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Knowledge-Assisted 
Reconstruction of the Human Rib 
Cage and Lungs
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Computer-aided disease detection software ef-
fectively helps medical professionals use PA 
(posterior-anterior) and lateral (side) x-ray 

images to detect diseases such as lung cancer at early 
stages, which can be quite difficult. Typically, such 
software focuses only on PA x-ray images and uses 
image-processing and soft-computation techniques 
to identify potentially diseased areas. There’s been 

little focus on extracting knowl-
edge from the x-rays and using 
knowledge of human anatomy 
to generate 3D reconstructions. 
Such reconstructions could help 
the detection process by provid-
ing a different way of visualizing 
the x-ray data to better investigate 
hard-to-diagnose regions.

The medical field has already 
compiled a great deal of tacit 
knowledge about early lung can-
cer detection. For example, ex-
perienced oncologists can often 
look at an x-ray image and know 
something is wrong before actu-
ally spotting the cancer nodule. 

This suggests that a novel approach to computer-
aided disease detection that uses 3D reconstruc-
tion to give experts a new way to visualize medical 
data could be just as viable as attempting to auto-
matically detect diseases with a certain error rate.

Using x-ray images that are already collected 
anyway and generating an approximate 3D recon-
struction of the ribs and lungs could provide some 
of the benefits of a CT (computed tomography) 

scan at a fraction of the cost. Unfortunately, many 
traditional 3D-from-2D algorithms fail to work 
with x-ray data because of the angles at which the 
images are taken, the lack of lighting or surface 
texture data, and the human ribs’ extremely com-
plex shape. On the other hand, solid-model-based 
reconstructions are tedious, even for experts, in 
both geometric modeling and human anatomy.

So, we present a unique approach to generating 
the desired reconstruction. This approach combines

■■ an expert user’s knowledge of modeling tech-
niques,

■■ knowledge of the general shape of human ribs 
and lungs, and

■■ knowledge that segmentation can extract from 
the x-ray images

to generate and transform a series of primitive 
3D geometric templates into approximate patient-
specific rib cage and lung reconstructions. Users 
can then employ these models as they are or can 
slightly adjust them. (The “3D Reconstructions 
Based on X-ray Image Data” sidebar discusses 
other work in this area.)

Image Space Knowledge Extraction
Using shared knowledge to drive visualization ap-
plications can be beneficial when working with 
large and complex data sets.1 To demonstrate such 
an application, we create approximate volumet-
ric reconstructions by using the inverse radon 
transform on x-ray image pairs. We then use the 
geometric lung reconstructions as a mask to clip 

These knowledge-assisted 
3D rib cage and lung 
reconstruction algorithms 
facilitate early detection 
of diseases at a fraction of 
the cost. Combining shared 
domain knowledge of human 
anatomy and solid-modeling 
techniques with knowledge 
extracted from x-ray images, 
this interactive approach 
transforms a series of primitive 
template meshes into 
reconstructed ribs and lungs.
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out the volumes’ portions corresponding to the 
lungs, so that users can instantly see those por-
tions without having to identify them manually 
in the volume. Figure 1 shows an overview of the 
reconstruction process.

To reconstruct the ribs and lungs, our algorithms 
align 3D models to 2D segmentation knowledge 
from the x-ray images and generate 3D meshes by 
extruding certain 2D features from the images. So, 
it’s important to start with accurate segmentations 
of the x-rays. In particular, we must segment the 
lung fields and the rib borders in the PA x-ray im-
age, and segment the rib cage’s outer border in the 
lateral x-ray image. Segmenting anatomical features 
in 2D x-ray images is difficult, owing to the large 
genetic variations between patients and the subtle 
intensity variations from superimposing bones, or-
gans, and soft tissue during the x-ray process. So, 
we combine automated and interactive segmen-
tation techniques and integrate some of the best 
features of previously published segmentation work 
with our own unique algorithms to detect all the 
necessary features from a pair of x-ray images.

