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Biophysical Model of the Spatial Heterogeneity of Myocardial Flow

Yunlong Huo,† Benjamin Kaimovitz,‡ Yoram Lanir,‡ Thomas Wischgoll,§ Julien I. E. Hoffman,{

and Ghassan S. Kassab†*
†Department of Biomedical Engineering, Surgery, and Cellular and Integrative Physiology, Indiana University-Purdue University Indianapolis,
Indianapolis, Indiana; ‡Department of Biomedical Engineering, Israel Institute of Technology, Haifa, Israel; §Department of Computer Science
and Engineering, Wright State University, Dayton, Ohio; and {Cardiovascular Research Institute, University of California, San Francisco,
California

ABSTRACT The blood flow in the myocardium has significant spatial heterogeneity. The objective of this study was to develop
a biophysical model based on detailed anatomical data to determine the heterogeneity of regional myocardial flow during dias-
tole. The model predictions were compared with experimental measurements in a diastolic porcine heart in the absence of vessel
tone using nonradioactive fluorescent microsphere measurements. The results from the model and experimental measurements
showed good agreement. The relative flow dispersion in the arrested, vasodilated heart was found to be 44% and 48% numer-
ically and experimentally, respectively. Furthermore, the flow dispersion was found to have fractal characteristics with fractal
dimensions (D) of 1.25 and 1.27 predicted by the model and validated by the experiments, respectively. This validated three-
dimensional model of normal diastolic heart will play an important role in elucidating the spatial heterogeneity of coronary blood
flow, and serve as a foundation for understanding the interplay between cardiac mechanics and coronary hemodynamics.
INTRODUCTION

It is widely acknowledged that the distribution of myocardial

blood flow is heterogeneous in small regions of the myocar-

dium (1–11). However, it is difficult to measure the heteroge-

neity of myocardial blood flow in vivo. Computer simulations

and mathematical models can play an important role since

experimental approaches to this problem are highly limited,

particularly deep in the heart wall. The heterogeneity of

myocardial blood flow is affected by many physical factors,

such as the architecture of the coronary vasculature, duration

of systole, internal and external chamber pressures, regional

stresses and strains in the contracting myocardium, vasoac-

tivity of microvasculature, and so on (12). To understand

the many factors involved, it is necessary to adapt a staged

model approach that gradually considers the various factors

and hence increases the degree of realism. The objective of

this study was to develop the first stage of such a model, based

on three-dimensional (3D) coronary arterial architecture in an

arrested heart in the absence of vessel tone. The mathematical,

anatomically based analysis of spatial flow heterogeneity was

validated with microsphere flow measurements.

We previously analyzed coronary blood flow with the

use of an anatomically based coronary arterial tree model

(13,14) to understand the longitudinal pressure-flow distribu-

tion (15–20). Both steady-state and pulsatile flows were deter-

mined based on the entire coronary arterial tree model.

Although the model was based on detailed morphometric

data (21), it lacked the 3D spatial geometry of the vasculature.

Anatomical models with 3D geometrical structure were previ-
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ously developed by Beard and Bassingthwaighte (22) for the

entire coronary arterial tree in a cylindrical model of the heart,

and for the first six generations of arteries by Smith et al. (23)

in a finite-element model of the heart. Both of these models

were based on the morphometric data of Kassab et al. (21).

We recently reconstructed a 3D arterial tree model beyond

the first six largest generations to include the entire coronary

arterial tree down to the first capillary segments in a realistic

geometry of the porcine heart (24).

In the study presented here, we developed an anatomically

based biophysical model to determine the heterogeneity of

regional myocardial flow. The regional myocardial flow

heterogeneity predicted by the model was validated experi-

mentally with the use of nonradioactive fluorescent micro-

sphere measurements. The agreement between theory and

experiment was very good. The relative dispersion (RD) in

the arrested heart was found to be much larger than that in

beating hearts, but slightly smaller than that in beating hearts

without vascular tone. Furthermore, the RD in any of the

three layers examined (i.e., the subepicardium, midwall,

and subendocardium) was larger than that of the entire heart.

