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11 Abstract—An accurate analysis of the spatial distribution of
12 blood flow in any organ must be based on detailed
13 morphometry (diameters, lengths, vessel numbers, and
14 branching pattern) of the organ vasculature. Despite the
15 significance of detailed morphometric data, there is relative
16 scarcity of data on 3D vascular anatomy. One of the major
17 reasons is that the process of morphometric data collection is
18 labor intensive. The objective of this study is to validate a
19 novel segmentation algorithm for semi-automation of mor-
20 phometric data extraction. The utility of the method is
21 demonstrated in porcine coronary arteries imaged by com-
22 puterized tomography (CT). The coronary arteries of five
23 porcine hearts were injected with a contrast-enhancing
24 polymer. The coronary arterial tree proximal to 1 mm was
25 extracted from the 3D CT images. By determining the
26 centerlines of the extracted vessels, the vessel radii and
27 lengths were identified for various vessel segments. The
28 extraction algorithm described in this paper is based on a
29 topological analysis of a vector field generated by normal
30 vectors of the extracted vessel wall. With this approach,
31 special focus is placed on achieving the highest accuracy of
32 the measured values. To validate the algorithm, the results
33 were compared to optical measurements of the main trunk of
34 the coronary arteries with microscopy. The agreement was
35 found to be excellent with a root mean square deviation
36 between computed vessel diameters and optical measure-
37 ments of 0.16 mm (<10% of the mean value) and an average
38 deviation of 0.08 mm. The utility and future applications of
39 the proposed method to speed up morphometric measure-
40 ments of vascular trees are discussed.

41 Keywords—Image analysis, CT, Segmentation, Coronary

42 arteries.
43

44

45INTRODUCTION

46The analysis of spatial blood perfusion of any

47organ requires detailed morphometry on the geometry

48(diameters, lengths, number of vessels, etc.) and bran-

49ching pattern (3D angles and connectivity of vessels).

50Despite the significance of morphometric data for

51understanding the distribution of blood flow and

52hemodynamics, the data are relatively sparse. The

53major reasons for the scarcity of morphometric data

54are the tremendous labor involved and the necessity to

55cope with the large amount of data. To reconstruct a

56vascular structure involving a significant number of

57vessels in most organs is an extremely labor-intensive

58endeavor. The solution is to develop a labor-saving

59methodology for extracting morphometric data from

60volume rendered images.

61Several methods to measure morphometric data,

62such as vessel diameters, semi-automatically can be

63found in the literature. Some approaches are based on

64fitting geometric objects to the data such as generalized

65cylinders.40 Since the selected geometric objects are

66well known, diameters and centerlines can be identi-

67fied. Other approaches deploy region growing. By

68using an atlas, Passat et al.35 divided the human brain

69into different areas to optimize a region growing seg-

70mentation of brain vessels. Subsequently,34 the atlas

71was refined by adding morphological data, such as

72vessel diameter and orientation, to extract a vascular

73tree from phase contrast MRA data. Spaan et al.43

74extracted coronary vessels from serially sectioned fro-

75zen hearts based on maximum intensity projections

76and manually determined the dimensions using virtual

77calipers.

78The vessel boundary must be first determined to

79identify the centerline and compute the radius as the

80distance between the centerline and the boundary. A

81number of segmentation approaches are available to
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82 determine the vessel boundary including surface

83 extraction based on an energy function of the image

84 gradient,15 deformable meshes,16 hysteresis threshold-

85 ing and region growing,30 and distance to the vessel

86 wall subject to a penalty function.44

87 Once the boundary is extracted, the centerlines

88 can be determined. An overview of available tech-

89 niques can be found in the paper by Cornea et al.12

90 For computing centerlines, topology- or connectivity-

91 preserving thinning is a common approach.38,51,52 Ukil

92 and Reinhardt48 introduced a smoothing approach for

93 airways of a lung based on an ellipsoidal kernel before

94 segmenting and thinning the 3D volumetric image. By

95 using the Hessian of the image intensity, Bullitt et al.9

96 developed a ridge line detection method to identify

97 centerlines. The algorithm by Aylward and Bullitt3 is

98 based on intensity ridge traversal. The resulting cen-

99 terlines are smoothed using a B-spline-based approach.

100 Zhang et al.54 described a centerline extraction algo-

101 rithm based on Dijkstra’s algorithm using a distance-

102 field cost function.

103 Once the centerline is determined, quantitative data,

104 such as lengths, areas, and angles, can be extracted.29,52

105 A detailed data structure for building an airway tree

106 was described by Chaturvedi and Lee.11 Recently,

107 Nordsletten et al.31 proposed an approach that seg-

108 ments vessels of rat kidney based on iso-surface com-

109 putation. Using the surface normals, the surface

110 projects to the center of the vessels, while a snake

111 algorithm collects and connects the resulting point

112 cloud. To analyze the branching morphology of the rat

113 hepatic portal vein tree, Den Buijs et al.8 compared the

114 radii and branching angles of the vessels to a theoret-

115 ical model of dichotomous branching.

