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Abstract—The complexity of the coronary circulation espe-
cially in the deep layers largely evades experimental investiga-
tions. Hence, virtual/computational models depicting
structure-function relation of the entire coronary vasculature
including the deep layer are imperative. In order to interpret
such anatomically based models, fast and efficient visualiza-
tion algorithms are essential. The complexity of such models,
which include vessels from the large proximal coronary arteries
and veins down to the capillary level (3 orders of magnitude
difference in diameter), is a challenging visualization problem
since the resulting geometrical representation consists of
millions of vessel segments. In this study, a novel method for
rendering the entire porcine coronary arterial tree down to the
first segments of capillaries interactively is described which
employs geometry reduction and occlusion culling techniques.
Due to the tree-shaped nature of the vasculature, these
techniques exploit the geometrical topology of the object to
achieve a faster rendering speed while still handling the full
complexity of the data. We found a significant increase in
performance combined with a more accurate, gap-less repre-
sentation of the vessel segments resulting in a more interactive
visualization and analysis tool for the entire coronary arterial
tree. The proposed techniques can also be applied to similar
data structures, such as neuronal trees, airway structures, bile
ducts, and other tree-like structures. The utility and future
applications of the proposed algorithms are explored.

Keywords—Coronary vasculature, Geometry reduction,
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INTRODUCTION

To understand such a complex system as the coro-
nary circulation, it is essential to employ anatomically
based mathematical models that integrate the physical
and biological interactions. It is important for these

virtual models to include high detail at the microvas-
culature (including capillary vessels) as well as on a
macroscopic scale (epicardial vessels) in order to
integrate the entire coronary vasculature. A visual
representation of the anatomical model should include
the various parameters of the model. For example,
diameters and lengths and their relative changes
throughout the vasculature should be visualized for
every vessel segment. The visual representation should
enable a user to better analyze the parameters of the
data set compared to tabular data. In addition, further
information should be accessible to the user by
selecting a vessel segment and displaying information,
such as vessel volume and surface area. The system
should also allow the user to edit the individual vessel
segments and change their radii or location. Obvi-
ously, representing the entire geometry of the vascu-
lature results in a huge set of geometrical data. Ideally,
the visualization should be interactive; i.e., the ren-
dering algorithm has to output at least several frames
per second (fps).

Rendering such a large-scale model is quite chal-
lenging for currently available computing hardware
since commodity graphics cards are presently not able
to display this amount of information interactively.
For the complete coronary arterial model, a total of
6 giga-byte (GB) of geometric information is needed
to be transferred from main memory to the graphics
card, which presents a limit for interactive rendering.
Furthermore, most desktop computers are not capable
of handling this amount of data due to insufficient
main memory. Hence, the size of such a large-scale
anatomical model is prohibitive for rendering on
desktop computers without employing out-of-core
techniques.

The objective of this study is to develop a visuali-
zation method for a view-dependent, interactive deci-
mation of massive tree-shaped data sets. The proposed
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approach will combine a spatial data structure and
occlusion queries to reduce the number of triangles
necessary to render tree-shaped data sets that exceed
the memory present in the computer system. The
topology of tree-shaped data sets is exploited in order
to reduce the complexity of the triangle mesh coher-
ently. The proposed software system makes use of
recent improvements in graphics hardware and
employs hardware occlusion queries that allow a faster
and more precise occlusion test as compared to soft-
ware-based approaches. The techniques described in
this article can be easily applied to data extracted from
any tree-like structures.

METHODS

Anatomically Based Model

Recently, Kaimovitz et al.15 developed a three-
dimensional (3-D) geometric model of the entire cor-
onary arterial tree (right coronary artery, RCA; left
anterior descending artery, LAD; and left circumflex,
LCx arterial tree) based on Kassab et al.’s coronary
morphometric data base.16 The model spans the entire
coronary arterial tree down to the capillary vessels in a
prolate spheroid model of the heart and encompasses
about 10 million segments. The 3-D tree structure was
reconstructed initially in rectangular slab geometry by
means of global geometrical optimization using a
parallel Simulated Annealing (SA) algorithm. The SA
optimization was subject to a global boundary avoid-
ance constraint and local constraints at bifurcations
prescribed by previously measured data on branching
asymmetry in the coronary arterial tree.38 Subse-
quently, the reconstructed tree was mapped onto the
prolate spheroidal geometry of the heart. The trans-
formation was made through least squares minimiza-
tion of the deformation in segment lengths as well as
their angular characteristics.

Rendering of Massive Tree-Like Structures

In the previous publication,15 vessel segments were
visualized using standard cylinders. Since consecutive
vessel segments do not necessarily form 180 degree
angles, these result in visible gaps at the point of
transition. To avoid these gaps, the proposed system
represents vessel segments as conic cylinders with
rotated ends, which are not necessarily orthogonal to
the cylindrical axis. In this way, a smooth transition
from one segment to the daughter segment(s) can be
achieved, thus avoiding any gaps. The individual conic
cylinders are pieced together using triangles that are
fitted in such a way that an optimal, gap-less approx-
imation is achieved. This results in an accurate visual

representation of the entire vascular structure as
defined by the data set.

Since several triangles are needed to represent a
single conic cylinder, rendering a vascular structure
which consists of 10 million vessel segments requires
about 220 million triangles to achieve a sufficiently
accurate approximation. This in return results in
geometry data that amounts to several GB in size
which exceeds the main memory of common desktop
computers. In addition, transferring this amount of
data to the graphics hardware and processing this
information overwhelms both the bus system (usually
advanced graphics port, AGP, or PCI Express) as well
as the graphics hardware. Consequently, techniques
are needed that allow the system to handle data sets
that exceed the amount of main memory present in the
computer as well as reduce the number of triangles to
generate the visualization.

Hence, the proposed software system deploys out-
of-core techniques which store the entire geometry
data on the hard drive only. During the rendering
process, only parts of the data are transferred to the
main memory. Once these parts are processed, the
system automatically removes these parts and loads
the next ones for further processing. In this way, the
geometry data is loaded in a streaming fashion from
the hard drive and then transferred to the graphics
hardware for visualization.