The spatial fractal dimension remained similar in arrested

and beating hearts. The physiological implications and limi-

tations of this model were explored in relation to the spatial

heterogeneity of coronary blood flow.

MATERIALS AND METHODS

Theoretical model

3D anatomical model

A flow simulation was carried out in the 3D right coronary artery (RCA), left

anterior descending (LAD) artery, and left circumflex (LCX) artery tree

model recently reconstructed by Kaimovitz et al. (24) based on measured
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morphometric data of Kassab et al. (21). To examine the effect of 3D tree

reconstruction, five 3D coronary arterial trees were reconstructed randomly.

In the stochastic reconstruction, the arterial vessels were randomly selected

subject to 1), published constraints on the planar branching geometry (25);

2), avoidance rules aimed at preventing intersections between vessel

segments; and 3), constraints to avoid protrusion of the myocardial wall

surfaces. The capillaries were randomly selected and arranged in the sheet

along the direction of the myocyte bundles. The 3D trees were largely

a dichotomously branching structure (the bifurcation and trifurcation

frequencies were ~99% and 1%, respectively). The few collaterals in the

swine model were neglected in the model.

The 3D tree model was stochastically reconstructed in two phases.

Briefly, in the first phase, geometrical constraints were imposed in a rectan-

gular slab geometry. The constraints were compatible with observed features

of coronary branches and measured bifurcation geometry. In the second

phase, the reconstructed tree was embedded in a more realistic geometric

model of the whole heart by transforming it from the rectangular slab config-

uration into prolate spheroid epicardial surface. The transformation was

carried out by least-square minimization of the deformation in segment

lengths, as well as their angular characteristics, subject to the constraint of

adhering to the spherical surface geometry. The entire large-scale recon-

struction process was parallelized using Message Passing Interface and

carried out on a Medium Performance Computing cluster system. The recon-

structed trees show close resemblance to native coronary vessels, and their

morphological statistics are consistent with the measured morphometric

data of Kassab et al. (21). The model spanned the entire spatial range of

coronary arteries down to the first capillary vessels based on measured

vascular geometry (diameter and length) and branching pattern (connectivity

and longitudinal position matrices) (21). The vessels of the RCA, LAD, and

LCX arterial trees were spatially distributed in the prolate heart geometry.

Flow simulation

After the spatial branching pattern and vascular geometry of the full 3D coro-

nary arterial trees were generated, a flow analysis was performed in a manner

similar to that previously described (17,20). Briefly, the governing equations

were Poiseuille’s equation ðQij ¼ p=128 DPijGijÞ and conservation of mass

ð
Pmj

i¼1 Qij ¼ 0Þ, where DPij ¼ Pi � Pj, Gij ¼ D4
ij=mijLij , and Dij , Lij , and

mij are the diameter, length, and viscosity, respectively, between nodes i
and j, and mj is the number of vessels converging at the jth node. The final

global matrix formulation might be written as GP ¼ GB PB, where G is

the matrix of conductance, P is the column vector of the unknown nodal pres-

sures, and GB PB is the column vector of the conductance times the

boundary pressure of their attached vessels. The pressure at the inlet and outlet

was set as 100 and 26 mmHg, respectively. The viscosity ðmijÞwas selected as

1.1 cp to mimic our cardioplegic solution containing albumin. Furthermore,

the viscosity was considered as a function of vessel (26) for blood.

Dividing the 3D model

The prolate left ventricular (LV) model encompassing the 3D coronary arte-

rial tree was numerically divided into small plugs with the same size and

spatial distribution as those described below in ‘‘Experimental methods’’.