116 In this study, we introduce a software tool for

117 extracting and measuring tubular objects from volu-

118 metric imagery of CT images of porcine coronary

119 arteries. The proposed method identifies the vessels

120 and determines the centerlines of those vessels; i.e., it

121 reduces the entire vasculature to a curve-skeleton. This

122 in turn allows the software to compute the vessel

123 diameter at any given point as the distance between the

124 centerline and the vessel wall. Furthermore, the

125 method is validated against manually determined

126 optical measurements of vessel diameters to assess its

127 accuracy. Hence, this study represents the first vali-

128 dation of a segmentation algorithm with actual vessel

129 casts measured optically.

130 METHODS

131 CT Images of Coronary Arteries

132 Five hearts from normal Yorkshire swine of either

133 sex with body weight of 34.3–42.1 kg were studied. The

134animals were fasted overnight and ketamine, 20 mg/kg,

135and atropine, 0.05 mg/kg, were administered intra-

136muscularly before endotracheal intubation. The ani-

137mals were ventilated using a mechanical respirator and

138general anesthesia was maintained with 1–2% isoflu-

139rane and oxygen. The chest was opened through a

140midsternal thoracotomy, and an incision was made in

141the pericardium to reach the heart. The animals were

142then deeply anesthetized followed by an injection of a

143saturated KCl solution through the jugular vein to re-

144lax the heart. The aorta was clamped to keep air bub-

145bles from entering the coronary arteries, and the heart

146was excised and placed in a saline solution. The left

147anterior descending (LAD) artery, the right coronary

148artery (RCA) and the left circumflex (LCX) artery were

149cannulated under saline to avoid air bubbles and per-

150fused with cardioplegic solution to flush out the blood.

151The three major arteries (RCA, LAD, and LCX) were

152individually perfused at a pressure of 100 mmHg with

153three different colors of Microfil (Flow Tech Inc.,

154MV-112, MV 117, MV-130) mixed with Cab-O-Sil to

155block the capillaries resulting in the filling of only

156the arterial tree down to precapillary levels. After the

157Microfil was allowed to harden for 45–60 min, the

158hearts were kept in the refrigerator in saline solution

159until the day of the CT scan. The scans were made

160axially (120 mAs 120 kV, 0.6 · 0.6 · 1.0 mm3) on a

16116-slice scanner (Siemens Somatom Sensation 16).

162Optical Measurements of Vessel Trunk

163After CT scanning of the casts (Fig. 1a), the hearts

164were immersed and macerated in 30% potassium

165hydroxide solution for 3–4 days to remove the tissue

166and obtain a cast of the major coronary arteries and

167their branches (Fig. 1). The trunk of the LAD, RCA,

168and LCX casts was then photographed using a dis-

169section microscope and a color digital camera (Nikon).

170For each photograph, the diameter of the three main

171trunks were measured at each branch from the proxi-

172mal artery to where the trunk becomes <1 mm in

173diameter. The optical measurements of diameters

174along the length of the trunk were made using Sig-

175maScan Pro 5 software. The measurements were then

176compared to the values retrieved from the extraction

177algorithm using the distance to the proximal artery as

178reference.

179Computer-Assisted Extraction of Morphometric Data

180from CT Volumetric Images

181The proposed system extracts morphometric data

182from a volumetric image in several steps. Although a

183brief summary of the algorithm is given here, a detailed

184description can be found in the appendix. As outlined
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185 in Fig. 2, the algorithm first segments the vessels within

186 the volumetric image based on the image gradients. In

187 order to get a more accurate representation of the

188 vessel boundary, the points resulting from the seg-

189 mentation step were moved along the gradient direc-

190 tion in such a way that they were located at the

191 maximal gradient. This provides a more precise and

192 smoother representation at sub-voxel level of the

193 boundary compared to using the original voxel loca-

194 tions. The vectors were then computed for every point

195on the boundary detected by the previous step in such

196a way that all vectors were pointing inwards to the

197center of the vessel. In the simplest case, the image

198gradients can be used at the boundary. Using a tri-

199linear interpolation, a vector field covering the inside

200of the vasculature was computed after a tetrahedriza-

201tion of all the boundary points was determined. Fi-

202nally, the points on the centerlines were computed

203using a topological analysis of the vector field within

204the cross sectional area of the vessels and connected

205based on the topology of the tetrahedrization. This

206then results in a precise representation of the center-

207lines of all vessels within the volumetric image. Fig-

208ure 1 depicts a typical data set shown as a volume

209rendering (Fig. 1a) and a geometric reconstruction

210based on the centerlines and vessel radii (Fig. 1b) from

211similar view directions. The vessel diameters were then

212computed as the distance between the center and the

213vessel boundary. The major trunk of the artery was

214defined along the path of the larger diameter at each

215bifurcation.