In addition, the proposed system reduces the number
of triangles using view-dependent geometry reduction,
backface-culling, and occlusion-based reduction. View-
dependent geometry reduction automatically reduces
the amount of detail that is used for representing the
vessel segments based on the distance to the viewer.
Hence, the vessel segments that appear far away are
drawn with less detail (using a lower number of trian-
gles per vessel segment) while the ones in the front are
shown in full detail. Since usually only half of a conic
cylinder is visible at a time, only the visible half needs to
be processed in order to generate the visualization.
Accordingly, the number of triangles can be reduced
significantly by removing those triangles of a conic
cylinder that face away from the viewer.

Similarly, occlusion-based reduction removes those
conic cylinders that represent vessel segments which
are obstructed by several other vessel segments and
therefore invisible from the current location of the
viewer. Since these vessel segments are not visible, they
can be eliminated without changing the visualization.
This reduces the number of triangles that need to be
transferred to the graphics hardware. Note that all
these techniques for reducing the number of triangles
are view-dependent; i.e., whenever the location of the
viewer changes these need to be recomputed to ensure
that only those triangles are removed that minimally
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contribute to the current visualization. As a conse-
quence, all computations required need to be imple-
mented very efficiently. For example, better efficiency
can be achieved by grouping vessel segments that are
close together and then applying the geometry reduc-
tion techniques to the entire group. This reduces the
computation effort for visibility tests significantly.
Grouping of vessel segments can be achieved for
example, by sub-dividing the bounding box of the en-
tire vascular structure into equal sub-areas. A detailed
description, including implementation details, can be
found in the appendix.

RESULTS

Tree Rendering

Figure 1 shows the complete vascular model
including all three major branches. The left image
depicts an overview, while the right displays a close-up
view of the marked region. Even after zooming into the
model, there is still an enormous amount of detail
which underscores the complexity of the generated
model. The geometric model exceeds the main memory
of most desktop computers. In addition, the geometry
data results in slow performance due to the enormity
of information that needs to be processed to compute a
single projected image. Without applying out-of-core
methods, only one branch of the vasculature, for
example the LCx as depicted in Fig. 2 (a), can be
visualized since it is significantly smaller in size
(1.8 million vessel segments).

Geometry Reduction

The geometry reduction techniques applied to the
data significantly reduced the number of triangles. For

example, Fig. 2(b) shows the results for the view-
dependent geometry reduction where 20% less triangles
were required for generating the image. Figure 3 shows
an example of hardware occlusion queries applied to the
LCx data set. A reduction of 56% was achieved. The
vessel segments in those areas that were identified as
occluded are colored in red (marked by arrows) and
drawn at the lowest level of detail. As can be seen in the
figure, only those parts that are far away from the ob-
server and obstructed to a large extent by other vessel
segments are displayed using a lower level of detail (red).

Performance

For performance testing, two different systems were
used. The first one was a Pentium4 2.6 giga-Hertz
(GHz) central processing unit (CPU) equipped with
2 GB of main memory and an AGP version of an
Nvidia GeForce fx5200 graphics card. The second one
was equipped with two AMD64 Opteron 246 2.0 GHz
processors and 1 GB of main memory. This system
used the PCI Express version of an Nvidia Quadro FX
4400.

As one of the reference data sets, the LCx coronary
artery data was visualized. For displaying the data
set in full detail (considering all vessel segments at
full resolution), the geometry consisted of 25 million
triangles. On the first test system without any
enhancements, the data set could be rendered at an
average frame-rate of 0.5 fps. Figure 4(a) provides a
comparison between the frame rates obtained for the
full data set and for the instantly reduced data set using
occlusion culling. The frame rates over time are
depicted for three different rendering methods using
the same data set, and are shown while navigating
through the model. In full level-of-detail mode, the

FIGURE 1. Complete representation of the vasculature of a heart and close-up view depicting the large amount of detail in the
model.
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graphics hardware could not be used to its full extent
when the first computer system was used. By enabling
occlusion culling combined with view dependent
geometry reduction, the number of triangles that nee-
ded to be displayed for each frame was trimmed down
to an average of 11 million triangles according to
Fig. 4(b). Consequently, the frame rate increased to an
average of 2.1 fps due to the reduced number of tri-
angles. Since the performance increased by a factor of
four while cutting the number of triangles in half only,
the saturation of the AGP bus and CPU of the test
system is improved resulting in more efficient usage of
the graphics hardware.

For the occlusion test, the number of sub-areas used
should not be too large since the more time is spent on
occlusion culling the less time is available for the actual
rendering of the image. In this case, a heuristically

determined equidistant scheme of 10� 10� 10 sub-
volumes was used for the performance tests. Due to the
fact that the number of triangles that need to be ren-
dered for each frame could be reduced to 11 million
triangles, the utilization of the AGP bus is improved.
As a result, the rendering system was able to render
about 23.1 million triangles per second. Therefore, to
achieve a significantly better rendering performance
using the graphics hardware, we incur only a minor
performance loss for conducting the occlusion tests.

The performance of the backface culling imple-
mented in the system was tested on the RCA data set
(consists of 4.3 million vessel segments) which was
represented by 77 million triangles. The data set was
rendered on the system equipped with an Nvidia
GeForce fx5200 graphics card as previously described
and utilized the implemented out-of-core technique.
Figure 5(a) shows the number of triangles used during
rendering. The backface culling was done in a con-
servative way where only about one third of the tri-
angles were removed. In this way, only invisible
triangles are removed. This is especially necessary
when rendering vessel segments that are represented by
a very low number of triangles. For example, for a
vessel segment represented by eight triangles, six of
these can be seen in the worst case. According to
Fig. 5(a), about 50 million triangles were required for
rendering after removing those triangles that face away
from the view point. This then increased the rendering
rate accordingly as can be seen in Fig 5(b). Originally,

FIGURE 3. Close up of the LCx branch rendered with hard-
ware occlusion culling enabled (56% reduction). Areas ren-
dered with reduced resolution are shown in red as marked by
arrows.

