
Accurate and Reliable Extraction of Surfaces from Image Data
using a multi-dimensional Uncertainty Model

Christina Gillmann1, Thomas Wischgoll2, Bernd Hamann3, Hans Hagen4

Abstract

Surface extraction is an important step in the image processing pipeline for estimating the size and shape of an object.
Unfortunately, state-of-the-art surface extraction algorithms form a straight forward extraction based on a pre-defined
value that can lead to surfaces that can are limited in terms of accuracy. Furthermore, most isosurface extraction
algorithms lack the ability to communicate uncertainty originating from the image data. This can lead to a rejection of
such algorithms in many applications. To solve this problem, we propose a methodology for extracting and optimizing
surfaces from image data based on a clearly defined uncertainty model. To identify optimal parameters, the presented
method defines a parameter space that is evaluated and rates each extraction run based on the remaining surface
uncertainty. The resulting surfaces can be explored intuitively in an interactive framework. We applied our methodology
to a variety of datasets to demonstrate the quality of the resulting surfaces.
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1. Introduction

Surface extraction is an important task in the image pro-
cessing pipeline. The goal is to transform selected pixels of
the input image into a surface, representing the boundary
of the object visible in the image [1]. Such surfaces are5

used in different applications, for example for analyzing
the size, position and shape of tumors in the human body
[2].

The extraction of surfaces was subject of many promi-
nent algorithms during the last decades (see Section 2).10

Unfortunately, surface extraction methods are not widely
spread in many applications. A major problem with these
algorithms is the lack of uncertainty quantification and
communication [3]. Real world datasets can be highly af-
fected by uncertainty, meaning that domain scientists can-15

not determine the objects captured in the image data with
absolute certainty. When exposing these experts with a
surface extraction, they tend to reject it as they cannot
rate the reliability and accuracy of the extraction algo-
rithm’s output. In addition to that, surface extraction al-20

gorithms work on a globally selected isovalue, determining
the resulting surface. This assumption is incorrect in many
cases as the actual surface can deviate slightly around the
predefined isovalue [4].

In order to solve the aforementioned problems, the goal25

is to design a surface extraction algorithm, that outputs
a reliable and accurate surface. Therefore, this paper
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presents a novel surface extraction methodology, that is
able to quantify the uncertainty of each image pixel as
a multi-dimensional vector. This uncertainty space is30

utilized to optimize an initially extracted surfaces such
that the remaining surface uncertainty becomes mini-
mal. Therefore, the presented method evaluates a high-
dimensional parameter space, performs multiple surfaces
optimizations and rates the resulting surfaces to present35

the best results and its corresponding parameters to the
user. Finally, the user can inspect the best results in an in-
teractive system through comparing different surfaces with
each other as well as identifying uncertain areas in selected
surfaces (see Section 4).40

In summary, this paper contributes:

• An optimization approach for surfaces based on an
high-dimensional uncertainty model

• A quantification of surface uncertainty (global and lo-
cal)45

• An intuitive visualization to explore and compare sur-
faces

To show the effectiveness of our approach, we tested
our methodology by reconstructing surfaces from prede-
fined objects and compared our results to a state-of-the-art50

marching cubes algorithm outputs. In addition to that, the
algorithm was applied to a variety of real world datasets
and it can be shown that the overall error can be minimized
(see Section 5). At last, the paper will be concluded and
future directions are given in Section 7.55
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2. Related Work

Surface extractions have been object of research since
decades. A proper summary can be found in [5]. This
Section will summarize related work in the area of surface
optimization and uncertainty visualization for surfaces.60

2.1. Optimization of Surface Extraction

The original surface extraction algorithm, know as
marching cube [6] is a well known state of the art algo-
rithm. It is based on a selected isovalue that determines
the resulting surface elements. Although, this algorithm65

has been successfully applied to many problems, the al-
gorithm is not able to adapt its isovalue throughout the
image to match the desired surface. Glaznig et al. [7] pre-
sented a marching cubes method, that is able to automati-
cally adapt its isovalue throughout the extraction process.70

Although this improves the quality of the resulting isosur-
face, it holds higher potential for topological errors, than
the classical marching cubes approach. Therefore, the pre-
sented methodology starts with a classic surface extraction
algorithm and improves the resulting geometry through an75

uncertainty model.

In general, the marching cubes algorithm can lead to
degenerated meshes. Approaches, that try to preserve the
topology of thin structures [8], eliminate degenerated tri-
angles [9] or insert additional points to preserve topological80

features [10] are available. These methods are proper im-
provements for the classic marching cubes approach and
the presented methodology is able to include them in a
straight forward manner. Instead of starting with a march-
ing cubes approach it is possible to start from any surface85

and apply the optimization procedure presented in this
manuscript.

Lopes et al. [11] presented an extension of the marching
cubes algorithm, that was designed to improve the accu-
racy and robustness of the original algorithm. To achieve90

this, their method subdivides cells to identify key features
of the resulting surface. Although this is a suitable ap-
proach to improve the quality of a surface extraction, the
approach does not consider the uncertainty contained in
many real world datasets. Therefore, the presented ap-95

proach in this paper uses uncertainty measures to improve
the surface generated by the marching cubes algorithms.

Athawale and Entezari [12] developed a method that
is able to detect and quantify the effect of uncertainty
throughout the computation of the marching cubes algo-100

rithm. They were able to propagate uncertainty measures
described in the original image data in the interpolation
during the surface extraction. Although this is a good
starting point to estimate how uncertain input data affect
the marching cubes algorithm, the authors did not pro-105

pose a method to handle this information. Therefore, the
presented approach that uses uncertainty measures in the
original image to improve surfaces and make them more
accurate and trustworthy.