216Data and Statistical Analysis

217In order to facilitate a statistical analysis for the five

218hearts, the position along the RCA, LAD, and LCX

219arteries was normalized with respect to the total length

220(from inlet of artery down to 1 mm diameter). Hence,

221the results were expressed in terms of fractional longi-

222tudinal position (FLP), ranging from 0 to 1. The data

223for both the independent (FLP) and dependent

224variables (diameter) were then divided into 20 equal

225intervals: 0–0.05, 0.06–0.1, 0.11–0.15, …, 0.91–0.95,

2260.96–1.0. The results were expressed as means ± 1SD

227(standard deviation) over each interval. The root mean

228square (rms) error and average deviation between

229computer-based and optical measurements were deter-

230mined. Paired t-tests for the three trunks separately were

FIGURE 1. (a) Arterial tree of a porcine heart visualized as a volume rendered image with lighting enabled and the (b) recon-
structed geometry of the same arterial tree based on centerlines and vessel radii.

Gradient based segmentation

Determine sub-voxel precision

Compute tetrahedrization

Compute vector field

Determine topology of vector

field to identify points on

centerlines

Connect points based on 

topology of tetrahedrization

Centerlines of vasculature

Compute morphometric data

(vessel length, diameter, …)

FIGURE 2. Flow chart outlining steps of the segmentation
algorithm.
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231 used to detect possible differences between groups and

232 intervals. For this, the average measurements of the

233 optical and computer-based methods for all hearts

234 pooled together were used within each interval.

235 RESULTS

236 The algorithm was first validated on a simple,

237 computer-generated phantom dataset that included a

238 tubular-shaped object. Since this data set was com-

239 puter-generated, the location of the centerlines and the

240 diameters were known and any effects of the scanning

241 step were avoided. The centerline was extracted and

242 the radii determined. This test indicated that both the

243 centerlines as well as the diameters were extracted very

244 accurately at an average error of 0.7% and rms error

245 of 1.1%. For true validation, the coronary arterial CT

246 images were used (Fig. 1). The proposed algorithm

247 extracted the curve-skeleton from the volumetric data

248 set to identify the centerlines of the vessels and to ex-

249 tract morphometric data. The extracted curve-skeleton

250 describes the centerlines of the arterial vessels found

251 within the data set. When using a sub-section of the

252 porcine coronary image, it can be seen that the curve-

253 skeleton is well defined and located at the center of the

254 arterial vessels, as shown in Fig. 3. Based on the cen-

255 terlines, the vessel lengths were determined as the

256 length of the centerline while the vessel radii were

257 computed as the distance between the centerline and

258 the vessel wall. The overall lengths of the main trunks

259 measured from the beginning of the most proximal

260 artery to the end of approximately 1 mm diameter

261 vessel ranged from 8.4 to 10.7 cm for LCX, 10 to

262 13.8 cm for LAD, and 11.2 to 18.7 cm for RCA. The

263 average diameters for LAD, LCX, and RCA were

264 determined as 2.52, 2.78, and 3.29 mm, respectively.

265 In order to validate the results derived from CT

266 images (Fig. 1a), the manual optical measurements

267 were compared to the computed values for the main

268 trunks of the LAD, LCX, and the RCA branches. The

269 distance to the proximal artery was used as a reference

270 to compare the optical diameter measurements to the

271image-extracted values. Figure 4a shows a typical

272example of the LAD trunk diameter for one repre-

273sentative heart. Computer-based CT and optical mea-

274surements are both plotted together in this graph. The

275length of this branch down to the point of scan reso-

276lution (~1 mm) was 9.9 cm. As can be seen from the

277two curves, the diameters that were manually mea-

278sured (dashed) agree with the ones determined by the

279software system (solid) very well. Figures 4b and 4c

280show the results for the LCX and RCA branch of the

281same heart, respectively. The lengths of these branches

282were 8.4 cm and 11.4 cm, respectively. According to

283paired t-test, the probabilities for no statistically sig-

284nificant difference for the three major trunks were 0.23

285(LAD), 0.76 (LCX), and 0.64 (RCA). Hence, there

286were no statistically significant differences between the

287two measurements (p>0.05).

288In order to facilitate a direct comparison between the

289manually measured data and the computed values, the

290data were normalized along the length to a scale be-

291tween zero and one. The inlet of the artery was identified

292as zero, while the point at which the trunk reached 1 mm

293diameter was set to one. Figures 5a–c show a compar-

294ison of the manually measured and computer-based

295diameters for all five hearts. The horizontal bars rep-

296resent the standard deviation (SD) within each bin with

297respect to the measured lengths. Similarly, the SD of

298diameter values within each bin is shown as a vertical

299bar. The computer-based algorithm sampled more

300measurements as compared to the optical method. As a

301result, there is a larger variation in the FLP for the

302computer-based method. As can be seen from these

303graphs, the manually measured diameters agree very

304well with the computer-generated values. There were no

305statistically significant differences between the two sets

306of measurements at each interval (paired t-test per

307interval p>0.05, averaged for all five hearts). Fur-

308thermore, the rms error between the two measurements

309of all vessels is 0.16 mm (0.21 mm for LAD, 0.14 mm

310for LCX, and 0.11 mm for RCA) which is <10% of the

311average value with average deviation of 0.08 mm

312(0.11 mm for LAD, 0.08 mm for LCX, and 0.05 mm for

313RCA).