FIGURE 2. Rendering of the geometry of the left circumflex
coronary artery (LCx) data set at full resolution (a) and LCx
branch rendered with view-dependent geometry reduction
enabled (20% reduction) (b).
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a rendering speed of an average of 0.23 fps was
achieved. After removing backfacing triangles, the
data set is rendered at 0.33 fps, a 39% improvement in

performance. During rendering, the software system
had a memory footprint of 1.6 GB mainly used for
caching most of the data set.
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FIGURE 4. Resulting frames per second (a) and number of triangles used (b) when displaying an overview rendering of the left
circumflex coronary artery (LCx) branch on a desktop PC equipped with an Nvidia GeForce fx5200 graphics card.
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The out-of-core technique was tested using all three
branches of the coronary arterial tree model. The
geometry of this model consists of 220 million triangles
to represent all 10 million vessel segments resulting in
6 GB of geometry information. Rendering was per-
formed both on the system equipped with an Nvidia
GeForce fx5200 graphics card as well as an Nvidia
Quadro FX 4400. According to Fig. 6(a), rendering a
single frame of this data set on the first system took
about 3 min and 52 s. Using the second system, ren-
dering the full data set took only about 62 s as can be
seen in Fig. 6(b). Obviously, the implemented visuali-
zation system benefits from the faster graphics hard-
ware and the 64bit architecture available in the test

system. Due to the out-of-core visualization, the full
model could be rendered using less than 64 MB of main
memory as observed via theWindows task manager. As
pointed out previously, the out-of-core approach
exploiting standard memory mapping techniques ben-
efits from the caching capabilities of the operating
system especially well when the user zooms to a certain
area so that the geometry required for rendering this
part fits into main memory. Figure 7 shows the per-
formance of the rendering for such a case. An average
of 1.9 fps was achieved. The system was able to render
the data at more than two fps. Only in those cases
where it is required to load the geometry from a sub-
area that was not displayed before, the system’s
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FIGURE 5. Number of triangles used (a) and frames per second (b) when rendering an overview of the right coronary artery (RCA)
branch on a desktop PC equipped with an Nvidia GeForce fx5200 graphics card with and without backface culling.
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performance dropped. Overall, the system was capable
of rendering even huge data sets as can be seen from
these examples and allows visualization at respectable
frame rates even with small main memory computers.

DISCUSSIONS

This study provides a visualization method for a
quantitative anatomical model of tree structures (such
as coronary arterial trees) that can be used, for instance,
to model the temporal and spatial distribution of blood
flow in the heart. In this study, the described simulated
data set was visualized. It is possible, however, to use

the system for other types of data sets, such as microCT
scanned specimens20,26 or data retrieved by an imaging
cryomicrotome.32 The visualization features of the
software will serve as an educational tool as well as for
data interpretation. It is expected that the software will
become a valuable tool for cardiologists, physiologists
and students. The details are discussed below.

Visualization

When rendering such a large model, there are three
factors that can limit performance. First, the amount
of information can saturate the bus system so that the
amount of data cannot be transferred fast enough to
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FIGURE 6. Resulting frames per second for rendering an overview of the complete geometric model of the coronary artery tree on
two different desktop PCs, one PC equipped with an Nvidia GeForce fx5200 graphics card (a), the other one equipped with an
Nvidia Quadro FX 4400 graphics card (b).
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the graphic card. Even though the PCI Express (PCIe)
bus at 2.5 Gbit/s is faster than the advanced graphics
port (AGP) with transfer rates of up to 2 Gbit/s, both
bus systems can be saturated due to the large size of the
model. Second, the capabilities of the graphic card
itself may not be sufficient to render the data fast
enough. Third, there may not be enough main memory
available to store the entire data set. Common 32-bit
desktop computers can only be equipped with up to
4 GB of main memory which is not enough for storing
the entire geometric representation. If additional
information is to be displayed, such as colors for the
vessel segments to superimpose pressure or flow, this
increases even further. However, the memory require-
ments for storing color information are significantly
less than those for the geometry (about 1%) so that it
would not reduce the performance significantly.

Sixty-four bit computers are becoming available,
which can be equipped with up to 16 GB of main
memory. BIOS and driver limitations, however, often
still limit the amount of memory to 3 GB. Whenever
the available memory is not sufficient for storing the
entire geometry, the hard disk needs to be used as
secondary storage which results in significantly slower
data access.

In order to alleviate these limiting factors, the
number of triangles employed to display the model
needs to be reduced resulting in less data that needs to
be processed. Suitable techniques include geometry
reduction techniques which implies that the geometric
model is displayed with a reduced number of triangles
in those areas that are far from the view point. In

addition to a view-dependent level-of-detail represen-
tation based on distance, occlusion-based methods can
be used. These techniques allow the identification of
areas in the model that contribute little to the final
image. This is usually due to the fact that the segments
located in those areas are obscured by other segments
which are positioned more closely to the view point
when projected onto the viewing plane. These occluded
areas of the model can then be either eliminated or
rendered using a lower resolution and consequently
reduce the overall number of triangles.

Tree-shaped geometric structures have certain
unique properties that render most traditional occlu-
sion culling algorithms inefficient. For instance, when
rendering architectural models or iso-surface repre-
sentations of objects, occlusion frequently occurs. As
an example, if the camera is located inside a room with
no windows of an architectural model, the entire out-
side world is not visible, thus occluded. This is not
likely to happen in tree-shaped data sets because the
scene consists predominantly of relatively skinny ele-
ments which make partial occlusion much more likely
than complete occlusion. Consequently, occlusion
query techniques can only be used as a measure for
visibility indicating the extent to which the precision of
the model can be reduced without changing the visual
appearance very much. Due to the limited occlusion
within such a vascular tree structure, occlusion culling
should not be used as a method for completely elimi-
nating parts of the scene because certain areas may still
be partially visible in most cases. Therefore, the present
system uses OpenGL occlusion queries over the
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GL_HP-occlusion-test which allows the system to
determine the amount of occlusion.

Comparison with Other Studies

The resulting geometrical representation of the
simulated vascular tree consists of millions of vessels.
Due to the tremendous complexity of this model, the
images shown in the original article15 were generated
using the POVray ray tracer. Those only include ves-
sels down to order five to prevent POVray from being
overwhelmed by the complexity of the model. It took
about two minutes to generate an image of the reduced
vasculature using POVray. In this article, however, all
vessels down to the capillaries are shown and less time
is needed for creating an image.