2.2. Uncertainty Visualization of Surfaces110

The communication of uncertainty is an important topic
in many applications such as medical visualization and vi-
sualization is a key tool to achieve this goal. An overview
of uncertainty visualization techniques can be found in
[13]. Although there exists a large variety of visualiza-115

tion techniques for data affected by uncertainty, the visu-
alization of uncertainty of surfaces is subject of just a few
works. The most important are discussed below.

Pöthkow and Hege presented a method [14], where iso-
surfaces are surrounded by heatmaps that indicate the120

probability of a surface to alter its position in space. Al-
though this visualization can provide a good overview over
the possible locations of surfaces, it can result in visual
clutter. Therefore, the presented method uses a colorcod-
ing of the isosurface to indicate the remaining uncertainty125

after the optimization process without introducing further
visual objects.

Drapikowski [15] described a model for isosurface uncer-
tainty in medical applications based on geometric features
such as smoothness and curvature. These features were130

mixed with knowledge about the underlying image struc-
ture and the human anatomy to determine the quality of
the isosurface. Although this method outputs promising
results for medical datasets it is dependent on suitable
knowledge from the underlying object. In contrast to this,135

the presented method is able to quantify and visualize un-
certainty independent from the underlying object and use
this knowledge to optimize arbitrary geometries.

Rhodes et al. [16] evaluated different techniques to vi-
sually encode uncertainty on isosurfaces. They tested dif-140

ferent modes as color-coding, textures and combination
of these techniques for multi-modal visualization. They
found that colorcoding is a suitable method to visualize
uncertainty on a surface. Unfortunately, their work does
not provide a model to describe the uncertainty of a sur-145

face resulting from image data. In the presented method,
we use colorcoding to communicate the uncertainty that
can be defined by using our model.

He et al. [17] presented an extension of the march-
ing cubes algorithm, that utilizes an uncertainty model to150

quantify uncertainty in image data and transformed this
information throughout the marching cubes algorithm.
This leads to an uncertainty visualization on top of the ex-
tracted isosurface. Although this is a good starting point
to introduce uncertainty information into the isosurface155

representation, the algorithm is not able to optimize the
marching cubes extraction based on the given uncertainty
model. Therefore, the presented approach utilizes an un-
certainty model to optimize marching cubes results and
visualize the remaining uncertainty.160

The examination of the state of the art methods showed,
that there is a need to develop a surface extraction algo-
rithm that outputs accurate and trustworthy results while
considering a proper uncertainty model.
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3. Requirements for surface extraction165

In order to develop a geometry extraction technique,
that can be used in the decision making process of various
applications, the following Section describes the require-
ments that need ti be fulfilled to obtain such surfaces.

R1: Accuracy[18]. In order to achieve a high user ac-170

ceptance in real world applications, the extracted Surface
needs to be as accurate as possible. In many cases, users
are interested in exact sizes, shapes and positions of the
extracted surfaces and therefore require accurate extrac-
tion methodologies.175

R2: Reliability[19]. Users from real world applications
usually have no background knowledge of the underly-
ing mathematical principle of the surface extraction algo-
rithm. Instead, these algorithm are a black box for those
users. Therefore, users from different domains need be be180

sure, that they can rely on the extracted surface during
their daily tasks.

R3: Fast to compute [20]. In real world applications,
decisions often need to be made fast. Therefore, the com-
putation of an isosurface is not allowed to take too long.185

R4: Comparative [21]. Often, different options need to
be discussed during the decision making process. There-
fore, isosurface options should be represented in an inter-
active system.

R5: Uncertainty-awareness [22]. As the underlying im-190

age data of an isosurface extraction process is highly af-
fected by uncertainty, a communication of this uncertainty
throughout the isosurface extraction process is required.
In addition, the final isosurface should include uncertainty
information as well to allow users a better understanding195

of the trusthworthyness of a considered isosurface.

4. Methods

In this manuscript we present a novel methodology to
find a proper geometric description for a depicted struc-
ture in an image. The goal is to obtain a geometry, that200

as accurate and reliable as possible. To achieve this, the
presented method evaluates the input parameter space by
extracting various geometries based on different iso-values
and optimize them with differently weighted uncertainty
measures. The presented algorithm presents statistical in-205

formation of all extracted geometries and allows the user
to browse them in order to find his preferred result. An
overview of the presented methodology can be found in
Figure 1.

The input of the presented methodology is a three-210

dimensional image, that can be defined as I := (V × X)z,
where V := {1, ..., t1} × {1, ..., t2} × {1, ..., t3} where tk ∈
N>0 and X := {1, ..., 256}. In other words, an input im-
age a three-dimensional image where each dimension has
a maximum number of pixel and each pixel holds a value215

between 0 and 256. In the following manuscript I(v) refers
to a value of a specific pixel.

Figure 1: Workflow of the presented methodology, consisting of the
computation of the uncertainty model (1), initial geometry extrac-
tion (2), geometry optimization (3) and intuitive representation of
optimization results (4).