FIGURE 3. (a) A segment of coronary artery cast and (b) extracted curve-skeleton (solid line) of the coronary segment with the
vessel boundary indicated by the point cloud.
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314 DISCUSSIONS

315 Validation of Image-Based Extraction Algorithm

316 The algorithm described in this paper utilizes a

317 less computationally intensive method of computing

318 the vector field. Also, the topological analysis of the

319 2D vector fields within cross-sectional areas of the

320 vessels can be computed more efficiently compared to

321 previous topology-based methods. This allows the

322 software to process a CT scanned data set within a

323 few hours which potentially can be further reduced

324by optimization of the code. In addition, the pro-

325posed algorithm does not require the introduction of

326artificial starting points for the topological analysis.13

327In fact, the singularities defining the centerlines are

328generated by projecting the vector field onto the

329cross-sectional areas of the vessels.

330The direct comparison of the diameter values

331retrieved by extracting the three vessel branches from

332the CT scanned images and the optical measurements

333using the cast polymer verify the accuracy of the pro-

334posed algorithm. Figure 4 shows the data for the main
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FIGURE 4. A direct comparison between manually measured
optical (dashed) and computed (solid) diameters for (a) LAD
trunk, (b) LCX trunk, and (c) RCA for a typical specimen. The
x-axis describes the distance along the trunk, while the y-axis
corresponds to the diameter.
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335 trunk of a representative vessel. Overall, the two curves

336 for the computed diameters and the measured values

337 agree very well. Once the diameter is <1 mm, the

338 agreement is less satisfactory. This is not surprising

339 since the voxel resolution of the CT scan is about

340 0.6 mm within the slices and 1.0 mm between slices.

341 Hence, the accuracy of diameters below 1 mm are

342 somewhat questionable since they would be described

343 by less than a single voxels within the volumetric

344 image.

345 The data in Fig. 5 show the correlation between the

346 averaged optically determined and computed diame-

347 ters. As can be seen from this figure, the values within

348 each bin are similar for the measured and computed

349 results. We found no statistically significant differences

350 among all bins. The rms error for all hearts is <10%

351 of the mean diameter which supports the accuracy of

352 the proposed algorithm. The rms error of the mea-

353 surements computed using the presented technique of

354 0.16 mm are also more precise compared to other

355 techniques found in the literature,27 where the rms

356 error ranges from 0.2 to 0.6 mm with scans of similar

357 resolutions (0.6 · 0.6 · 0.6 mm3).

358 Comparison with Other Studies

359 Some methods begin with all voxels of a volumetric

360 image and use a thinning technique to shrink down the

361 object to a single line.4,7,18,24,26,32,33,37,47 Ideally, the

362 topology of the object should be preserved as proposed

363 by Lobregt et al.25 which is the basic technique used in

364 commercial software systems, such as AnalyzeTM. The

365 disadvantage of this approach is that it tends to pro-

366 duce jagged lines which do not allow accurate mea-

367 surements of branch angles. Luboz et al.27 used a

368 thinning-based technique to determine vessel radii and

369 lengths from a CTA scan. A smoothing filter was

370 employed to eliminate the jaggedness of the thinning

371 process and the results were validated using a silicon

372 phantom. A standard deviation of 0.4 mm between the

373 computed and the actual measurements was reported

374 for a scan with similar resolution as that used in this

375 paper. The disadvantage of thinning algorithms is that

376 they can only be applied to volumetric data sets. Since

377 the approach presented in this paper is not based on

378 voxels it can be applied to non-volumetric data; i.e., it

379 is also applicable to geometric data sets, such as those

380 obtained from laser scans. Furthermore, the location

381 of the centerline is determined at a higher numerical

382 precision since the defining points are not bound to a

383 single voxel. This also helps avoid the jagged repre-

384 sentation of the centerlines.

385 Other approaches use the distance transform or

386 distance field in order to obtain a curve-skeleton. For

387 example, fast marching methods41,46 can be employed

388to compute the distance field. Voxels representing the

389centerlines of the object are identified by finding ridges

390in the distance field. The resulting candidates must

391then be pruned first. The resulting values are con-

392nected using a path connection or minimum span tree

393algorithm.45,50,55 The distance field can also be com-

394bined with a distance-from-source field to compute a

395skeleton.56 Similar to thinning approaches, these

396methods are voxel-based and tend to generate the

397same jagged centerlines. This implies that a centerline

398can deviate from its original location by up to half a

399voxel due to the numerical representation. The pro-

400posed approach does not have this shortcoming as it

401uses a higher numerical precision for determination of

402centerlines.