Briefly, the hollow truncated ellipsoid was formed by rotating two ellipses

about their major axis (z axis). The detailed dimensions of the ellipsoid can

be found elsewhere (24). The ellipsoid was first divided into six rings along

its major axis (z axis), as shown in Fig. 1 a. Each ring was then divided into

seven, seven, seven, four, three, and two thick plugs (including the subepicar-

dium, midwall, and subendocardium) rotated around its major axis corre-

sponding to the experimental preparation (see details below). Each thick

plug was then divided into the subepicardium, midwall, and subendocardium

plugs from the outer to inner surfaces, as shown in Fig. 1 b. Each plug was

further divided into eight pieces of 0.125 g myocardium, as shown in

Fig. 1 c, to analyze the fractal nature of predicted regional myocardial blood

flow heterogeneity. The regional flow was calculated as the sum of the magni-

tude of flow through all first segments of the capillary vessels in each plug.

Experimental methods

Animal preparation

Studies were performed on six 3- to 4-month-old farm pigs weighing 28–38

kg. The experimental procedures of the animal preparation were similar to

those described by Kassab et al. (21). All animal experiments were per-

formed in accordance with national and local ethics guidelines, including

the Institute of Laboratory Animal Research guide, Public Health Service

policy, the Animal Welfare Act, and an approved University of California,

Irvine, Institutional Animal Care and Use Committee protocol.
FIGURE 1 Schematic representation of experimental

sectioning of the porcine hearts into (a) different rings

and (b) small plugs (subepicardium, midwall, and subendo-

cardium). (c) Numerical sectioning of each plug in the 3D

model corresponding to experimental sections.
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Microsphere injections

After the heart was isolated, it was placed in a cold (0�C) saline bath as

shown in Fig. 2. The major coronary arteries (RCA, LAD artery, and

LCX artery) were cannulated under saline to avoid air bubbles. For measure-

ment of flow and pressure, the flow transducers (Transonic Systems, Ithaca,

NY; relative error of �2% at full scale) were mounted on the coronary

arteries directly and the pressure transducer (Summit Disposable Pressure

Transducer, Baxter Healthcare, Deerfield, IL; error of �2% at full scale)

was connected at the inlet of the coronary arteries through a Y tube. A hypo-

thermic (10�C), isotonic, cardioplegic rinsing solution was contained in a

2-L bottle hung above the heart and injected into the coronary arteries.

The rinsing solution was composed of 2,3-butanedione monoxime, 1.5 g/L;

adenosine, 0.1 g/L; and albumin, 10 g/L, which was found to be effective in

maintaining the heart in a relaxed state. In particular, the viscosity (m) was

equal to ~1.1 cp for the cardioplegic solution of 10�C when the heart

was placed in a cold (0�C) saline bath. The coronary perfusion pressure

was 100 mmHg and the LV pressure was 0 mmHg in the arrested heart.

The coronary sinus pressure was zero (vented) and the pressure at each outlet

of first segments of arterial capillary was assumed equal to 26 mmHg (19,20).

Regional coronary blood flow was measured with injections of fluorescent

microspheres of 15 mm diameter (Molecular Probes, Eugene, OR). The

steady-state flow rate was kept constant for ~5–10 min. A minimum of

400 microspheres were needed per tissue piece to ensure 95% confidence

that the flow measurement was within 10% of the true value (27). We

doubled the minimum number to make sure that low-flow organ pieces

also had an adequate number of microspheres. Before injection, the micro-

spheres were agitated and dispersed through vigorous agitation and

ultrasonic water bath, respectively. The microspheres were injected into

the cannulated coronary arteries with the cardioplegic rinsing solution

FIGURE 2 Schematic representation of microsphere injection.
through Tygon tubing, as shown in Fig. 2. A slow and steady rate of injec-

tion was implemented to keep pressure and flow rate constant.

Dividing hearts and counting samples

After injection, the atria and the right ventricular (RV) free wall were removed

and large epicardial vessels were trimmed off. Subsequently, the heart was

divided perpendicularly to the long axis into six rings as illustrated in Fig. 1,

a and b. The rings of the LV and ventricular septum were frozen to stiffen

the muscle to facilitate subsequent sectioning. Different rings were then

divided radially into different sectors as seven, seven, seven, four, three, and

two pieces from top to bottom, respectively (labeled as 1–6 in Fig. 1 a, respec-

tively). Each sector was sliced into three plugs (subepicardium, midwall, and

subendocardium), as shown in Fig. 1 b. Each plug was weighed immediately

after slicing and their weights ranged from 0.74 to 1.19 g with a mean value of

~1 g. There were ~90 plugs per LV and septum (the weight of the LV and

septum was ~90 g). The adjacent pieces of plugs were assembled to form large

plugs (e.g., plugs of 2, 4, 6, and 8 g). The assembled adjacent plugs were then

carefully weighed to construct plugs of a more uniform large size.