The following sections will describe each step of the com-
putational pipeline in detail starting from the input Image
I(v).220

4.1. Initial Isosurface Extraction

As shown in Section 2 isosurface extraction has been a
subject of research since decades. The goal is to define a
surface, that represents all values in an image containing a
pre-defined isovalue k. In the presented method, we utilize225

an extracted surface provided by an arbitrary extraction
algorithm such as marching cubes [23]. The choice of ex-
traction algorithm can be based on the application and has
no restrictions, besides that the algorithm needs to output
a geometry containing points and triangles.230

This extracted geometry G can be defined as G :=
(P,T), where P := R × R × R is the point space and
T := {1..., N} × {1..., N} × {1..., N} is the triangle space,
where triangles are constructed through three points.

Although a surface extraction outputs a first guess235

about the surface of an object, these class of algorithms
are not considering the uncertainty of the underlying im-
age data into account. One problem of these algorithms is
based on the chosen isovalue required for surface extrac-
tion. In many cases, it becomes not directly clear which240

exact isovalue is a proper choice. This often results in a
rerun of the algorithm, where users need to visually in-
spect their result to obtain a proper isovalue. In addition
to that, isosurface extraction algorithms neglect the un-
certainty of the underlying image data in two different245

manners. First, this information is not taken into account
during the extraction process and second it is not assumed
for representing the quality of the extracted surface.

Therefore, the presented methodology utilized uncer-
tainty measures for image data and utilizes them to op-250

timize the initial extraction of a geometry and visually
encode the quality of the resulting geometry.

4.2. Uncertainty Model

In order to obtain trustworthy and accurate geometry
extraction the goal is to minimize the surface’s uncertainty.255

This uncertainty origins from the input image data. Real
world datasets are affected by uncertainty that is intro-
duced through the image reconstruction process. When
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Figure 2: Image errors output, based on the slice of a computed tomography scan showing two phases of a fluid a). The resulting error
measures are b) Acutance, c) Distance to original Value, d) Gaussian Error, e) Local Contrast, f) Salt and Pepper Noise, g) Brightness and
h) Contrast Correction.

applying a surface extraction algorithm to such data, the
resulting surface is also affected by uncertainty. Usually,260

this uncertainty is not communicated, which can lead to a
rejection of surface representations in applications.

Therefore, the goal is to quantify, minimize and commu-
nicate the uncertainty of an extracted surface. To achieve
this, it is required to know the uncertainty of the underly-265

ing image data. In order to do so, the goal is to determine
the uncertainty of each pixel contained in the original im-
age. Contrary to the term error, uncertainty has not a
clear definition. This is based on the fact, that the un-
certainty of an image and its pixels cannot be determined270

based on a groundtruth as in the case of image errors. In-
stead, the uncertainty of an image pixel is an estimation
based on a model.

The utilized model considered a pixel and its surround-
ing. Still, this does not result in a unique description as275

there exist a variety of model that estimate the uncertainty
of a pixel. We use a high-dimensional uncertainty-model
introduced by Gillmann et al. [24]. In this work it was
shown, that the utilized uncertainty measures are suffi-
cient to estimate the uncertainty of an input image.280

These utilized measures are build on different assump-
tions what pixel settings lead to a high amount of uncer-
tainty. Therefore, an holistic view of uncertainty cannot
be accomplished while using a single uncertainty measure.
Instead, the model utilized in this paper is based on a col-285

lection of uncertainty measures that are selected to cover
the important image quality aspects such as contrast, blur,
noise, artifacts, and distortion [25].

A single uncertainty measure u is a function defined as:

u(I, v)→ [0, 1] (1)

In other words an uncertainty measure function is de-290

fined for a pixel of an image outputting a value between
0 and 1. If the uncertainty measure outputs 0, the input
pixel is not affected by uncertainty according to the un-
derlying uncertainty measure. In contrast to that, if the

pixel is absolutely not trustworthy according to the used295

uncertainty measure, the output will be 1.
Throughout this paper the total number of utilized un-

certainty measures is n whereas ei is an uncertainty mea-
sure with i ∈ {1...n}.

In particular, the utilized uncertainty measures in the300

presented model are:

• Acutance: This measure assumes the image pixel to
have a large gradient to be trustworthy. [26]

• Distance to original Value: The uncertainty out-
putted by this measure increases if the voxel value is305

altering from the chosen isovalue.

• Gaussian Error: Estimates the gaussian noise as-
signed to an image pixel. [27]

• Local Contrast: Computes how homogeneous the
surrounding of a pixel is. [28]310

• Salt and Pepper Noise: Estimates the salt and
pepper noise assigned to an image pixel. [29]

• Brightness: The brighter a pixel is, the lower the
response of this uncertainty measure is. [30]

• Contrast Correction: Assuming the input image315

can be optimized by an contrast histogram stretch,
this measure estimates the improvement for the per-
formed stretch. [31]

The output of the utilized measures is shown in Figure
2. Pixels with a high uncertainty measure are indicated320

through white color whereas pixels with a low color are
indicted through black color. It can be observed, that this
measures can output very opposite results depending on
the underlying assumption of uncertainty.

As the goal is to obtain an overall impression of the un-325

certainty contained in an image pixel, the mentioned un-
certainty measures need to be combined. Therefore, the
uncertainty of an image pixel is not a single scalar in our
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model. Instead, the uncertainty of a pixel can be defined
as an vector containing all mentioned uncertainty mea-330

sures as single components. This vector can be defined as
u(I(v)) = (u1, ....., un)T .

In the following, this vector is utilized to optimize ex-
tracted geometries thus they result in certain geometries.

4.3. Geometry Optimization335

In order to find a surface extraction that represents
the selected structure of the image as good as possible
while holding a low uncertainty, the presented method-
ology computes a large variety of surfaces and optimizes
them according to different parameter settings. The re-340

sulting surfaces are rated based on the remaining uncer-
tainty of the surface and stored by this ranking. Pseu-
docode 1 shows the steps of the presented method.