403A more recent method by Cornea et al.13 computes

404the distance field based on a potential similar to an

405electrical charge and then uses a 3D topological anal-

406ysis to determine the centerlines. This approach has

407some disadvantages, however, when applied to CT-

408scanned volumetric images. For example, it is com-

409putationally intensive such that computing the distance

410field alone would take several months. Furthermore,

411due to the rare occurrence of 3D singularities used as

412starting points for topological analysis, additional

413criteria have to be added. The present algorithm avoids

414this by linearly interpolating the vector field within the

415vessels and by performing a 2D topological analysis in

416cross sections of the vessels only. This results in a

417significantly shorter computational time for generation

418of data which is very important for large data sets.

419Techniques based on Voronoi diagrams2,14 define a

420medial axis using the Voronoi points. Since this

421approach usually does not result in a single line but

422rather a surface shaped object, the points need to be

423clustered and connected in order to obtain a curve-

424skeleton. Voronoi-based methods can be applied to

425volumetric images as well as point sets. These methods

426usually tend to extractmedial surfaces rather than single

427centerlines. Hence, clustering of the resulting points is

428required which in turn may introduce numerical errors.

429For extracting centerlines from volumetric images,

430geometry-based approaches are preferable over voxel-

431based approaches. Due to the discrete nature of a voxel

432of the volumetric image, the location of the centerline

433can have an error of half a voxel. Geometry-based

434methods do not have this shortcoming. Nordsletten

435et al.31 determined normal vectors based on an iso-

436surface computed using the volumetric image. These

437normal vectors are projected inward. The resulting

438point cloud is then collected and connected by a snake

439algorithm. Since this method estimates the normal

440vectors, the center of the vessel is not necessarily in

441the direction of the normal vector. Hence, the com-

442puted centerline may not be absolutely accurate. Our
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443 proposed technique is based on a vector field analysis

444 with vectors pointing toward the vessel center. This

445 method is more lenient with regard to vector direction

446 while still finding accurate center points. Hence, the

447 proposed technique compensates for this type of error

448 automatically. It is therefore expected that a more

449 precise computation of center points is possible. The

450 approach based on a 3D vector field analysis proposed

451 by Cornea et al.13 results in very accurate computa-

452 tion of the centerlines. The only difficulty with this

453 approach is that computing the centerlines for a

454 CT-scanned volumetric image of the size 512 · 512 ·

455 200 would take several months, which renders it

456 impractical.

457 Critique of Method

458 The choice of the initial threshold of the gradient

459 only influences the smallest vessel detected. Hence, a

460 more optimal choice of this threshold can lead to

461 smaller vessels being visualized (limited by the scanner

462 resolution). However, the location of the vessel

463 boundary that is identified by the algorithm is not

464 influenced by this threshold. As a consequence,

465 choosing a different threshold does not change the

466 quantitative measurements and their accuracy. To find

467 an optimal threshold, the first step of the algorithm

468 was executed. If sufficient vessel boundaries were not

469 identified, the threshold was decreased. In case of too

470 much noise, the threshold was increased. After few

471 iterations, an appropriate threshold value was found

472 and the same threshold was used for all data sets.

473 In some instances, the method fails to connect a

474 smaller vessel to the larger branch at the bifurcation.

475 Since the center lines of the vessels are computed

476 properly, the gap closing step is capable of connecting

477 most of these bifurcations properly. Furthermore, a

478 clear definition of a vessel segment is necessary in order

479 to avoid false bifurcations. Since the proposed algo-

480 rithm is designed based on topological analysis, a

481 vessel that forks off of a branch is required to have a

482 considerable length in order to be detected. As a result,

483 the presented technique tends to pick up less false

484 bifurcations due to bumps in the vessel boundary

485 compared to algorithms based on Voronoi diagrams.

486 Finally, the present analysis is simplified by casting of

487 the arterial side only without the respective veins. In

488 future studies, algorithms can be established to dis-

489 tinguish and analyze each of the two trees, respectively.

490 Significance of Study

491 The present method accurately extracts vascular

492 structures including dimensions (diameters and

493 lengths) from volumetric images. The validation of

494the computed diameters with optical measurements

495confirms the accuracy of the method. The algorithm

496can extract the main trunk as well as the entire vascular

497tree within the scan resolution. Future applications to

498the entire tree will allow the determination of vessel

499diameters and lengths as well as bifurcation angles to

500reconstruct a realistic anatomy of the vasculature.

501Such accurate and detailed anatomical models will

502serve as an architectural platform for hemodynamic

503analysis of blood flow. The present study is the first

504step in that direction.

505

506APPENDIX

507Computer-Assisted Extraction of Morphometric Data

508from CT Volumetric Images

509The algorithm for extraction of curve-skeletons and

510determining morphometric data from volumetric ima-

511ges consists of several steps. A detailed description of

512all steps involved in the algorithm can be found below

513along with the theoretical framework for the method-

514ology.

515Topological Analysis of Vector Fields

516The algorithm utilized in this study uses the topol-

517ogy of a vector field defined on the faces of a tetra-

518hedralized set of points. Thus, the vector field is

519defined by three vectors located at the vertices of a

520triangle. The vector field inside the triangles is inter-

521polated linearly by computing the barycentric coordi-

522nates of the point within the triangle. These

523coordinates are then used as weights for linearly

524combining the three vectors defined at the vertices of

525the triangle to compute the interpolated vector. The

526advantage of such a linear interpolation is an easier

527classification of topological features which is briefly

528described below.