After sectioning, the tissue (each plug) was digested with KOH and the

microspheres were physically separated from the tissue by negative pressure

filtration. The microspheres were finally measured in a spectrometer (LS 55;

Perkin Elmer). The detailed procedure for the measurement of microspheres

can be found in the standard manual from Fluorescent Microsphere Resource

Center.

Data analysis

The analysis of the heterogeneity of regional blood flow was carried out as

described by Bassingthwaighte et al. (3–8). The F-test and two-sample t-test

were used to compare relative regional flows between the experiment and the

3D model. The Pearson product moment correlation coefficient was adopted

to analyze flows in different layers (subepicardium, midwall, and subendo-

cardium).

RESULTS

Validation of the 3D model

The flow and pressure were calculated in each of five recon-

structions. Fig. 3 a shows the mean� SD; both the mean pres-

sure and mean flow over each order are averaged in five recon-

structions) for the pressure-flow relationship of blood in five

reconstructions of 3D tree models, which were found to be

mutually very similar (small SD). The mean inlet flow and

equivalent resistance for the five simulations of the LCX arte-

rial tree were 0.44� 0.02 (mL/s) and 167� 9 (mmHg $ s/mL)

for blood, respectively, and 1.27 � 0.05 (mL/s) and 58 � 4

(mmHg $ s/mL) for cardioplegic solution. The experimentally

measured flow at the inlet of the LCX artery, as shown in

Fig. 2, was 1.16 � 0.12 (mL/s) for cardioplegic solution,

which agreed reasonably with the numerical result. Although

the different tree reconstructions led to regional variation of

blood flow in the LV and septum, the relative flow dispersion

and fractal dimension were very similar. Since the variations

within a single simulation were significantly larger than vari-

ations between simulations, a typical anatomical reconstruc-

tion was used to simulate flow and pressure distributions.

The 3D model was also compared with a previously pub-

lished model that did not consider the 3D spatial geometry

(20) to validate the pressures and flows. Fig. 3 b shows the
Biophysical Journal 96(10) 4035–4043
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relationship between mean flow and mean pressure �1 SD

(average for each order) of blood for the LCX in the 3D

model and a previously published LCX arterial tree (20).

Fig. 3 b depicts similar computational results, and the 3D

model agrees well with the previous mathematical model

(within 1 SD of the 3D model). Fig. 4 illustrates the pressure

distribution in two views (lateral left and posterolateral

oblique left) of the entire coronary arterial tree model

down to the first capillary segments. It is clear that the pres-

sure distribution is fairly uniform in larger vessels and

changes significantly in smaller vessels (<100 mm). Fig. 5,

a and b, show the arteriolar pressures in the subepicardial

FIGURE 3 (a) Mean � 1 SD for pressure-flow relationship of blood in

five reconstructions of 3D models (both mean pressure and mean flows

over each order are averaged over five reconstructions). (b) Comparison

of pressure-flow relationships of blood using the LCX in one representative

3D model and a previous LCX arterial tree model (20) (the pressure and flow

are averaged for each order of the arterial tree models).

FIGURE 4 Pressure distribution in two views (lateral

left and posterolateral oblique left) in the 3D entire coro-

nary arterial trees consisting of the epicardial, transmural,

and perfusion subnetworks: (a) lateral-left-view pressure

and (b) posterolateral-oblique-left-view pressure.

FIGURE 5 Arteriolar pressures in the (a) subepicardial and (b) subendo-

cardial microcirculation at orders 5 and 6 (with vessel diameter range of

64.4–150 mm) of the LAD arterial tree at different coronary perfusion pres-

sures, which agree reasonably well with the data of Chilian (28).