The proposed method is based on a real-time, view-
dependent simplification of complex models. Several
publications exist that employ similar methods. Pro-
gressive meshes as introduced by Hoppe13 were de-
signed to obtain increasingly coarser representations of
a mesh by applying edge collapse operations. Applying
this method, a level-of-detail description of the model
is derived. In one of his later publications, Hoppe14

describes efficient data structures and algorithms for
implementing progressive meshes. Xia et al.35 defined
the notion of a merge tree that stores the edge collapse
operations in a hierarchical manner to create a con-
tinuous-resolution representation of an object. A sim-
ilar approach was proposed by El-Sana et al.5 where a
binary view-dependence tree is created containing
general vertex-pair collapses. This tree can then be
used to generate the required triangles for display at
run time. Andujar et al.1 used classical occlusion cull-
ing algorithms and computed potentially visible sets
(PVS) which consist of those polygons that are likely to
be visible. These sets are supersets of the sets of all
visible polygons for which the degree of visibility is
determined to create view-dependent occlusion culling.
Shaffer et al.31 developed a progressive mesh simplifi-
cation algorithm which clusters the vertices using a
BSP-tree resulting in an adaptive simplification of the
polygonal mesh. Pajarola23 introduced FastMesh
which defines a hierarchy on half-edges that reduces
the storage cost in comparison to vertex hierarchies.
El-Sana et al.6 combine a view-dependence tree with
spatial sub-division techniques to avoid scanning of
active nodes that do not contribute to the incremental
update of the selected level of detail.

Several algorithms for reducing the complexity of a
scene using occlusion culling are available both
implemented in software and in hardware.3 Greene10

developed an algorithm based on hierarchical tiling
that is able to determine whether a convex polygon is
inside, outside, or intersecting an image hierarchy.

Bartz et al.2 render bounding volumes into a virtual
occlusion buffer using OpenGL and read back the
results from the graphics hardware to determine
occlusion. Since reading back from the OpenGL buffer
is slow, an interleaving scheme is applied to speed up
read-back. Zhang et al.39 describe hierarchical image-
space occlusion maps for visibility culling. The culling
algorithm uses an object-space bounding volume
hierarchy and can be implemented using graphics
hardware. Klosowski et al.17 propose a visibility cull-
ing algorithm based on Prioritized Layered Projection
(PLP) that can be implemented using graphics hard-
ware. El-Sana et al.7 combine the PLP approach with
view-dependency resulting in a view-dependent occlu-
sion culling. Yoon et al.36 use a clustering hierarchy
for refining the underlying grid to obtain a level-
of-detail representation for arbitrary triangle meshes in
addition to hardware occlusion culling. Recent efforts
show that current hardware improvements and the
usage of a clustered hierarchy of progressive meshes can
improve rendering speed even further.37 However,
most of the described methods are not suitable for
directly reducing the complexity of a model of tree-like
anatomical structures, such as the coronary vascular
tree.

Different techniques for visualizing vascular struc-
tures can be found in the literature. Gerig et al.9 de-
scribe how to derive a skeletal structure from a
volumetric image based on hysteriosis thresholding
and binary thinning. Hahn et al.12 employ geometrical
primitives, such as truncated cones, to visualize vessels
inside the human liver. A similar approach has been
taken for the rendering method described in this arti-
cle. The model is represented by conic cylinders as
previously described. Masutani et al.19 used cylinders
aligned to the vessel skeleton to visualize the vascula-
ture. Different radii at branchings resulted in discon-
tinuities when using this method. Felkel et al.8

reconstructed liver vessels from center line and radius
information to supply an augmented reality tool for
surgery. Puig et al.24 developed a system for exploring
cerebral blood vessels using a symbolic model with a
focus on geometric continuity and on realistic shading.
Oeltze et al.21,22 use convolution surfaces to obtain a
smoother representation of blood vessels extracted
from CT or MR data.

Deussen et al.4 use points and lines to represent
complex systems of plants as approximation reducing
the overall number of triangles compared to their ori-
ginal representation. Gumhold et al.11 use a splatting
approach based on ellipsoids for rendering scientific
data sets. The advantage of such a glyph-based
approach is the potential of deploying the hardware for
rendering. Reina et al.25 showed this when rendering
molecular visualizations of 500,000 particles at 10 fps.
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In a comparative study, the present system was
compared to an implementation on a high-end visu-
alization server: the Sun Fire V880z visualization ser-
ver. This server is equipped with 16 GB of main
memory allowing the system to store the entire geo-
metric model in main memory. Despite the fact that
this server is geared towards optimal rendering per-
formance for large data sets, the overall performance
was slower compared to the second test system using
an Nvidia Quadro FX 4400. Generating a single pro-
jected image took 90 s on the Sun server while the
second test system using the present system completed
the task after 62 s.

Significance

Virtual models of normal hearts are needed as a
physiologic reference. Pathological states can then be
studied in relation to changes in model parameters that
alter coronary perfusion. With such computational
models, researchers can analyze the effects of different
treatment options (medical and surgical), and ulti-
mately find rational ways to prevent and treat coro-
nary heart disease. Based on detailed anatomically
based models, computational fluid dynamics simula-
tions can yield accurate simulation of blood flow in
health and disease. In order to visualize the present
anatomically based models that may include future
hemodynamic and physiological data, it is essential to
have efficient and fast visualization techniques. The
present study is the first step in that direction.

Conclusions and Future Work

A rendering system has been described which
exploits the tree-shaped topology to increase rendering
performance. Due to the nature of tree-shaped struc-
tures, hierarchical meshes to obtain different levels of
detail can be generated based on the topological
structure of the data; i.e., individual segments can be
clustered as entities. Geometry reduction techniques as
well as occlusion culling enables the system to render
each frame four times faster than the standard method
that displays the full model directly without simplifi-
cation methods. For the LCx data set, the number of
triangles can be reduced in such a way that the amount
of geometric information is small enough to be trans-
ferred to the graphics hardware and fast enough to
utilize the full performance potential of the hardware.

Using out-of-core techniques, the full model can be
displayed even on computer systems equipped with
relatively small amount of memory since only 64 MB
are sufficient for the algorithm. With a high-end PC
system, rendering can be even faster using out-of-core
techniques compared to workstations equipped with

much more main memory, such as the Sun Fire V880z
visualization server.