529In topological analysis, the zeros of the interpolating

530vector field are of interest. Synonyms for these zeros are

531singularities or critical points. Based on the eigenvalues

532of the matrix of the interpolating vector field, these

533critical points can be separated into different groups.

534Within each group, the vector field assumes similar

535characteristics. Very detailed analysis of these groups

536and their characteristics can be found in the litera-

537ture.20,53 In order to identify points on the centerline,

538singularities where the vectors point toward that spe-

539cific point are of interest. These types of singularities

540are attracting node and focus singularities (both

541eigenvalues of matrix A are negative), as well as

542attracting spiral singularities (eigenvalues of matrix A

543have non-zero imaginary part) as depicted in Fig. 6a–d.
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544 Methodology for Extraction of Quantitative

545 Information

546 Thealgorithmfordeterminationof the curve-skeleton

547 consists of several steps. Since the object is given as a

548 volumetric CT-scanned image, the object boundary

549 must to be extracted first.A vector field is then computed

550 that is orthogonal to the object boundary surface. Once

551 the vector field is computed, the curve-skeleton can be

552 determined by applying a topological analysis to this

553 vector field. As a last step, gaps between segments of the

554 curve-skeleton can be closed automatically and vessel

555 diameters can be computed. The following subsections

556 explain these steps in detail.

557 Extraction of Object Boundary

558 The CT-scanned vasculature is defined by a volu-

559 metric image. A volumetric image consists of voxels

560 aligned along a regular 3D grid. It is generally not

561 likely that the boundary of the vessels is exactly located

562at these voxels. Hence, better precision can be achieved

563by finding the exact location in between a set of voxels.

564Since an accurate representation of the object bound-

565ary is crucial to the algorithm, improvement of the

566precision is an essential step. The method used within

567the described system uses similar techniques as de-

568scribed by Canny’s non-maxima suppression10 but

569extended to three dimensions.

570First, the image gradient is computed for every

571voxel. Using an experimentally determined threshold,

572all voxels with a gradient length below this threshold

573are neglected. The gradients of the remaining voxels

574are then compared to their neighbors to identify local

575maxima along the gradient. In 3D, the direct neigh-

576borhood of a single voxel generally consists of 26

577voxels forming a cube that surrounds the current

578voxel. In order to find the local maximum along the

579current gradient, the gradients of the neighboring

580voxels in positive and negative directions have to be

581determined. When using 2D images, nearest neighbor

FIGURE 6. Types of singularities that are relevant for topological analysis and for identifying centerlines: (a) saddle singularity of
a vector field including surrounding flow depicted by arrow glyphs, (b) node singularity of a vector field including surrounding flow
depicted by arrow glyphs, (c) focus singularity of a vector field including surrounding flow depicted by arrow glyphs, and (d) spiral
singularity of a vector field including surrounding flow depicted by arrow glyphs.
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582 interpolation of these gradients21 may work but yield

583 incorrect results in a 3D volumetric image. Therefore,

584 the gradients on the boundary of the cube formed by

585 the neighboring voxels are interpolated linearly to

586 determine a better approximation of the desired gra-

587 dients. Figure 7a explains this in more detail where the

588 current voxel marked as a triangle and the direct

589 neighbors forming a cube are shown. The current

590 gradient is extended to the faces of the cube starting at

591 the current voxel. The resulting intersections, marked

592 as diamonds, define the locations for which the gra-

593 dients have to be interpolated so that the maximal

594 gradient can be determined. The current implementa-

595 tion of the described system uses linear interpolation.

596 Using this method, only very few cases require a pre-

597 filtering to remove noise in data sets. The best results

598 can be achieved by the use of an anisotropic diffusion

599 filter. The five data sets used in this study were not pre-

600 filtered.

601 Once the neighboring gradients in positive and

602 negative direction of the current gradient are com-

603 puted, these are compared in order to find the local

604 maxima. Thus, if the length of the current gradient is

605 larger than the length of both of its neighbors, the local

606 maximum can be calculated similar to the 2D case.

607 When interpolated quadratically, the three gradients

608 together form a parabolic curve along the direction of

609 the current gradient as shown in Fig. 7b. In general,

610 the current gradient is larger than the interpolated

611 neighbors since only local maxima are considered in

612 this step. Hence, the local maximum can be identified

613 by determining the zero of the first derivative of the

614 parabolic curve. Determining all local maxima within

615 the volumetric image in this fashion then results in a

616 more accurate and smoother approximation of the

617 object boundary with sub-voxel precision. Once all

618 points on the boundary are extracted from the volu-

619 metric image using this gradient approach with sub-

620 voxel precision, the resulting point cloud can be further

621 processed in order to identify the curve-skeleton.

