) For a given edge of a triangle, dot products of its 
endpoints’ normals with that of the new triangle’s third 
point are required to be positive.  

2) The unit normal vectors of the new triangle’s three 
vertices are dot product with the new triangle’s unit 
normal, and the obtained absolute values are all greater 
than a positive threshold value to avoid dangling triangle 
which does not closely approximate a surface patch.   

3) Each triangle edge can only connect two triangles. 
The edge plane is defined as the plane perpendicular to a 
plane containing at least one of the two triangles and 
passing the edge which is forming a new triangle. The 
triangles’ third vertices of these two triangles must be on 
the two sides of this edge plane separately except that the 
normals of both the third vertices are in reverse direction 
as in Fig. 2 (b). Fig. 2(a) and Fig. 2(b) are possible CDTs, 
the new triangle in Fig. 2(c) does not satisfy CDT 
requirements. 

 

 

 

 

 

 

Fig. 2  Cases of the third point of the new triangle 

 

D. Determinations of the Neighboring Points or Edges 
Intersecting the New Triangle 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Cases of neighboring points intersecting a triangle or not (a), (b)  
and (c) 

The CDT mesh method looks at whether the normal 
ray of a boundary point intersects the new triangle or not. 
The following procedures are the implementations of the 
CDT definition’s requirements, and must be satisfied at 
the same time to allow a CDT to be built. 

1) The projection of a neighboring point is along its 
normal direction onto the plane of the new triangle, if 
inside the new triangle, the new triangle is not a CDT. If it 
is outside the new triangle, this triangle is a possible CDT, 
two instances are shown in Fig 3 (a). Fig. 3 (b) is a 
possible CDT since the dot product of the solid 
neighboring point’s normal with one of the triangle 
vertices’ normal is negative. Fig. 3 (c) is not a valid CDT 
since the dot product of the solid point’s normal with all 
the triangle vertices’ normals are positive. The small 
circles are indicating intersections of normal rays with 
triangles. 

2) Edge projection is that its endpoints’ normals or the 
reverse direction of the normals intersect on the plane of a 
formed or a new triangle. If no projected neighboring 
edge intersects a new triangle, that new triangle is a 
possible CDT. Three examples are shown in Fig. 4 (a).  
Fig. 4 (b) provides cases of intersections between the 
projected neighboring edge and the possible CDT since 
the dot product of the average edge endpoints’ normals 
with the average of triangle vertices’ normals is negative. 
Fig. 4 (c) lists cases of invalid CDT, since the dot product 
of the average edge endpoints’ normals with the average 
of triangle’s vertices normals is positive, The dashed line 
segment with two circles is the projected neighboring 
edge on the triangle plane. The solid arrow lines are 
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normals of the solid endpoints of a neighboring triangle 
edge. The dash lines attached with the solid points are 
extensions of the normal directions reversely. Also the 
normal ray propagation distance cannot exceed a user 
defined threshold.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4 Cases of neighboring edge intersecting a triangle or not (a) , (b) 

and (c) 

E. Avoidance the Degenerate Triangle 
The triangle area cannot be too small. The triangle 

area is required to be greater than a user defined small 
positive value. If the triangle area is too small, it perhaps 
implies a degenerate case that three vertices of the 
triangle are on the same line. 

III. CDT MESH METHOD STEPS 

A. Seed Triangles’ Generation 
Starting with a seed point from the boundary point 

cloud if it has no triangle connected, find the closest point 
to this point to build one edge of a seed triangle. Then 
find the third point that is closest to the midpoint of this 
edge just built. The resulted triangle must satisfy all the 
requirements in this CDT mesh method. This step will 
continue until all the boundary points are computed.  

B. Advancing Front Step 
For every triangle formed, each of its three edges must 

be investigated. If an edge has two triangles connected, 
continue to test the next edge. If the edge has only one 
triangle, it belongs to the front elements, the third point of 
a new triangle is required to select among the neighboring 
points of this edge’s midpoint. Then from all the triangles 
satisfying all requirements of a CDT, the one that the 

third vertex is closest to the midpoint of the current 
triangle edge is selected. Then the current edge is 
removed from front. This step will continue until all 
formed triangles’ edges are inspected. 

C. Hole filling step 
Sometimes holes in the mesh occur. A hole triangle 

means at least one edge of the triangle connects only one 
triangle. The holes produced in the mesh are filled by 
triangles with less strict criteria of CDT described above; 
reduce the proximity neighboring region and remove the 
requirement of II.C.2) that is to remove the normal 
requirement of the new triangle to avoid the occurrence of 
dangling triangle, or fill a hole by forming a triangle with 
the adjacent edges at a common vertex which form a hole.  