Algorithm 1 Generation of surface optimizations with
different parameters.

1: function OPTIMZEDSURFACELIST(I, K[], m,
E, ε)

2: Initialize Results
3: for k ∈ K do
4: G = EXTRACT( I, k )
5: Initialize Results[]
6: for 1, ...,m do
7: Initialize ω[]
8: for e ∈ E do
9: ADD( ω, RANDOM(0,1) )

10: NORMALIZE(ω)
11: G∗ = OPTIMIZE( E, G, ω, ε )
12: Initialize f = EVALUATE(G∗)
13: ADD( Results, (G∗, k, ω, f)

14: return Results

The procedure can mainly be divided into three stages:
First Parameter Space Scanning, where the high dimen-345

sional space is evaluated randomly, second Optimization
of Surfaces where a surface will be optimized with each
selected parameter third and Evaluation of Surfaces where
each optimized surface will be evaluated based on the re-
maining surface error. The technical details will be de-350

scribed below.

4.3.1. Scan Parameter Space

In order to extract a surface that represents the object
of interest properly as well as being maximal trustworthy,
the presented algorithm computes several surfaces starting355

with different isovalues and optimizes them based on the
presented uncertainty measures. This is important as the
choice of the isovalue is usually done manually by looking
into the image and guessing a proper value. Although this
guess is not completely wrong, there is no certainty, that360

the chosen value is the best choice. Therefore, the pre-
sented methodology utilizes the chosen isovalue and per-
forms multiple surface extractions based on isovalues, that
slightly alter from the chosen isovalue.

For each of those isovalues the goal is to optimize the365

resulting surface thus the remaining surface is as trust-
worthy as possible. Instead of solely optimizing the sur-
faces thus the result minimizes the remaining uncertainty
of the surface, the algorithm optimizes the surfaces based
on differently strong weighted uncertainty measures. This370

is required, as different uncertainty measures make differ-
ent assumptions how to quantify uncertainty. Depending
on the input image these assumptions can be correct, in-
correct or something in between.

To solve this problem, each uncertainty measure375

uiobtains a weight ωi, where ωi ∈ [0, 1]. The function
of this weight is to control the importance of the accord-
ing error measure during the optimization procedure. If
ωi = 0, then the respective error measure is not consid-
ered for optimization. Instead, if ωi = 1, the respective380

error measure is strongly optimized.
All possible values of ωi form a high-dimensional weight

space. In this space, not all points have to be considered.
In fact, only points, that are located on the hyper unit ball
should be considered for optimization. This is caused to385

the fact, that all other value can be scaled to the surface
of the hyperplane. In the optimization procedure scaling
is an invariant and therefore, only the points on the hyper
sphere are considered.

Obviously, the hyper sphere cannot be evaluated com-390

pletely, as this would result in an infinite number of opti-
mization runs. Instead, the user selects a number of op-
timization run m where for each run the weights are ran-
domly generated between 0 and 1 and finally the entire
vector of weights is normalized. Based on each of this nor-395

malized set of weights, the optimization procedure can be
started.

4.3.2. Optimization of a Surface

Figure 3: Scheme of geometry optimization based on the underlying
uncertainty measures. The points of the geometry are shifted along
the uncertainty gradient until the position change does not exceed a
user defined treshold.

For each combination of an initial geometry extraction
and random weight assignment, we present a method to400

optimize the initial guess of the surface, thus it becomes

5



Figure 4: Visualization of resulting surfaces. Top: Selection Widget containing parallel coordinates. Middle: Selected Surfaces that can be
reviewed further. Down: Closeup for comparison of algorithm outputs.

accurate and trustworthy. Therefore, the underlying un-
certainty measures are considered.

As the initial geometry is based on the underlying input
image, the geometry is located in the bounds of the vol-405

ume. Therefore, it is possible to evaluate an uncertainty
vector for each point in the initial geometry, referred to
as u(G(p)). The resulting uncertainty vector is a tri-linear
interpolated value based on the position of the point in the
underlying image.410

For the vector u(G(p)), its length |u(G(p))| and its gra-
dient ∇|u(G(p))| can be computed straightforward by con-
sidering the underlying uncertainty image and utilizing a
tri-linear interpolation as well. This gradient is utilized to
shift the points of the geometry into a direction thus the415

resulting length of the uncertainty vector becomes mini-
mal.

Therefore, the points are shifted along the gradient until
the shift of the point becomes smaller, then a user selected
threshold. The algorithm iterates over all points contained420

in the geometry until each point cannot be shifted more
then the set threshold. While doing this, the points of the
geometry change their position in space such that the re-
sulting geometry is located at points in space, that have
a low uncertainty. Therefore, the resulting surface op-425

timizes the surface uncertainty based on the underlying
uncertainty model.