622 Determination of the Vector Field

623 The proposed method computes a curve-skeleton by

624 applying a topological analysis to a vector field that is

625 determined based on the geometric configuration of

626 the object of which the curve-skeleton is to be deter-

627 mined. The vector field is computed at the identified

628 points on the vessel boundary in such a way that the

629 vectors are orthogonal to the vessel boundary surface.

630 Based on these vectors, the vector field inside the ves-

631 sels is computed using linear interpolation.

632 Different approaches are possible for calculating

633 such a vector field. A repulsive force field can be

634 determined that uses the surrounding points on the

635boundary surface.13 The repulsive force is defined

636similarly to the repulsive force of a generalized po-

637tential field.1,22 The basic idea is to simulate a potential

638field that is generated by the force field inside the ob-

639ject by electrically charging the object boundary.

640Alternatively, we may define a normal vector and the

641respective plane. The normal of this plane then defines

642the orthogonal vector corresponding to the current

643point.31

644Since these are volumetric data sets, the image

645gradients can be used to define the vectors on the

646boundary surface. These image gradients are previ-

647ously determined as they are needed for extraction of

648the boundary. Since the points are only moved along

649the direction of the image gradient when determining

interpolated gradient located within back plane 
of cube defined by neighboring voxels

gradient at current voxel 

interpolated gradient located within front plane 
of cube defined by neighboring voxels

(a)

gradient at current 
voxel maximal gradient 

interpolated

(b)

FIGURE 7. (a) Determination of the maximum gradient with
sub-voxel precision of a voxel (marked as triangle) and its
neighboring voxels: the gradient direction is shown combined
with the locations of the interpolated gradients at the inter-
section of the current gradient direction with the cube defined
by the neighboring voxels marked as diamonds. (b) Compu-
tation of the local maximum of the gradient (symbolically
shown for one coefficient of the gradient vector). The gradient
is marked as a triangle and the two interpolated gradients at
the edge of the cube are shown as diamonds. The maximal
gradient (circle) is determined by computing the zero of the
first derivative resulting in the maximum gradient.
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650 the sub-voxel precision, this image gradient is still

651 orthogonal to the boundary surface and therefore

652 represents a good approximation for the desired vector

653 field.

654 The proposed software system uses a Gaussian

655 matrix to compute the image gradients. Therefore,

656 the resulting gradients are smoothed to reduce any

657 remaining noise in the boundary representation. This

658 also reduces the error that occurs whenever gradients

659 are computed close to gaps within the vessel boundary.

660 Due to the use of vector field topology methods for

661 determining center points, the algorithm tends to be less

662 sensitive to errors in the gradients as compared to

663 methods that project the boundary onto the center

664 points directly.31 In our analysis, gaps within the vessel

665 boundary only occurred for very small vessels with

666 diameters close to the size of a voxel due to partial

667 volume effects. It should be noted that all three meth-

668 ods result in vectors pointing to the inside of the object.

669 Determination of the Curve-Skeleton

670 In order to determine the curve-skeleton of the

671 object, a tetrahedrization of all points on the object

672 boundary is computed first. For this, Si’s42 fast

673 implementation of a Delaunay tetrahedrization algo-

674 rithm is used. This algorithm results in a tetrahedri-

675 zation of the entire convex hull defined by the set of

676 boundary points. Thus, it includes tetrahedra that are

677 located completely inside the vessels but also tetrahe-

678 dra that are completely outside of the vessels and

679 connect two vessels. By using the previously computed

680 vectors that point to the inside of the vasculature,

681 outside tetrahedra can be distinguished from tetrahe-

682 dra that are located inside the vessels. Hence, all out-

683 side tetrahedra can be removed, leaving a Delaunay

684 tetrahedrization of the inside of the vasculature only.

685 Note that this step also closes small gaps that may exist

686 since tetrahedra covering these gaps will still have

687 vectors attached to the vertices which point inward.

688 Since vectors are known for each vertex of every

689tetrahedron, the complete vector field can be computed

690using this tetrahedrization by linear interpolation

691within each tetrahedron. This vector field is then used

692to identify points of the curve-skeleton which are

693then connected with each other. The vectors of the

694remaining tetrahedra are non-zero (the tetrahedron

695would be removed otherwise). Thus, the trivial vector

696field where the vectors are zero inside the entire tet-

697rahedron does not occur. Figure 8a shows an example

698of the tetrahedrization with outside tetrahedra re-

699moved as previously described for a small vessel with a

700diameter of about three voxels. Based on this tetra-

701hedrization and associated vector field, the center lines

702can be identified.

703Once the vector field is defined within the entire

704object, one could use an approach similar to the one

705used by Cornea et al.13 and compute the 3D topolog-

706ical skeleton of the vector field which yields the curve-

707skeleton of the object. Since singularities are very rare

708in a 3D vector field, Cornea et al. introduced addi-

709tional starting points for the separatrices, such as low

710divergence points and high curvature points, to obtain

711a good representation of the curve-skeleton. Therefore,

712a different approach is described in this paper that

713analyzes the vector field on the faces of the tetrahedra.