Rib Segmentation and Measurements
To generate segmentations to test our rib and lung 
reconstruction algorithms, we used the technique 
described by Frédéric Plourde and his colleagues 
because theirs is the only published algorithm that 
can segment entire ribs in PA x-ray images.2 (We 
summarize related segmentation techniques in the 
“Rib and Lung Segmentation” sidebar.) After seg-
menting the rib borders, we identify several an-
chor points and measure the following distances. 
First, we identify the pixels corresponding to each 
lateral rib’s outermost portion and use them to 
determine the distances between consecutive lat-
eral ribs on the rib cage’s left (li,i+1) and right (ri,i+1) 
sides. Assuming the same number of segmentable 
ribs on each side, the following equation defines 
the average distance between the lateral portions 
of each rib r:
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where n is the number of segmentable pairs of ribs, 
v is the number of the first segmentable rib, and 
w is the number of the last segmentable rib. (To 
make our algorithms work with x-ray images of 
variable resolutions where the actual rib and lung 
data accounts for variable amounts of the entire 
image, we use r as the basis for many other quan-
tities, as we explain in more detail later.)

Also, the radius of a cross-section of each rib’s 

bone on the left side Sri is defined as half the dis-
tance between the lateral rib’s outermost portion 
and the last pixel directly to its right that’s still in 
the same segmented rib. We define the approximate 
radius of each rib Ri as the distance between the in-
nermost pixel of the rib’s posterior portion and the 
outermost pixel of the rib’s lateral portion minus 
Sri. Figure 2 explains these measurements further.

The 3D reconstruction also requires some 
knowledge about the rib structure from the lat-
eral x-ray image. Lateral x-ray images can be ex-
tremely difficult to interpret because the patient’s 
ribs on both sides and the vertebrae are superim-
posed atop one another. Thus, owing to the high 
amount of intuition necessary for this task, a 
completely automated segmentation isn’t feasible. 
However, because technicians know the rib’s gen-
eral shape beforehand, they need to interactively 
identify only one point from each rib along the 
rib cage’s rear border and one point on the lateral 
x-ray image’s front border. We use a b-spline curve 
to interpolate between the marked points, form-
ing an approximate segmentation of the rib cage 
boundary. A local window of histogram equaliza-
tion and contrast adjustment follows the user’s 
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Figure. 1. The pipeline for knowledge-assisted rib and lung reconstruction. 
The image shows the individual steps for each component of the 
algorithms to derive the reconstructed rib cage and lung from PA 
(posterior-anterior) and lateral (side) x-ray images.
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mouse cursor throughout the process to simplify 
identifying ribs in the image’s noisiest portions (see 
Figure 2). Having a segmentation of where the ribs 
connect to the vertebrae would improve reconstruc-
tion accuracy but would be too tedious for users.

Lung Field Segmentation
Our lung reconstruction algorithm is based on in-
teractively refining the Boolean intersection of a 
reconstructed rib cage’s convex hull and a 3D ex-
trusion of the lung fields detected in the PA x-ray 
image. The goal is to produce the most accurate 3D 
lung reconstruction possible. Thus, there are crite-
ria for our lung segmentations beyond just correctly 
classifying the highest percentage of pixels as being 
part of (or not part of) a lung. In particular, the seg-
mented lung’s edge must be smooth so that when 
we discretize the lung segmentation into a mesh, 
the distance between vertices will be uniform.

The lung fields appear as two large dark patches 
in the center of the images, surrounded by a lighter 
area due to the lateral ribs, shoulder bones, organs, 
and soft tissue. The corners of PA x-ray images are 
often dark, owing to the patients’ bodies not ex-
tending to the image corners. Our lung segmenta-
tion algorithm starts by identifying pixels near the 
center of both lungs, separates approximate lung 
field boundaries from any other dark patches in 
the image, and then attempts to refine the seg-
mentation border. Figure 3 illustrates this process.

We take the average pixel intensity in the PA 
x-ray image as a starting threshold value; we mark 
all pixels below this threshold as black, and all 
pixels above it as white. We consider a horizontal 
line through the image’s middle row of pixels (see 
Figure 3a) and examine image intensities on that 
line. The white pixels closest to the image’s center 
(colored green in Figure 3a) are located on the spi-
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Figure. 2. The rib segmentation and results: (a) the initial PA x-ray; (b) a segmentation based on Frédéric Plourde’s edge-
following method; (c) inter-rib spacing between ribs 5 and 6 (l5,6) and ribs 6 and 7 (l6,7), bone radius (Sr5), and rib radius 
measurements (R5); (d) the initial lateral (side) x-ray; (e) interactive segmentation of the rib cage boundary; and (f) the final rib 
cage boundary segmentation. Overall, these images illustrate the segmentation of the ribs from the x-ray images, along with the 
derived measurements based on the segmentation.
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nal cord, whereas black pixels to the left and right 
of this white area belong to the lung fields (red 
and blue, respectively, in Figure 3a). We gradually 
reduce the threshold value until there are no more 
paths of black pixels from the lung field centers 
to the image borders. We then set all black pixels 
connected to the image borders as white, resulting 
in an image such as the one in Figure 3b. Gauss-
ian blurring and thresholding smooth the lung 
borders and remove any remaining noisy spots in 
the image, resulting in another binary image (see 
Figure 3c). We then remove any remaining black 
patches except the two largest (see Figure 3d).