Figure 3 shows the geometry optimization in detail. All
points of the original geometry (red) are shifted along the
uncertainty gradient. In the given example, this shift is430

performed twice. In the third iteration, solely 3 points are
shifted, as their uncertainty gradient is still bigger, then
the user-defined threshold. After the algorithm is per-
formed, the points of the geometry are located at a point
in space, where the uncertainty becomes a local minimum.435

The benefit of this approach is that there is no need
to insert new points. This allows an improvement of the
surface generated from an image in low computational ef-

fort and without changing the topology of the underlying
geometry.440

4.3.3. Evaluation of Surface

Depending on the selected parameter space, the pre-
sented algorithm outputs an optimized geometry where
each geometric point is shifted thus it remains in a local
minimum of surface uncertainty close to the starting point.445

As the presented algorithm outputs a set of optimized ge-
ometries based on the pre-defined parameter space, we re-
quire a mechanism that rates the quality of the optimized
surfaces. Therefore, we utilize the remaining surface un-
certainty to determine the quality of the resulting geome-450

try. The uncertainty of a geometric surface U(G) can be
computed by:

U(G) =

∑
T∈G S(G(T )) ∗ U(G(T ))∑

T∈G U(G(T ))
(2)

whereas, S(G(T )) is the surface area of a triangle and
U(G(T )) is the average length of the three uncertainty
vectors assigned to the triangle points. The surface eval-455

uation function takes the size of the surface into account.
This ensurers, that the remaining surface uncertainty is
normalized based on the size of the considered geometry.
Without doing this, it would be possible that small sur-
faces are rated better although they have a higher average460

uncertainty than a larger surface.
The proposed evaluation measure can be utilized to sort

all optimized geometries. The result is a list of geometries
sorted by their remaining surface uncertainty U(G). Each
element of this list contains the following items:465

• (G), the resulting geometry after the optimization
process

• k, the utilized isovalue (further parameters, when us-
ing another surface extraction algorithm
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• ωi, the weights for each uncertainty measure utilized470

for the optimization process

• ε, the stop criteria

The average time to compute such a list is highly de-
pending on the runtime of the underlying surface extrac-
tion algorithm (which is usually depending on the number475

of pixels z, the number of tested isovalues k, the number
of different weight assignments m and the required itera-
tions to optimize a geometry i. This results in a runtime
of O(zkmi).

This list is utilized to show the user trustworthy geome-480

tries and allow him to explore the parameter space as well
as the optimized geometries.

4.4. Visualization of Optimization Results

The output list of the geometry optimizations covers
a large number of optimized geometries and their result-485

ing surface uncertainty. Although, the geometry with the
smallest surface error is the most interesting geometry, the
remaining list can give important insight to the parameter
space and its properties. In addition to that, the aver-
age surface uncertainty gives an overall impression for the490

quality of a surfaces. Often users are interested in specific
parts of a surface and their uncertainty values. There-
fore, the list of optimized geometry is embedded into an
intuitive visual system, that allows the user to explore the
list of optimized surfaces and inspect selected surfaces in495

detail.
Therefore, the visual system contains two linked views:

a parallel coordinate view, showing for each isovalue a par-
allel coordinate plot containing the chosen random weights
and the resulting surface uncertainty and a 3D plot of the500

user selected surfaces. The views and an example result
can be reviewed in Figure 4.

The parallel coordinate view offers different parallel co-
ordinate plots, one for each isovalue in the parameter
space. Each of these plots contains all weights for the505

surface optimization as well as the resulting surface un-
certainty. Users can interactively select surfaces based on
their parameter settings. Based on the user defined selec-
tion, the surface view shows the 3D plots of the result-
ing surfaces. The surfaces are aligned under the parallel510

coordinate plot of the respective starting isovalue for an
intuitive analysis.

To allow users to analyze the resulting surface in de-
tail, the remaining surface uncertainty per triangle is
color coded on the surface. The color ranges from blue515

(U(G(T )) = 0) over white (U(G(T )) = 0.5) to red
(U(G(T )) = 1). Whit this color coding the user is enabled
to differentiate the quality of a surface depending on the
remaining surface uncertainty at specific locations. As red
is a signal color the user is deirectly guided to uncertain520

areas on the surface.
Figure 4 shows the user interface of the presented sys-

tem. The top row shows the parallel coordinate view with

5different isovalues, the utilized weights for optimization
(30 for each isovalue) and the resulting surface uncertainty.525

For each isovalue (80, 90, 100, 110 and 120) the user se-
lected the best optimization result from the performed op-
timizations. They are indicated by a thicker line. In the
middle view, the selected surface visualizations can be re-
viewed. In this example, the isovalues are very distinct,530

leading to highly different surfaces, as shown in the lower
part of Figure 4. Overall, the surface selected in the orange
parallel coordinate view has the lowest remaining surface
error. In the closeup it can be observed, that in this op-
timization run, the algorithm outputs the best surface for535

the concave area of the geometry. This can be easily de-
tected with the proposed visual system.

Based on the presented workflow, users are enabled to
extract accurate and trustworthy surfaces from image data
and review them.540

5. Results

In the following section the presented approach is used
to create extract accurate and reliable surfaces from real
world datasets in the medical and mechanical engineer-
ing area. The presented approach was implemented using545

C++ with the vtk [32], [33] and Qt [34] libraries.

5.1. Sphere Example

Figure 5: Isosurface extraction of a three dimensional image con-
taining the approximation of a sphere. a) Weights and isosurfaces
(colorcoded) for the run experiments. b) Surface extracted by a
marching cubes algorithm. The closeup shows the staircase effect.
c) Surface extracted with the presented method. The closeup shows
that the staircase effect can be minimized.