714In order to perform a topological analysis on the

715faces of the tetrahedra, the vector field has to be pro-

716jected onto those faces first. Since tri-linear interpola-

717tion is used within the tetrahedra, it is sufficient to

718project the vectors at the vertices onto each face and

719then interpolate linearly within the face using these

720newly computed vectors. Based on the resulting vector

721field, a topological analysis can be performed on each

722face of every tetrahedron.

723Points on the curve-skeleton can be identified by

724computing the singularities within the vector field

725interpolated within every face of the tetrahedrization.

726For example, for a perfectly cylindrical object, the

727vector boundary points directly at the center of the

728cylinder. When examining the resulting vector field at a

729cross section of the cylinder, a focus singularity is

FIGURE 8. (a) A bifurcation for a small vessel (three voxels in diameter). The extracted center line is shown along with the
respective tetrahedrization. (b) Single slice through the tetrahedrization of the phantom data set. The point on the centerline is
identified in the center of the image.

WISCHGOLL et al.

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

730 located at the center of the cylinder within this cross

731 section. The location of this focus singularity resembles

732 a point on the curve-skeleton of the cylinder. Hence, a

733 singularity of type node, focus, or spiral within a

734 face of a tetrahedron indicates a point of the curve-

735 skeleton. Since the vectors at the boundary point in-

736 wards, only sinks (i.e., attracting singularities) need to

737 be considered in order to identify the curve-skeleton.

738 Since not all objects are cylindrical in shape and

739 given the numerical errors and tolerances, points on

740 the curve-skeleton can be identified from sinks that

741 resemble focus and spiral singularities. Figure 8b

742 illustrates an example for a cylindrical object for which

743 a cross-section (a slice perpendicular to the object) is

744 shown. There are two large triangles that connect two

745 opposite sides of the object. Based on these triangles,

746 which resemble faces of tetrahedra of the tetrahedri-

747 zation, the center point (shown in red) can be identi-

748 fied based on the topological analysis within these

749 triangles.

750 Obviously, only faces that are close to being a cross

751 section of the object should be considered in order to

752 identify points on the curve-skeleton. To determine

753 such cross-sectional faces, the vectors at the vertices

754 can be used. If the vectors at the vertices, which are

755 orthogonal to the object boundary, are approximately

756 coplanar with the face, then this face describes a cross

757 section of the object. As a test, the scalar product be-

758 tween the normal vector of the face and the vector at

759 all three vertices can be used. If the result is smaller

760 than a user-defined threshold, this face is used to

761 determine points on the curve-skeleton. If we compute

762 the singularity on one of these faces, then we obtain a

763 point which is part of the curve-skeleton. Note that

764 since linear interpolation is used within the face, only a

765 single singularity can be present in each face. In case of

766 bifurcations, there will be two neighboring tetrahedra

767 which contain a singularity, one for each branch.

768 Additionally, this approach disregards boundary

769 points which are based on noise voxels. In order for a

770 set of boundary points to be considered, they need to

771 have gradient vectors that point toward the center

772 from at least three different directions. Hence,

773 boundary points based on noise voxels are automati-

774 cally neglected because it is very unlikely that there are

775 other corresponding boundary points in the vicinity

776 with gradient vectors pointing in the direction of the

777 first boundary point.

778 After computing the center points, the vessel

779 diameters are computed for each center point and all

780 points within the vicinity are identified. From this set

781 of points, only the ones that are within the slice of the

782 vessel used to determine the center point are selected to

783 describe the boundary. The radius is then computed as

784the average of the distances between the center points

785and the points on the boundary of the vessel slice.

786Once individual points of the curve-skeleton

787(including the corresponding vessel diameters) are

788computed by identifying the focus and spiral singu-

789larities within the faces of the tetrahedra, this set of

790points must be connected in order to retrieve the entire

791curve-skeleton. Since the tetrahedrization describes the

792topology of the object, the connectivity information of

793the tetrahedra can be used. Thus, identified points of

794the curve-skeleton of neighboring tetrahedra are con-

795nected with each other forming the curve-skeleton. In

796some cases, gaps will remain due to the choice of

797thresholds which can be closed using the method de-

798scribed in the next section.

799Closing Gaps within the Curve-Skeleton

800Ideally, the method described results in a vascular

801tree representing the topology of the vasculature ex-

802actly. Due to numerical tolerances, however, sometimes

803gaps may occur between parts of the curve-skeleton

804which can be filled automatically. Since the tetrahed-

805rization of the points on the boundary describe only the

806inside of the object, the algorithm can search for loose

807ends of the curve-skeleton and connect these if they are

808close to each other. In addition, it can be verified that

809the connection stays within the object. To test this,

810those tetrahedra which are close to the line connecting

811the two candidates and potentially filling a gap are

812identified. Then, the algorithm computes how much of

813the line is covered by those tetrahedral; i.e., the fraction

814of the line contained within the tetrahedra. If all those

815fractions add up to 1, then the line is completely within

816the object and it is a valid connection. Otherwise, the

817connection is rejected since it would introduce an

818incorrect connection of two independent vessels.
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