Biophysical Journal 96(10) 4035–4043
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and subendocardial microcirculation at orders 5 and 6 (with

vessel diameter in the range of 64.4–150 mm) of the LAD

arterial tree, respectively, at different coronary perfusion

pressures, which agree with the data of Chilian (28).

Fractal nature of flow heterogeneity

The 3D coronary arterial model presented here provides

a platform to analyze the distribution and heterogeneity in

small neighboring regions of the myocardium. To be consis-

tent with experimental measurements, all numerical results

were calculated for cardioplegic solution with a viscosity

(m) of 1.1 cp. Table 1 shows a statistical comparison of the

regional flow between the model and the ex vivo experiment

in Fig. 2. Table 1 (A) shows the results of the F-test for rela-

tive regional flows between the experiment and the 3D

model (p > 0.99 when a two-sample t-test was used). The

F-test (a value of unity implies the same dispersion) is

used to test whether the SDs of two populations (i.e., exper-

imental and numerical regional flows in this study) are equal.

As shown in Table 1 (A), the variances of the relative

regional flows between experimental and numerical results

are not statistically different. From the 3D model for cardio-

plegic solution, myocardial flows were calculated as 2.04,

2.84, and 2.29 mL/min/g in the subepicardium, midwall,

and subendocardium, respectively, which is similar to the

experimental measurement with values of 1.95, 2.32, and

2.24 mL/min/g, respectively. Myocardial flows averaged

TABLE 1

Animal No.

F-value, 3D model

versus experiments

Degrees of freedom in 3D

model vs. experiments

1 0.59 90: 72

2 0.98 90: 84

3 0.84 90: 101

4 0.47 90: 86

5 0.50 90: 72

6 0.79 90: 73

(A)

Animal

No.

R2 (square of Pearson product

moment correlation coefficient)

Inner: Middle: Outer

(ratio of mean flows

in subendocardium,

midwall, and

subepicardium)

Outer versus

Middle

Middle versus

Inner

Outer versus

Inner

1 0.55 0.84 0.48 1.05: 1.27: 1

2 0.78 0.86 0.71 0.95: 1.11: 1

3 0.81 0.88 0.71 1.05: 1.02: 1

4 0.88 0.90 0.79 1.16: 1.22: 1

5 0.93 0.94 0.88 1.60: 1.51: 1

6 0.63 0.68 0.6 1.09: 1.00: 1

Mean 0.76 0.85 0.69 1.15: 1.19: 1

3D model 0.72 0.83 0.48 1.12: 1.39: 1

(B)

(A) F-test for the relative regional flow (3) (the mean value of plugs is ~1 g)

between experiments and the 3D model (p > 0.99 when a two-sample t-test

is implemented). (B) Comparison of flow in radially corresponding regions

from different layers (outer, subepicardium; middle, midwall; inner, suben-

docardium).
over the entire myocardial wall were 2.39 and 2.17 mL/min/

g in the heart in the 3D model and microsphere measurements,

respectively, which corresponds to 359 and 326 mL/min in

a heart of 150 g. Table 1 (B) shows a radial or transmural

comparison of myocardial flows in different layers. The

numerical correlations in adjacent layers (subepicardium or

subendocardium versus midwall) are larger than in nonadja-

cent layers (subepicardium versus subendocardium), which

is consistent with experimental observations. The numerical

and experimental results show similar ratios of mean flows

in different layers. Table 2 lists the RDs of the spatial distribu-

tion of flows in three transmural layers. The numerical results

agree very well with the experimental data.