In the future, ray tracing or ray casting algorithms
will be applied to the data set to explore if there are any
performance benefits from this approach. Additionally,
GPU based methods that render the conic cylinders
completely on the GPU might increase performance by
reducing the amount of information that needs to be
stored in memory and avoids data transfer on the bus
systems. Using other types of geometry approximations
for the tree segments in combination with hardware
based approaches might yield even better performance,
such as line primitives.33
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APPENDIX

Rendering of Massive Tree-Like Structures

In order to analyze large-scale tree-like structures,
appropriate visualization methods are necessary.
Whenever the geometry data of such a structure exceed
the amount of main memory of the computer, the
application of several techniques to both be able to
handle the data set as well as improve performance are
required. This Appendix provides details about the
data format and explains the different techniques that
were applied to visualize the data on common desktop
computers.

Visualizing Tree-Like Structures

The structure is given as a sequence of consecutive
segments where one segment can have multiple
daughter vessels (mostly two as bifurcations) as suc-
cessors, forming a tree-shaped structure with a highly
asymmetric branching pattern. Each segment in the
tree is characterized by the coordinates and radii of its
proximal and distal nodes. This data format is similar
to the one provided by commercial software packages,
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such as Analyze.27,28,29 Since the radii of two consec-
utive nodes are not necessarily equal, a conic cylinder
is defined based on the data representing each segment.
All conic cylinders together then define a representa-
tion of the vasculature as prescribed by the model. For
a coronary arterial tree, there exist three major bran-
ches in the data set representing the RCA, LAD and
LCx arterial tree, respectively. Every branch includes a
complete set of linked vessel segments from the mac-
rovasculature down to the first capillary bifurcation.

In order to generate a visual representation of the
vascular tree, OpenGL and computer graphics tech-
niques are used. In computer graphics, a camera
analogy is followed similar to taking a photograph. A
virtual camera is placed next to the objects, in this case
the arterial tree. The orientation of the camera iden-
tifies the view direction, while the view direction
combined with the location of the camera define the
view. Using this definition of a view, all objects are
then projected onto a virtual image plane. One can
think of this image plane as the film inside the camera
that was just defined. This projected image is then
displayed on the computer screen. Consequently, the
view as defined here identifies exactly what parts of the
objects are displayed on the computer screen.

Figure 8 shows an illustration of this configuration.
Since current graphics hardware does not support the
display of complex objects, simple, more universal
primitives have to be used. Due to its universal nature,
triangles are the most common primitives in computer
graphics since every complex object can be approxi-
mated using a set of triangles. As can be seen in Fig. 8,
the conic cylinders that are used to represent the
arterial tree are broken down into a series of triangles
as well. The triangles are arranged in such a way that
they approximate a conic cylinder; i.e., two of the
edges of each triangle run along the main direction of

the conic cylinder while one edge is parallel to one of
the end caps of the cylinders. Hence, circles are com-
puted at the transition between vessel segments in a
first step. Since cylindrical arteries are considered,
these circles are perfectly round. The circles are con-
nected along each vessel segment using triangles to
approximate the conic cylinder. For this, the circles are
approximated by a series of points by computing a
fixed number of points at equidistant locations along
the circle. A set of two points (one on the circle at the
one end of the cylinder, the second on the opposite
side) are then selected in such a way that they form the
closest distance. This forms the first edge of the first
triangle. By connecting the next points following the
discretization of the circles in an alternating fashion,
triangles are formed that approximate the conic cyl-
inders. Figure 8 illustrates this by showing a sample
triangle imposed on one of the conic cylinders.

To increase performance, OpenGL provides
so-called triangle strips that require less data to be
transferred to the graphics hardware for image display.
In this case, instead of specifying all three vertices for
all triangles, only the vertices for the first triangle need
to be specified completely. For the subsquent triangles,
only one vertex is specified and the last two vertices of
the previous triangle are re-used, forming a new tri-
angle that is directly connected to its predecessor. Since
the triangles approximating a conic cylinder (and
therefore a vessel segment) are all attached to each
other, a triangle strip can be used to reduce the number
of vertices that need to be specified. As an additional
performance increase, OpenGL vertex arrays are used.
Vertex arrays require less function calls and hence can
be processed by the hardware more efficiently. To use
OpenGL vertex arrays, all vertices for a single triangle
strip are stored in a consecutive memory area. This
memory area can be passed onto OpenGL in a single
function call which results in drawing the entire
triangle strip. Hence, an entire vessel segment is
represented by one vertex array.

To achieve a smooth transition between consecutive
vessel segments, the circle at the end of each cylinder is
not necessarily orthogonal to the cylinder itself.
Instead, these circles are created in such a way that the
plane in which the circle resides divides the angle
between the center-lines of the two consecutive conic
cylinders into two equal halves (Fig. 8). Using this
approach, the center lines of two subsequent segments
can form an angle of up to 180 degrees (reverse
direction). However, the most common angles in the
coronary arterial tree are much smaller. Rotation of
the cylinder ends as previously described does not
change the way it is approximated by a triangle strip.

For the smallest of the three branches (LCx arterial
tree), the number of triangles that is required for

FIGURE 8. Interface between two successive vessel seg-
ments shown as conic cylinders which consist of several tri-
angles. Camera and view direction are also shown.
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visualization of all 1.8 million vessel segments is
25 million triangles. The entire coronary tree consist-
ing of 10 million vessel segments is represented by
220 million triangles based on a discretization of each
conic cylinder using sixteen triangles. The conic cylin-
der representing each segment is approximated by a
single triangle strip which is constructed as follows: the
two ends of the conic cylinder are discretized using a
maximum of eight points. These points are then con-
nected with triangles. Using a point on each end
alternately, this results in a triangle strip. At full res-
olution, this triangle strip consists of 16 triangles ren-
dered by 18 vertices. Due to the size and detail of the
data set, the geometry of the vascular structure re-
quires representation of the coordinates of the vertices
using 32-bit floating-point numbers. Lower-precision
representations result in truncated positions of the
vertices and therefore can change the overall geometry
significantly. For correct illumination of the geometry,
normal vectors are included using another set of three
32-bit floating point values. These normal vectors are
required for computing the correct reflection of light
on top of the conic cylinders used as geometric repre-
sentation of the vascular structure. The normal vectors
are computed for every vertex based on the original
geometry (the conic cylinders). This yields significantly
better results and achieves an additional depth cue and
therefore a more realistic image. In this way, a user is
much better able to recognize the 3-D geometry in less
time even from a projected 2-D image. Overall, for
representing 220 million triangles using vertex coordi-
nates and normal vectors, about 6 GB of memory is
required in order for the entire geometric representa-
tion of the vascular structure to be stored. This entire
information needs to be processed for every projected
image that is used as visualization of the vascular
structure.