Figure 5 shows the extraction of a sphere surface for a
synthetic dataset. The dataset had a size of 70x70x70.
The data was generated by setting all voxels within the550

radius of a sphere with the grayscale of 100. On all other
locations, the grayscale value was set to 0. We ran 30 dif-
ferent optimizations with 5 different isovalues. The paral-
lel coordinate view of all optimiyation runs can be found
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Figure 6: Isosurface extraction of a engine from a CT scan. Upper row: results from a classic marching cubes algorithm. a, b) closeup of hole
in engine border. c, d) Closeup of round recess on top of the engine. e, f) closeup of tube. For all cases our algorithm was able to enhance
the surface representation.

in Figure 5. The best optimization result has an average555

surface uncertainty of 0.11 with an isovalue of 52.
Figure 5 b) shows the isosurface extraction that is out-

putted by the marching cubes algorithm starting with an
isovalue of 52. The close-up shows an often occurring effect
when using marching cubes: the staircase effect. In this ef-560

fect, the resulting surface builds several levels instead of a
smooth curved surface. In many applications, this output
needs to be post-processed to remove this effect.

Based on the marching cube output, the presented
methodology is able to adjust the surface points, thus the565

surface becomes more accurate. Figure 5 c) shows that
the staircase effect is removed when using the presented
methodology. Overall, the optimized surface is smoother
and closer to the original sphere shape, then the result
based on the marching cubes algorithm.570

This result shows, that the underlying model of uncer-
tainty used for the optimization process is able to optimize
the geometry outputted by surface extraction algorithms.
The interface is easy to use so that the user can iden-
tify the best optimization result very easy and explore the575

resulting surfaces. The inspection of selected surfaces is
intuitive, as all zooming and panning operations are con-
sequently propagated to all visible geometries.

5.2. Engine Example
The next example is the surface extraction of an engine580

from a Computed Tomography scan. In mechanical engi-
neering, these datasets are generated to automatically de-
tect defects of working pieces after they are manufactured.

Therefore, it is very important to obtain an accurate and
reliable surface of the manufactured object to estimate its585

quality.

The original image data has a size of 256x256x256 and
is a freely available dataset [35]. The upper show shows
the resulting surface extraction from a standard marching
cubes algorithm, whereas the lower row shows the opti-590

mization results of the presented methodology. We tried
five different isovalues (78-82) and ran 100 optimizations
per isovalue. The shown result in the Figure 6 had the
lowest resulting average surface error with 0.241108.

Figure 6 compares the output of the marching cubes al-595

gorithm (top) with the output of the presented algorithm
(down) in this paper for the dataset containing the en-
gine. Part a) and b) show the closeup of a hole in the
engine’s side. It can be observed, that the output of the
original marching cubes algorithm is edged, which is an600

effect of the linear interpolation occurring in the original
algorithm. On the other hand, our algorithm results in a
smooth round hole shape. Part c) and d) show a closeup
of a round recess on top of the engine. Here, the effect
of smoothing out the results from the original marching605

cubes algorithm become clearer. The entire circular shape
is captured more accurately in the results of the presented
methodology.

Part e) and f) show the closeup of a tube accessing the
interior of the engine. The tube is a thin structure, which610

is usually hard to extract by a classic marching cubes ap-
proach. As the results show, the tube looks edged and
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very thick. Contrary to this, the presented approach is
able to smooth and thin the surface representation of the
tube. The resulting tube is almost round, although no new615

points are introduced into the geometry.
The results show, that round and thin structures can be

reproduced more accurately while using the presented ap-
proach of the paper in comparison to the classical marching
cubes approach. This can help users from the mechanical620

engineering area to inspect work pieces and compare them
to the targeted tolerances.

5.3. Foot Example

The third example is a Computed Tomography Scan
of a human foot. The original dataset has a size of625

256x256x256 pixels and is freely available [35]. It shows
an entire foot with all soft tissues and all single bones of
the foot skeleton. In medical image processing surfaces are
an important technique to estimate the size of organs or
tumors or locations and conditions of structures such as630

the shown bones in the examined dataset.
We performed 5 different isovalues (88-92) and tried 50

different weights per isovalue which is a total of 250 op-
timizations. Each optimization procedure took about 20
seconds on a normal desktop computer (Intel Core i7, 2.6635

GHz). In total the program took about an hour to com-
pute all optimizations. This time consumption can be min-
imized straightforward, as our methodology can be run in
multiple threats very easily. Each optimization is indepen-
dently from each other and can theoretically be run on its640

own core.

Figure 7: Surface extraction of human foot with a classic march-
ing cubes approach (left) and the presented approach in this paper
(right). Closeups show how the presented approach is able to im-
prove the surface while preserving important features.

Figure 7 shows the resulting surfaces from the marching
cubes algorithm (left) and the presented approach of this
paper (right). Close-up a) and d) show a close-up of the big
toes bone. In the original surface extraction algorithm, the645

geometry contained several staircases, that are not correct.

In the optimized geometry, the staircases are smoothed out
and therefore, the overall uncertainty is minimized.

Closeup b) shows staircases as well as an feature that
points out of the bone. The goal was to minimize the650

staircase structure while preserving the feature. Closeup
e) shows, that our algorithm was able to smooth the overall
appearance of the bone, while preserving the feature. This
is very important especially in medical applications, as
anomalies in the human body need to be preserved so that655

the medical doctor can identify and examine them.
Closeup c) and f) show how the original marching cubes

algorithm underestimated the size of a bone. Using the
presented approach of this paper resolves this issue and
leads to an overall smoother impression of the bone.660

6. Discussion

In order to discuss the presented approach, we per-
formed a user study and examine if the defined require-
ments are fulfilled.