Bassingthwaighte et al. (3–8) indicated that fractal

phenomena describe regional flows within the heart, skeletal

muscle, and other organs. In their studies, they showed that

a simple fractal relation provides precise descriptions of the

heterogeneity of regional and myocardial blood flows over

a wide range of piece sizes. Here, we used our 3D coronary

arterial trees to simulate the spatial flow distribution in the

LV and septum of porcine hearts and investigated the fractal

nature of regional myocardial blood flow heterogeneity in

diastole in the absence of vessel tone. Two methods for fractal

analysis were implemented: one (the fractal regression)

relating to the effect of plug size on flow dispersion, and

one (correlation versus interval relationship) relating to the

effect of distance between plugs on the correlation between

their flows. Fig. 6 a shows the fractal regression for spatial

flow in the LV and septum. A power curve fit reveals a fractal

dimension, D, with a value of 1.25 (R2 ¼ 0.98) and 1.27

(R2 ¼ 0.99) for the computational model and experimental

data (microsphere measurements in six porcine hearts),

respectively. Furthermore, Fig. 6 b shows the fractal regres-

sion for spatial flow in three layers of the LV and septum (sub-

epicardium, midwall, and subendocardium) obtained from

experiments (mean � 1 SD) and the 3D model. The solid,

dashed, and dotted lines represent the results of the 3D model

for the subendocardium, midwall, and subepicardium, respec-

tively. A power fit for fractal regression in the 3D model

shows exponents of 1.45 (R2 ¼ 0.99), 1.46 (R2 ¼ 0.98), and

TABLE 2 RD in each layer (subepicardium, midwall, and

subendocardium) in ex vivo experiments and the 3D model

Animal No.

Relative flow dispersion in LV and septum, %

Subepicardium Midwall Subendocardium Global

1 51 27 35 44

2 50 40 45 45

3 52 47 52 50

4 46 48 52 55

5 37 41 58 46

6 53 42 34 47

Mean � SD 48 � 6 41 � 7.5 46 � 10 47.8 � 4

3D model 47 42 53 44

Degree of heterogeneity can be expressed by the RD (RD¼ SD/mean) of the

values of fi, where fi is the relative regional flow in the region (3).
Biophysical Journal 96(10) 4035–4043
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1.48 (R2¼ 0.98) for the subepicardium, midwall, and suben-

docardium, respectively. These agree well with the experi-

mental values (six hearts) of 1.47, 1.45, and 1.51 for the

subepicardium, midwall, and subendocardium, respectively.

Finally, Fig. 7 shows the relationship between the correlation

coefficient, rn, and the number of separating intervals, n, at

three different levels of spatial resolution (three from the

model and one from the microsphere measurements). Here,

the solid and dashed lines represent the Hurst coefficient of

FIGURE 6 (a) Fractal regression for spatial flow in the LV and septum

myocardium. The fractal nature can be represented as RDðmÞ ¼
RDðmrefÞ,½m=mref �1�D

(3), where m is the mass of the pieces of tissue in

grams, D is the spatial fractal dimension, and the reference level of dispersion,

RD(mref), is taken arbitrarily to be the RD found using pieces of mass mref,

which is chosen to be 1 g. Through the power curve fits of fractal regression,

the exponent has values of 1.25 (R2 ¼ 0.98) and 1.27 (R2 ¼ 0.99) for the

computational results (3D model) and experimental results (microsphere

measurements in six pig hearts), respectively. (b) The fractal regression for

spatial flow in three layers of the LV and septum (subepicardium, midwall,

and subendocardium) obtained from experiments (mean � 1 SD) and the

3D model. The solid, dashed, and dotted lines represent the results of the

3D model for the subendocardium, midwall, and subepicardium, respec-

tively. A power fit for fractal regression in the 3D model shows exponents

of 1.47 (R2¼ 0.99), 1.47 (R2¼ 0.98), and 1.49 (R2¼ 0.98) for the subepicar-

dium, midwall, and subendocardium, respectively. These agree well with the

experimental values (six hearts) of 1.47, 1.45, 1.51 for the subepicardium,

midwall, and subendocardium, respectively.
Biophysical Journal 96(10) 4035–4043
0.75 and 0.80, respectively. Since the fractal dimension, D,

can be represented by the equation (D ¼ 2 � H), it has the

same value (1.25, 1.20) as the prediction by the 3D model

when H is equal to 0.75 and 0.80, respectively.