Geometry Reduction

In order to increase performance, a common
approach is to reduce the amount of geometry infor-
mation that needs to be processed for a single image.
Usually, this is achieved by using a simpler represen-
tation and/or removing parts of the data set that is
either invisible or only visible to a small extent. Com-
pared to arbitrary triangle meshes, tree-shaped data
sets have special topological features that can be taken
advantage of to speed up the visualization. First, the
connectivity between different segments can be used to
simplify the structure by skipping segments. This
results in a simpler representation of the data. Sec-
ondly, the cylindrical shape of the segments can be
used to identify backfacing triangles on a per-segment
basis instead of determining this information for each

triangle which removes data invisible due to the pro-
jection. Since the cylinders are rendered as single tri-
angle strips, the connectivity information can also be
exploited when rendering the model; e.g., for backface
culling as described later. Different levels of detail can
be defined based on the precision at which a conic
cylinder is drawn by reducing the number of points for
each delimiting circle of the cylinders.

In the current implementation, three levels of detail
are used: a full resolution level where each conic cyl-
inder is represented by 16 triangles, a reduced level
with 8 triangles per cylinder, and a low level of detail
that skips every other segment and renders each
remaining cylinder with 8 triangles. Obviously, the low
level-of-detail mode should only be used in areas far
away from the view point and mostly occluded; i.e.,
covered by a multitude of other vessel segments and
therefore almost invisible. However, since it is almost
completely occluded, a user would need to rotate or
zoom in order to inspect this part of the vasculature.
Once such an area is rotated and therefore more visi-
ble, the system would automatically increase the level
of detail. Similarly, cracks that occur at the transition
between different levels of detail are not noticeable
because these transitions occur sufficiently far from the
view point and only in at least partly occluded areas.

In order to decide the resolution for a particular
segment, one could determine the distance between the
current camera position and the segment itself or
determine the number of pixels that would be projected
onto the screen to represent this segment. However,
due to the enormous amount of segments, the com-
putational effort is too costly which would slow down
the rendering speed to several seconds per frame even
for the LCx data set. In fact, computing the distances
between all vessel segments and the camera would take
longer than computing the projected image for the
entire data set without any reduction techniques.

To remedy the situation, a spatial data structure is
used. It is essential to the overall performance of the
system that a simple data structure is used which re-
quires only minimal computation. Hence, a simple
subdivision scheme of the space covered by the data set
is used. This space is equally divided in each dimension
into sub-areas of the same size. Then, only the distance
between the center of this sub-area and the camera
needs to be calculated during the rendering process to
determine the level of detail for the whole sub-area.
Based on a set of thresholds provided by the user, all
segments contained in each sub-area are rendered in
full, reduced, or low level of detail, respectively. These
thresholds describe the distance between the center of
the sub-area and the camera at which the algorithm
will automatically switch to a lower geometric resolu-
tion. Using this type of geometry reduction, the
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number of triangles (e.g., the LCx coronary artery) can
be reduced from 25 million to about 20 million trian-
gles without introducing noticeable artifacts.

Backface Culling

To reduce the number of triangles even further, all
triangles that are located at the backside of the conic
cylinders facing away from the camera can be removed
since they are not visible. OpenGL is able to remove
the backfacing triangles but then they still have to be
transmitted to and processed by the graphics card. In
order to avoid transmitting this amount of informa-
tion, these triangles can be identified in software on the
CPU. Of course, a particular vessel segment can be
aligned at virtually any angle to the viewing direction
with respect to the first triangle within the triangle
strip. Therefore, the set of triangles facing backward
can be different for each individual vessel segment.
This implies that the computation has to be done for
each vessel segment individually. Consequently, these
computations have to be carried out in a very efficient
way in order to avoid slowing down the rendering
process. Again, the fact that the topology of a vessel
segment is known can be exploited. Each vessel seg-
ment is represented by a conic cylinder. Consequently,
usually one half of the cylinder is visible, while the
other half is not. The triangles representing the invis-
ible half can be identified using the normal vectors
since these are computed in such a way that they are
always pointing outwards with respect to the conic
cylinder. One approach for identifying those triangles
with normals facing away from the view point is to
check the normals of every triangle individually. This
would represent a computational burden and slow
down the rendering process. Since the vessel segments
are rendered as triangle strips, both the visible and the
invisible halves are represented by two sets of consec-
utive triangles. Thus, in order to identify the set of
back-facing triangles only, the transition from triangles
with normals facing towards the camera and those
pointing away from the camera has to be found which
is significantly less expensive computationally. Conse-
quently, only the triangles facing the camera which are
visible triangles need to be drawn resulting in a sig-
nificant reduction in the number of triangles that need
to be sent to the graphics hardware.

Occlusion-Based Reduction

Another way of reducing the number of triangles
required for a geometric representation of the vascular
structure is to remove triangles that represent conic
cylinders which are hidden behind a multitude of other
vessel segments with respect to the current projection
(referred to as occlusion). In a tree-shaped data set,

complete occlusion is not likely to occur since a single
segment does not significantly obstruct the geometry
located behind it. Many of the segments need to be co-
located and packed very densely in a particular area to
occlude other parts of the vascular tree. However,
complete occlusion is not likely to occur. Thus, those
parts of the tree which are detected as (partly) occluded
are still displayed using the lowest level of detail.