6.1. User Evaluation665

As an important goal of the presented approach is to
gain a higher user acceptance, we conducted a user eval-
uation of the presented results. The goal was to iden-
tify if users would preference the geometries generated by
the presented approach. Therefore, we showed geomtries670

extracted from a standard marching cubes algorithm in
comparison to a geometry extracted by the presented ap-
proach. The evaluation was blinded, so the users did not
know which geometry was generated from which approach.
Two examples where shown: the sphere example, shown675

in Figure 5 and the foot example as shown in Figure 7.
We removed the closeups that are visible in the Figures to
obtain user feedback that is not influences. For the sphere
example we asked the users to select the geometry that
appears to be closer to a perfect sphere and for the foot680

example we asked to identify the geometry that expresses
the geometry of bones better. The results can be found
in Figure 8. Bar chart 1 shows the number of users that
voted for the geometry of the presented approach and 2
shows the number of users that voted for the classic iso685

surface extraction approach.
The results how, that a majority of the users find that

the extracted geometry of the presented approach better
match the original object. In addition, we presented our
methodology to a domain expert and he gave us a very690

positive feedback.
The most promising are:

• The method significantly enhances the exploration of
a high dimensional uncertainty space

• The projection of errors onto geometries supports a695

reliable decision making process

• I was able to enhance my geometric representation
with the presented method
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Figure 8: User evaluation results of the geometries shown in Figure
5 (left) and Figure 7 (right). Bar chart 1 shows the number of users
that voted for the geometry of the presented approach and 2 shows
the number of users that voted for the classic iso surface extraction
approach.

6.2. Discussion of Defined Requirements

In the following section, we aim to discuss how the pre-700

sented methods targets the requirements defined in Section
3.

Accuracy. As shown in the user evaluation, the majority
of users believe, that our method is able to represent the
geometry of objects more accurately. This impression is705

enhanced by the previously listed results. Nevertheless,
the surface extraction of the presented method strongly
depends on the starting isosurface generation. These ex-
traction can contain topological errors. As a further im-
provement, a variety of topological correction methods can710

be applied to solve this issue [36].
Another possible effect is, that the geometry correction

leads to points, that are shifted to the same location in
space. This could also be solved by using a geometric
clean-up procedure [37].715

Reliability. The optimization of isosurfaces is based on
uncertainty-measures. The resulting surface is located
at points in space where the uncertainty is minimal (lo-
cally). Therefore, the presented methodology outputs sur-
faces that are more reliable in comparison to the marching720

cubes algorithm.

Fast to compute. As shown in Section 4, the complexity of
the presented algorithm is O(zkmi). A surface extraction
including the optimization procedure took about 20-30 on
a conventional Laptop (Interl(R) Core(TM) i7-6700HQ725

CPU, 2.60GHz), depending on the underlying dataset.
Considering that users aim to test thousands of param-
eter configurations, this leaves room for improvement.

Fortunately, this can be solved by using a faster imple-
mentation of the marching cubes algorithm using octrees730

[38]. This would decrease the runtime to O(log(z)kmi).
In addition, the presented approach can be parallelized in
multiple ways. First, the different optimization runs can
be seperated to different threads. Second, the optimiza-
tion itself can be devided into different threads as well as735

each geometry points is optimized seperately.

Comparative. The presented approach includes a visual
framework that allows the user to compare different op-
timization options in one view. As the users stated, this
helped them to understand how the underlying uncertainty740

space effects the resulting geometry. In addition, the pre-
sented rating functions help users to identify the best op-
tions and quantify differences between geometries.

Uncertainty-awareness. The main goal of the presented
approach was to achieve isosurface extraction that come745

with a high uncertainty awareness. This is accomplished
in multiple ways. First, the space that is used for opti-
mization is high-dimensional targeting to cover as much
aspects of uncertainty as possible. Second, the presented
approach tests a large variety of uncertainty-space weight-750

ings to see which uncertainty metrics has the best influence
on the optimization procedure. Finally, the surface repre-
sentation is color-coded to indicate users which areas on
the surface are more trustworthy then others.

In summary, the presented method forms a novel sur-755

face extraction method that helps minimizing the surfaces
uncertainty.

7. Conclusions

We presented a novel surface extraction methodology
that is able to extract surfaces in an accurate and reli-760

able fashion by using an uncertainty model of the under-
lying image data. The algorithm is able to run multiple
optimization procedures with different input parameters
and evaluates them based on the remaining surface uncer-
tainty. To allow a fast and intuitive examination of the765

optimization results, the presented methodology includes
a visual system to explore and examine the resulting ex-
tracted surfaces. We showed the effectiveness of this ap-
proach by extracting surfaces from artificial as well as real
world datasets origining from different domains.770

As future work, the goal is to include the presented
methodology in real world workflows as occurring in clini-
cal daily routine. In addition, the goal is to provide users
with a parallel computation structure to avoid long run-
times.775

8. Acknowledgements

This research was funded by the German Research Foun-
dation (DFG) within the IRTG 2057 “Physical Modeling
for Virtual Manufacturing Systems and Processes”.

References780

[1] J. C. Russ, Image Processing Handbook, Fourth Edition, 4th
Edition, CRC Press, Inc., 2002.

[2] I. N. Bankman (Ed.), Handbook of Medical Image Processing
and Analysis, Academic Press, 2009.

[3] M. Bertram, Multiresolution modeling for scientific visualiza-785

tion, Ph.D. thesis, aAI0802446 (2000).