DISCUSSION

To our knowledge, this is the first study to predict coronary

flow heterogeneity based on a mathematical model comprised

of the 3D coronary arterial tree in the myocardium. Predic-

tions of the flow heterogeneity of the mathematical model

were validated by experimental measurements using fluores-

cent microspheres. The fractal nature of flow heterogeneity

was predicted by the model and confirmed by the experi-

ments. The results and their implications are discussed below.

Pressure-flow relation

The longitudinal pressure distributions are depicted in Figs. 3

and 4. The 3D reconstruction algorithm presented here is based

on anatomical and physiological observations (25,29,30), and

thus is clearly different from the previous two-step growth

algorithm (13). The pressure-flow (Fig. 3 b) relations were

similar for the 3D model and previous two-step models,

although a relatively large difference occurred at the low order

levels in Fig. 3 b because of a larger number of vessels in the

3D reconstruction algorithms. The quantitative (Fig. 3, a and b)

and visual results (Fig. 4) clearly illustrate a uniform pressure

in the larger arteries and a significant drop in pressure for

FIGURE 7 Effect of interplug distance on the correlation between plug

flows, expressed as the relationship between the correlation coefficient, rn,

and the number of interplug intervals, n, at three different levels of spatial

resolution (three from model and one from microsphere measurement).

The correlation coefficients between pieces centered n units apart, rn, can

be calculated as: rn ¼ 1=2½ðn� 1Þ2H � 2n2H þ ðnþ 1Þ2H�, where H is

the Hurst coefficient (42,6). The relationship between the Hurst coefficient

and the spatial fractal dimension can be represented by the equation

(H ¼ 2 � D). Here the solid and dashed lines represent Hurst coefficients

of 0.75 and 0.8, respectively.
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vessels <100 mm in diameter, which is in agreement with

experimental measurements (28,31,32). The arteriolar pres-

sures (Fig. 5, a and b) were found to be higher at the epicardial

as compared with the subendocardial surfaces for each respec-

tive order, which is consistent with experimental observations

(28). A slight difference in the subendocardium with pres-

sures of 40 and 60 mmHg may be due to the larger size of

the pigs used in this study (28–38 kg, which is 2–3 times larger

than the pigs used by Chilian (28) (7–15 kg).

Flow heterogeneity

The heterogeneous myocardial flows were analyzed both

numerically and experimentally. The statistical analysis in

Table 1 (A) shows that the variances of the relative regional

flows obtained from the 3D model are not significantly

different from the experimental measurements. Our numer-

ical and experimental studies (Table 1 (B)) show that there

is a stronger correlation in adjacent layers than in nonadjacent

layers, which is consistent with a previous experimental

observation in arrested dog hearts without vascular tone (2).

Furthermore, we report that the mean flow in the midwall

and subendocardium is higher than that in the subepicardium,

as previously determined in arrested porcine hearts (28).

There are small differences in mean blood flow between

the subepicardial and subendocardial layers of the normal

heart (33,34), whereas flows are higher in subendocardial

than in subepicardial layers in maximally dilated hearts

(35). The RD in the arrested hearts, as shown in Table 2,

is larger than that in normal physiological condition (3),

but smaller than that in beating hearts without vascular

tone (2). This illustrates that the vascular tone has a signifi-

cant effect on the heterogeneity of myocardial flows. The

vascular tone is determined by many different competing

vasoconstrictor and vasodilator factors acting on the blood

vessel, and plays a critical role in regulating pressure and

flow. It affects the flows and pressures distal to the site of

resistance (36), leading to more uniform regional blood

flow, and has smaller heterogeneity in the in vivo state.

The heterogeneity in beating hearts without vascular tone

is affected mainly by mechanical factors such as myocardial

workload, metabolic rate, etc. The most important effect may

be the heterogeneity of local work and local ATP hydrolysis

for contraction (8), which is associated with oxygen

consumption. Prinzen et al. (37,38) found that early activa-

tion leads to only small shortening strain during ejection,

and late activation leads to large ejection phase shortening.

Rapid shortening against low resistance reduces ATP hydro-

lysis because of shortening deactivation (39,40). These

mechanical factors during the isovolumetric phase of systole

may increase the heterogeneity in beating hearts without

vascular tone in comparison with the arrested heart.