The present software system employs occlusion
queries implemented in OpenGL 1.5.30 During such a
query, the OpenGL library keeps track of whether the
specified graphical primitives result in pixels actually
drawn to the projected image. In contrast to the
GL_HP-occlusion_test, which only returns a binary
true or false result depending on whether pixels were
drawn or not, the occlusion queries defined in OpenGL
1.5 allow the retrieval of the number of fragments
(pixels) that contribute to the current projected image
during the query. Assuming frame coherence (two
consecutive projected images being similar), we can use
these queries to check for occlusion. By drawing a
bounding box of a sub-area, these queries allow the
software to determine how much of a specific sub-area
is visible based on the previous projected image. These
sub-areas are identical to the ones defined by the spa-
tial data structure used for the previously described
geometry reduction; i.e., an equidistant sub-division
into cubical areas. Based on a user-defined threshold
describing the number of pixels that need to be visible,
the present system can determine the level-of-detail to
be used for the vessel segments contained in this sub-
area. The smaller the threshold the less vessels are re-
quired to occlude a sub-area. Since the vessel segments
are spread over the entire volume relatively evenly, a
more sophisticated sub-division technique such as
binary-space-partitioning (BSP) trees or k-d trees,
which sub-divide space recursively at arbitrary planes
instead of using a fixed scheme, would not result in a
significant improvement. Also, a simpler sub-division
scheme allows for faster processing of the individual
sub-elements during testing for occlusion.

For each element of the sub-division, a hardware
occlusion query is issued as described above to check
how many fragments pass the depth test; i.e., con-
tribute to the current projected image. This results in
an estimate of how much of the specific sub-area
contributes to the current projected image. To avoid
actual drawing of the bounding boxes, the color mask
is set to zero in OpenGL. Similarly, the OpenGL depth
buffer is marked as read-only to prevent the bounding
boxes from changing the depth values and therefore
occluding each other.

Occlusion queries supported on GeForce 3 and
subsequent NVidia GPUs allow many queries to be
performed simultaneously. Therefore, all bounding
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boxes that are needed for the occlusion queries are
drawn first. The result of each occlusion query is stored
in the memory of the graphics hardware. To avoid
stalling of the graphics pipeline, the result is read back
only once for all sub-areas after all occlusion queries
are finished. Each occlusion query returns the number
of fragments of the bounding box that would actually
pass the depth test and would have been drawn if the
color mask would not have been set to zero. Conse-
quently, an occlusion query provides a precise measure
of how much of a certain sub-area is occluded. Based
on a user-specified threshold, the rendering system can
then decide whether to draw the vessel segments con-
tained in that specific area at the full level or at a lower
level of detail.

Out-of-Core Rendering

Since the whole data set representing the complete
model of the arterial vascular tree does not fit into the
main memory of regular desktop computers, an out-
of-core method was implemented to support larger
data sets. This technique uses hard drives as main
storage medium, while main memory is only used for
caching data. In this way, only the portion of the data
set which the algorithm is currently using needs to be
present in main memory. The system automatically
updates this portion; i.e., the system loads another
portion of the data set into main memory and removes
another whenever necessary. This enables rendering of
the entire model of the vasculature on current com-
modity hardware. In this approach, the geometry is
determined in a pre-computational step. For each of
the spatial sub-areas that are used during the render-
ing, the triangles needed for displaying all of the vessel
segments contained in this specific sub-area are com-
puted and then stored in a file. After that, the geometry
data can be removed from main memory. Using such a
streaming technique reduces the memory footprint
significantly. In our experiments the memory con-
sumption of the software implementation was less than
64 MB (as observed via the Windows task manager).

The geometric representation is pre-computed and
written to a file in form of binary arrays in the same
way it is used by OpenGL when rendered using vertex
arrays. Note that only the full resolution needs to be
stored in the out-of-core file since the lower levels-of-
detail can be derived by masking elements within the
vertex array. Offsets are stored at the beginning of the
binary file as depicted by Fig. 9. This section of the file
allows the system to determine where to find all vertex
arrays within the file for each of the sub-areas used by
the spatial data structure. With this information, the
exact location within the file can be determined and

mapped to memory resulting in a pointer to the base
address of all vertex arrays representing the geometry
of all vessel segments within a specific sub-area. From
this starting point, all vertex arrays can be processed as
if they were stored in memory.

Implementation Details

The visualization system is based on OpenGL.
Occlusion queries as defined in OpenGL 1.5 are used
for the occlusion culling. Figure 10 shows sample code
to use occlusion queries in this context. Similar to dis-
play lists, vertex arrays, which are significantly faster
than immediate mode rendering,34 are used for ren-
dering the vessel segments. OpenGL allows selecting
the vertices of a vertex array that are used during the
rendering. Thus, a lower level of detail can be realized
simply by providing OpenGL with a subset of indices
that represents a lower level of detail. This index array
can be pre-computed and then provided for every seg-
ment destined for lower resolution. Obviously, this in-
dex array is the same for each segment due to the fact
that the conic cylinder representing a single segment is
discretized in the same way for each segment. Figure 11
includes the source code used for rendering vessel seg-
ments using vertex arrays.

Sub-area 1

Sub-area 2

Sub-area n

Offset 1

Offsets

Offset 2

Offset n

FIGURE 9. Out-of-core data file structure reflecting each
sub-area within the spatial data structure and their offsets.

WISCHGOLL et al.



// create reference ID in OpenGL for this query 
GLuint id; 
glGenQueries(1, &id); 

// disable color and depth mask to ensure that nothing is actually drawn 
glColorMask (0, 0, 0, 0); 
glDepthMask (0); 
glBeginQuery (GL_SAMPLES_PASSED, id);  

// draw the test object, i.e. a cube enclosing the current octree element 
glBegin (GL_QUADS); 
glVertex3dv (leafs[i][j][k].upperleft); 
glVertex3d (leafs[i][j][k].lowerright[0], 
       leafs[i][j][k].upperleft[1], 
       leafs[i][j][k].upperleft[2]); 
glVertex3d (leafs[i][j][k].lowerright[0], 
       leafs[i][j][k].lowerright[1], 
       leafs[i][j][k].upperleft[2]); 
glVertex3d (leafs[i][j][k].upperleft[0], 
       leafs[i][j][k].lowerright[1], 
       leafs[i][j][k].upperleft[2]); 
/* … other faces of the quad … */ 

glEnd (); 

glEndQuery (GL_SAMPLES_PASSED); 

// occlusion query finished, store the number of pixels in “result” 
GLint result; 
glGetQueryObjectiv (id, GL_QUERY_RESULT, &result);

// enable the color and depth masks again 
glDepthMask (1); 
glColorMask (1, 1, 1, 1); 

FIGURE 10. Sample code for OpenGL occlusion query to determine the number of fragments (pixels) that would contribute to the
current image when drawing all vessel segments contained in a single octree element. The variable result will contain the exact
number of pixels that would be drawn for the bounding box of this specific octree element (for the sake of simplicity only the
drawing commands for the first face of the bounding box is shown).