10



[4] Front matter, in: C. D. Hansen, C. R. Johnson (Eds.), Visual-
ization Handbook, Butterworth-Heinemann, Burlington, 2005,
pp. iii –. doi:https://doi.org/10.1016/B978-0-12-387582-2.
50051-4.790

[5] T. S. Newman, H. Yi, A survey of the marching cubes algo-
rithm., Computers and Graphics 30 (5) (2006) 854–879.

[6] W. E. Lorensen, H. E. Cline, Marching cubes: A high reso-
lution 3d surface construction algorithm, in: Proceedings of
the 14th Annual Conference on Computer Graphics and Inter-795

active Techniques, SIGGRAPH ’87, ACM, 1987, pp. 163–169.
doi:10.1145/37401.37422.

[7] M. Glanznig, M. M. Malik, M. E. Gr”oller, Locally adaptive
marching cubes through iso-value variation, in: V. Skala (Ed.),
Proceedings of the International Conference in Central Europe800

on Computer Graphics, Visualization and Computer Vision,
2009, pp. 33–40.

[8] S. Schaefer, J. Warren, Dual Marching Cubes: Primal Contour-
ing of Dual Grids, Computer Graphics Forumdoi:10.1111/j.

1467-8659.2005.00843.x.805

[9] V. S. Lempitsky, Y. Boykov, Global optimization for shape fit-
ting, in: 2007 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007,
Minneapolis, Minnesota, USA, 2007. doi:10.1109/CVPR.2007.

383293.810

[10] C. A. Dietrich, J. L. Comba, C. E. Scheidegger, J. Schreiner,
L. P. Nedel, C. T. Silva, Edge transformations for improving
mesh quality of marching cubes, IEEE Transactions on Vi-
sualization and Computer Graphics 15 (2008) 150–159. doi:

doi.ieeecomputersociety.org/10.1109/TVCG.2008.60.815

[11] A. Lopes, K. Brodlie, Improving the robustness and accuracy
of the marching cubes algorithm for isosurfacing, IEEE Trans-
actions on Visualization and Computer Graphics 9 (1) (2003)
16–29. doi:10.1109/TVCG.2003.1175094.

[12] T. Athawale, A. Entezari, Uncertainty quantification in linear820

interpolation for isosurface extraction, IEEE Transactions on
Visualization and Computer Graphics 19 (12) (2013) 2723–2732.
doi:doi.ieeecomputersociety.org/10.1109/TVCG.2013.208.

[13] G.-P. Bonneau, H.-C. Hege, C. R. Johnson, M. M. Oliveira,
K. Potter, P. Rheingans, T. Schultz, Overview and State-of-825

the-Art of Uncertainty Visualization, Springer London, 2014,
pp. 3–27. doi:10.1007/978-1-4471-6497-5_1.

[14] T. Athawale, E. Sakhaee, A. Entezari, Isosurface visualization
of data with nonparametric models for uncertainty, IEEE Trans-
actions on Visualization and Computer Graphics 22 (1) (2016)830

777–786. doi:10.1109/TVCG.2015.2467958.
[15] P. Drapikowski, Surface modeling—uncertainty estimation and

visualization, Vol. 32, 2008, pp. 134 – 139. doi:https://doi.

org/10.1016/j.compmedimag.2007.10.006.
[16] P. J. Rhodes, R. S. Laramee, R. D. Bergeron, T. M. Sparr, Un-835

certainty visualization methods in isosurface volume rendering,
in: Eurographics 2003, Short Papers, 2003, pp. 83–88.

[17] Y. He, M. Mirzargar, S. Hudson, R. M. Kirby, R. T. Whitaker,
An uncertainty visualization technique using possibility theory:
Possibilistic marching cubes, International Journal for Uncer-840

tainty Quantification 5 (5) (2015) 433–451.
[18] A. Townsend, L. Pagani, L. Blunt, P. J. Scott, X. Jiang, Fac-

tors affecting the accuracy of areal surface texture data ex-
traction from x-ray ct, CIRP Annals 66 (1) (2017) 547 – 550.
doi:https://doi.org/10.1016/j.cirp.2017.04.074.845

URL http://www.sciencedirect.com/science/article/pii/

S0007850617300744

[19] H. Masuda, I. Tanaka, M. Enomoto, Reliable surface extrac-
tion from point-clouds using scanner-dependent parameters,
Computer-Aided Design and Applications 10 (2) (2013) 265–850

277. doi:10.3722/cadaps.2013.265-277.
[20] C. L. Bajaj, V. Pascucci, D. R. Schikore, Fast isocontouring for

improved interactivity, in: Proceedings of the 1996 Symposium
on Volume Visualization, VVS ’96, IEEE Press, Piscataway, NJ,
USA, 1996, pp. 39–ff.855

URL http://dl.acm.org/citation.cfm?id=236226.236231

[21] A. Brambilla, P. Angelelli, Andreassen, H. Hauser, Compara-

tive visualization of multiple time surfaces by planar surface
reformation, in: 2016 IEEE Pacific Visualization Symposium
(PacificVis), 2016, pp. 88–95. doi:10.1109/PACIFICVIS.2016.860

7465255.
[22] C. D. Correa, Y. H. Chan, K. L. Ma, A framework for

uncertainty-aware visual analytics, in: 2009 IEEE Symposium
on Visual Analytics Science and Technology, 2009, pp. 51–58.
doi:10.1109/VAST.2009.5332611.865

[23] W. E. Lorensen, H. E. Cline, Marching cubes: A high reso-
lution 3d surface construction algorithm, in: Proceedings of
the 14th Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’87, ACM, 1987, pp. 163–169.
doi:10.1145/37401.37422.870
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