The RD in the 3D model (Table 2 and Fig. 6 a) was

smaller than the experimental measurements but still

within � 1 SD. Of interest, the within-layer (subepicardium,
midwall, and subendocardium) RD showed better agreement

between theory and experiment. Both numerical and experi-

mental results show that the spatial fractal dimension D
(Fig. 6 b) is larger in the three layers than in the entire LV

and septum. This implies that the within-layer randomness

is stronger than that of the entire thickness, which illustrates

the role of correlation of radial flow.

Fractal flows

The fractal nature of regional myocardial blood flow heteroge-

neity can be simulated in the 3D model. As described by

Bassingthwaighte et al. (3), the fractal nature implies that the

variation in regional flow can be described with two parame-

ters, RD(mref) and the slope of the logarithmic relationship

defined by the spatial fractal dimension D. At present, D
(Fig. 6 a) has values of 1.25 and 1.27 determined by least-

square power curve fits of data obtained from the 3D coronary

arterial tree model and microsphere measurement, respectively.

The present computed fractal dimension is slightly larger than

the value of 1.23 reported by Bassingthwaighte et al. (3).

The Hurst coefficient, H ¼ 2 � D, was further used to

analyze the dispersion independently of the myocardial size.

The results from the 3D model and microsphere measurement

relating to the correlation coefficient, rn, show similar trends

(Fig. 7). The Hurst coefficient, H, with values of 0.75 and

0.80 agreed better with the experimental and numerical results

on the nearest-neighbor correlations at 3 and 4 intervals and at

1 and 2 intervals, respectively. This implies that the spatial

fractal dimension, D, is in the range of 1.20–1.25. Using

various statistical methods in this study, we obtained results

similar to those of Bassingthwaighte et al. (3). In agreement

with reports by Glenny (41) and Beard and Bassingthwaighte

(22), the correlation coefficient, r5, was found to fall below the

curve and may possibly be negative.

Critique of the study

Although our 3D model is based on detailed measured

morphometric data from coronary vessels, a few assump-

tions remain: 1), the venous system is decoupled from the

arterial tree; 2), the steady-state flow is calculated instead

of more realistic pulsatile flow; and 3), the effects of other

physiological and mechanical factors are ignored. In future

studies, the arterial circuit will be extended to the entire coro-

nary vasculature, i.e., we will connect the functional capil-

laries to the entire venous system. Hence, we will include

the coronary venous pressure as the outlet boundary condi-

tion. In addition, the effect of flow pulsatility will be calcu-

lated in the entire 3D coronary model associated with the

myocardial/vascular interaction in systole, and various phys-

iological and mechanical factors will also be included to

advance the current 3D model.

The pressure boundary condition at the outlet of the first

capillary segments was taken to be uniform (ad hoc assump-

tion of 26 mmHg). We previously showed that dispersion of
Biophysical Journal 96(10) 4035–4043
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pressure at the capillary level will increase the coefficient of

variance of capillary flow (20). Hence, the RD in the 3D

model may be an underestimation of the reality of arrested

hearts given the assumption of zero dispersion of capillary

pressure. This may partly explain the smaller RD obtained

by the 3D model as compared with the ex vivo experimental

data (Table 2 and Fig. 6 a). An additional explanation may be

the lack of a venous system in the 3D model, in contrast to

the physical heart.

Significance of the study

This study presents a mathematical model to predict the

spatial heterogeneity of myocardial flow. The proposed

model makes use of physical and mathematical principles,

with the help of anatomical and experimental measurements,

to explain and predict some aspects of spatial flow distribu-

tion of the coronary arterial circulation in quantitative terms.

The 3D model is found to be in good agreement with the

experimental data. The validated 3D model of normal dia-

stolic hearts will serve as a physiological reference state

that can be used to investigate drug delivery and metabolic

exchange among many other issues. This 3D model will

also serve to quantitatively test various hypotheses regarding

the spatial distribution of flow in the coronary circulation.
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