// out-of-core data for this octree element can be found within the memory  
// mapped area, identified by the variable “base” 
OutOfCoreData *outofcoredata = (OutOfCoreData *)base; 

// determine pointer to the current vessel segment within memory mapped 
// area, i.e. skip the header information 
char *vertexarray, *normalarray, *pointer = 
  (base + sizeof (double) * 9 + sizeof (unsigned int)); 
OutOfCoreVertexData *outofcorevertexdata; 

  // draw all vessel segments using OpenGL vertex arrays  
  for (int i=0; i<outofcoredata->noelements; i++) { 
    outofcorevertexdata = (OutOfCoreVertexData *)pointer; 

    // determine the pointers to the vertex and normal data needed for 
    // rendering within the memory mapped area 
    vertexarray = pointer + sizeof (double) * 3; 
    normalarray = vertexarray + sizeof (VATYPE) * novertices * 3; 

    // declare vertex and normal arrays for OpenGL 
    glVertexPointer (3, VATYPEARG, 0, (VATYPE *)vertexarray); 
    glNormalPointer (VATYPEARGLOW, 0, (VATYPELOW *)normalarray); 

    // draw current vessel segment 
    glDrawElements (GL_TRIANGLE_STRIP, 6, GL_UNSIGNED_INT, start); 
    trianglecount += 4; 

    // advance the data pointer to the next vessel segment 
    pointer += sizeof (double) * 3 +  

3 * novertices * (sizeof (VATYPE) + sizeof (VATYPELOW)); 
  } 

FIGURE 11. Sample code for drawing all vessel segments within an octree element using OpenGL vertex arrays; the geometry
data is retrieved from the memory mapped file. The starting location of the memory mapped area is indicated by the variable
‘‘base’’.
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The out-of-core rendering approach uses a single
file that contains the pre-computed geometry
describing the model. This file is accessed using
memory mapping implemented in the Windows� and
Linux operating systems. Figure 12 outlines the nec-
essary function calls for memory mapping the geo-
metric representation of the vasculature for the
Windows� operating system. This has two major
advantages. First, the file can be randomly accessed.
File caching is handled entirely by the operating sys-
tem. This approach utilizes the hardware capabilities
of the memory management unit (MMU) within the
CPU. Second, due to the file caching capabilities of
the operating system, close-up views can be rendered
at comparatively high frame rates. If the geometry
that is needed for a close-up view fits into the file
cache of the computer, no hard disk access is
necessary making the rendering relatively fast. The
out-of-core rendering mode has the advantage of

handling data sets larger than the available main
memory space.
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occlusion culling for large polygonal models. Computers
Graphics 23(5):667–679, 1999.
3Cohen-Or, D., Y. Chrysanthou, C. T. Silva, and F. Du-
rand. A survey of visibility for walkthrough applications.
IEEE Trans. Visualization Computer Graphics 9(3):412–
431, 2003.
4Deussen, O., C. Colditz, M. Stamminger, and G. Drettakis.
Interactive Visualization of Complex Plant Ecosystems.
IEEE Visualization 2002:219–226, 2002.
5El-Sana, J and A. Varshney. Generalized view-dependent
simplification. In P. Brunet & R. Scopigno (eds.) Computer

// create file handle for input file 
filehandle = 
  CreateFile (file, 
    GENERIC_READ, 
    FILE_SHARE_READ, 
    NULL, 
    OPEN_EXISTING, 
    FILE_FLAG_SEQUENTIAL_SCAN || FILE_ATTRIBUTE_READONLY, 
    NULL); 

  if (!filehandle) { 
    cerr << "ERROR: cannot open out-of-core file" << endl; 
    return; 
  } 

// create a memory mapped file handle 
mmaphandle = CreateFileMapping (filehandle, 
         NULL, 
         PAGE_READONLY, 
         0, 
         0, 
         NULL); 

// read offsets for identifying the individual octree elements 
int i, j, k; 
offsets = new unsigned int**[(division+1)]; 
leafsizes = new unsigned int**[(division+1)]; 
for (i=0; i<=division; i++) { 
  offsets[i] = new unsigned int*[(division+1)]; 
  leafsizes[i] = new unsigned int*[(division+1)]; 
  for (j=0; j<=division; j++) { 
    offsets[i][j] = new unsigned int[(division+1)]; 
    leafsizes[i][j] = new unsigned int[(division+1)]; 
  } 
 } 

// compute the size of the entire header information 
generaloffset = sizeof (unsigned int) +  
  3 * sizeof (double) + 
  sizeof (OctreeArea) + 
  (division + 1) * (division + 1) * (division + 1) * 
  sizeof (unsigned int) * 2; 

// create view for mapping offsets 
char *base = (char *)MapViewOfFile (mmaphandle, 
          FILE_MAP_READ, 
         0, 
         0, 
         generaloffset);

FIGURE 12. Memory mapped reading of the header information from the out-of-core file; similarly the geometric information is
read from the out-of-core file for every octree element.

WISCHGOLL et al.



Graphics Forum (Eurographics 99), Vol. 18(3). The Eu-
rographics Association and Blackwell Publishers: 83–94,
1999.
6El-Sana J., Sokolovsky, C. T. Silva. 2001 Integrated
occlusion culling with view-dependent rendering. IEEE
Visualization 2001:371–378, 2001.
7El-Sana, J. and E. Bachmat. Optimized view-dependent
rendering for large polygonial datasets. IEEE Visualization
2002:77–84, 2002: IEEE Computer Society.
8Felkel, P, A. L. Fuhrmann, A. Kanitasar, and R. Wegen-
kittel. Surface reconstruction of the branching vessels for
augmented reality aided surgery, BIOSIGNAL, Vol. 1,
VUTIUM Press: 252–254, 2002.
9Gerig, G., T. Koller, G. Széhely, C. Brechbühler, O. Kü-
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