IV.   THE PERFORMANCES OF THE CDT MESH 
METHOD ON THREE-DIMENSIONAL MODELS 

A. Render a Three-Dimensional Surface with the CDT 
Mesh 
The surface recoveries are performed on three-

dimensional point clouds from several different objects of 
real data: a cylinder, a mushroom, a monster, and a 
heart’s artery tree. The cylinder model is a stack of a same 
circle, the boundary points of the circle is extracted from 
a real data. Fig. 5(a), Fig. 5(b), Fig. 5(c) and Fig. 5(d) 
display the surface recovered by this CDT mesh method 
on objects cylinder, mushroom, monster and an artery 
tree, and no Steiner points are added.   

After the CDT mesh operation, the hole occurrences 
can be identified by testing each built triangle. If a 
triangle is adjacent to a hole, at least one of its edges 
connects only this current triangle. Such a triangle is 
called a hole triangle. If a triangle is not adjacent to a 
hole, its three edges must connect to other triangles beside 
the current one. If the surface of the object has no 
boundary, no hole triangle should appear on the recovered 
surface. The number of hole triangles indicates how many 
boundaries are generated by this CDT mesh method. The 
number of boundary points, the total triangles, triangles 
created from hole filling step and hole triangles are listed 
in the Table 1 for each object. For the cylinder model, 72 
hole triangles are at the boundary of the cylinder’s 
surface, in Fig. 5(a). The CDT mesh produces no hole 
triangles with mushroom, monster model. It produces 
false boundaries with the artery tree model with nine hole 
triangles occurring. Fig. 5 (e) displays a large view of 
several hole triangles on CDT meshed surface of the 
artery tree model. 
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Fig. 5 CDT Meshed Surfaces on Three-Dimensional Models (a) 
cylinder 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 CDT Meshed Surfaces on Three-Dimensional Models (b) 
mushroom  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 CDT Meshed Surfaces on Three-Dimensional Models (c) 
monster  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 CDT Meshed Surfaces on Three-Dimensional Models (d) 
artery tree (e) large view of the hole triangles in (d). 
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 (d) artery tree (e) large view of the hole 
triangles in (d). 
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Table 1. The Performances of the CDT mesh on the three-dimensional 
models 

       3D 
model 

point 
number 

Total 
triangle 
number 

Triangle 
number 
by hole 
filling 

Hole 
triangle 
number 

cylinder 432 792 0 72 

mushroom 16008 32012 0 0 

monster 7259 14514 31 0 

artery tree 27008 54008 300 9 

 
B. Estimations of the Recovered Surface’s Normal Angle 

on Different Models  
From the CDT meshed object’s surface, the angle 

between the boundary point’s normal and the surface 
triangle mesh can be estimated through computing the 
average angle between the normal at each boundary point 
and the triangle planes this point attached. The statistics 
of the angle values of different three-dimensional models 
are given in Table 2. The angle more approaches to 900 
indicates the triangles are averagely more close to the 
tangent planes defined by the normals of the objects’ 
boundary points. The mean normal angle of the cylinder 
model is more approach to 900, compared with other 
models.   

Table 2 Normal angles’ statistical properties on the objects’ CDT 
meshed surfaces 

3D model Range, degree Statistics, degree 

max, min mean, deviation 

Cylinder 86.10, 83.35 85.0, 0.79 

Mushroom 90.0, 52.66 78.85, 7.18 

Monster 90.0, 28.04 75.64, 6.59 

Artery tree 89.43, 7.17 71.96, 6.97 

                            

C. Estimations of the Recovered Surface’s Principle 
Curvatures of a Cylinder Model 
From the CDT meshed object’s surface, principle 

curvatures can be estimated. According to the curvature 
computation in [11], the principal curvatures can be 
derived from the local hessian matrix at each boundary 
points. In Table 3, the computed minimum principle 
curvature from the CDT mesh is equal to the analytical 
value zero at each boundary point on the cylinder model. 
The analytical value of the maximum principle curvature 
of cylinder is a constant all over the cylinder’s surface, 
which equals to the reciprocal of the cylinder’s radius. 
The mean maximum principal curvature is 0.812mm-1, 
standard deviation is 0.0012mm-1. Thus, the mean radius 
of this cylinder is 1.231mm, the real radius of this 

cylinder measured from the sampled boundary points is 
1.223mm, and so the absolute error is 0.0078mm.  

Table 3.Estimated principle curvatures of cylinder model 

Principle 
curvature 

Range, mm-1 Statistics, mm-1 

Max, min Mean, deviation 
Maximum  0.814, 0.811 0.812, 0.0012 
Minimum  0.0, 0.0 0.0, 0.0 

CONCLUSION 
The CDT mesh method presented in this work can 

successfully recover the surfaces of different three-
dimensional object models. The principle curvatures can 
be derived from the triangulated surfaces. The derived 
maximum principle curvature can be used to accurately 
derive the cylinder radius. The derived minimum 
principle curvature of the tested cylinder model displays a 
zero value, which is the analytical value of a standard 
cylinder model’s minimum principle curvature. 
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