Next, we discretize the lungs into a series of con-
nected vertices, which we refine to more closely 
match the true lung boundaries. Canny edge de-
tection converts the initial segmented lung fields 

to contours; the pixel on each contour with the 
minimum y-coordinate serves as each lung’s first 
vertex. We then recursively trace the contours and 
place a new vertex every r/2 pixels, yielding an 
image such as the one in Figure 3e.

Using a discretization interval of r/2 that’s sig-
nificantly larger than a pixel’s size slightly reduces 
the extruded mesh’s accuracy. However, the initial 
lung reconstruction resolution is already limited 
because no available data points exist between the 
ribs. Producing an initial reconstructed mesh con-
taining many skinny triangular faces is undesir-
able, so this step intentionally limits resolution.

Next, we refine the discretized lung segmen-
tations’ bottom inner portions with an active 
contour-based technique. The slope of each dis-
cretized pixel’s tangent serves as the slope of the 
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Figure. 3. Lung segmentation: (a) lung patches found after initial thresholding, (b) removal of black around the image border, 
(c) Gaussian smoothing to remove noise, (d) the initial lung segmentation, (e) the segmentation discretized into a series of 
vertices, and (f) the lower vertices refined on the basis of the maximum intensity change. The green points represent the new 
segmentation border. The horizontal line in (a) depicts one scan line, with the segmented areas marked in different colors. All 
the steps depicted are essential to achieving an accurate segmentation of the lung field in the PA x-ray image.
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line between the next and previous pixels. We use 
the slope’s negative inverse to find endpoints of a 
line segment orthogonal to the current pixel; we 
connect the endpoints using the Bresenham algo-
rithm. Determining the intensities of the original 
PA x-ray image corresponding to each point on 
this new line segment gives us an intensity his-
togram. We perform Gaussian smoothing on this 
histogram and find the intensities’ first deriva-
tives. We assume that the pixel with the maximum 
rate of intensity change is part of the lung field’s 
new discretized boundary if the intensity change 
at that pixel is above a certain threshold. Figure 
3e shows a close-up of several refined vertices on 
a discretized lung segmentation. To more closely 
match expert segmentations, we experimentally 
determined parameters such as this threshold, 

the orthogonal line segments’ length, and the 
smoothing filter kernel size.

We tested the lung segmentation algorithm on 
10 randomly selected PA x-ray images from 10 
different patients for which expert segmentations 
were also available. We then compared the seg-
mentation results with manual expert segmenta-
tions by two reviewers; in each case, we saved the 
number of true-positive (Tp), true-negative (Tn), 
false-positive (Fp), and false-negative (Fn) pixels. 
We measured each segmentation’s accuracy using 
this formula:

Accuracy
T T

T T F F
=

+
+ + +

n p

n p n p
.

After the initial segmentation, the average ac-
curacy was 0.9376 ± 0.0176. After we discretized 
the segmentation, it dropped slightly to 0.9363 ± 
0.0175. Then, after we refined the discretization, 
it increased to 0.9428 ± 0.0172. The expert-
segmented lungs used to calculate these accuracy 
measures occupied an average of 31.09 percent of 
the test images. Further validation of this tech-
nique is necessary, but, for our purposes, the lung 
reconstruction results are ultimately what deter-
mine the segmentation’s merit. Figure 4 compares 
automatic lung segmentations and manually per-
formed expert segmentations from one reviewer.

Knowledge-Assisted 3D Reconstruction
To perform the 3D reconstructions, we use the 
segmentation knowledge extracted from the x-ray 
images and combine it with our knowledge about 
the general shape of human ribs and lungs, and we 
automate various modeling pipelines to produce the 
desired shapes. This lets us compensate for the lack 
of 3D information in the original images. We re-
construct the rib cage first because it’s one of the 
inputs necessary for the lung reconstruction algo-
rithm. We’ve improved our template-based rib cage 
reconstruction method by using shared domain 
knowledge of anatomy and polygon modeling.3

Rib Cage Reconstruction
For each segmented rib, we generate a primitive 
geometric template similar to a real rib, using the 
knowledge extracted during segmentation. We 
then split the template’s vertices into groups that 
can be individually aligned to the rib segmenta-
tion in the PA x-ray image, such that the entire 
template eventually lines up with the segmenta-
tion without adding distortions along the unmod-
ified dimension. After modifying the templates to 
align them with the segmented ribs in the PA x-

Researchers have presented several techniques for creating 3D 
reconstructions using x-ray image data. Hans Lamecker and his 

colleagues used statistical shape models and atlases to reconstruct 
a 3D pelvis on the basis of two x-ray images.1 Researchers have 
also developed techniques for creating rib cage reconstructions to 
help treat scoliosis patients. Sébastien Delorme and his colleagues 
generated patient-specific scoliotic 3D bone models based on 
free-form deformation, one lateral (side) x-ray image, and two PA 
(posterior-anterior) x-ray images taken at different angles.2 Also, 
Said Benameur and his colleagues performed x-ray image-based re-
constructions for scoliosis patients by using an energy minimization 
function to select from a database of probabilistic prior models.3

Finally, although the application is entirely different, the tech-
niques that Xuetao Yin and his colleagues developed to recon-
struct buildings in 3D on the basis of architectural drawings also 
have much in common with reconstructing anatomical structures 
using x-ray image data.4
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ray, we translate and scale them horizontally so 
that their maximum and minimum vertices align 
with the rib cage boundary segmentation from the 
lateral x-ray image.

Knowledge-assisted primitive selection. A half-torus 
mesh serves as a geometric template for each rib. 
We use the measurements of the bone radius and 
the rib radius from the segmented ribs to param-
eterize the ith rib template:

xi = [Ri + Sri(cos v)](cos u)

yi = [Ri + Sri(cos v)](sin u)

zi = Sri(sin v)

where v ∈ [0, 2p], and u ∈ [0, p] for ribs on the 
left and [p, 2p] for ribs on the right. We then 
sample parameters u and v a discrete number of 
times to yield a tube-shaped mesh for each tem-
plate, in which the distance from the tube’s cen-
ter to the template’s center is Ri, and the tube’s 
radius is Sri.

Although higher resolution obviously yields a 
more accurate rib reconstruction, that isn’t the 
case when using reconstructed ribs to generate a 
lung reconstruction. Regardless of how high the 
rib mesh’s resolution is, no vertices will be avail-
able between the ribs. Thus, a higher resolution in 
the ribs will yield a lung mesh with many trian-

gular faces that have a poor aspect ratio. So, when 
the algorithm has generated the mesh, it samples 
u with increments of p/r, resulting in r sections 
around the template’s center.

The increment at which the algorithm samples v 
is less crucial in terms of generating a good lung re-
construction. For visualization purposes, the sam-
pling resolution should be high enough that the rib 
surface appears smooth to the eye. This is an ap-
proximation, because it assumes cross-sections or-
thogonal to a rib are circular, which isn’t the case. 
In the future, we hope to use knowledge extracted 
from the x-rays to modify the algorithm so that 
it can capture the true rib cross sections’ rotating 
oval shape.

Vertex clustering. After generating the initial geo-
metric templates but before transforming them, 
we group their vertices into clusters, which, ac-
cording to the knowledge extracted through seg-
mentation, produce a good rib reconstruction 
when transformed together. Linearly transforming 
all the templates couldn’t possibly align them to 
the segmented ribs, and finding a nonlinear trans-
formation to accomplish this would be difficult. 
But, by grouping the template’s vertices, we can 
align them to the ribs through a series of linear 
transformations.

We refer to the two kinds of vertex clusters 
that are formed as interior vertex clusters and ra-
dial vertex clusters. Each rib template has only one 

(a)

(b)

Figure 4. Comparison between automatic lung segmentations and manually performed expert segmentations for 10 different 
patient data sets. True-positive pixels are light gray, true negatives are white, false positives (areas considered as belonging to 
the lung by the algorithm but not by the experts) are dark gray, and false negatives (areas considered as not belonging to the 
lung by the algorithm but as belonging by the experts) are black.
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interior vertex cluster but multiple radial clusters. 
The radial vertex clusters are essentially circular 
groups of coplanar vertices that lie on a plane or-
thogonal to the rib template. Using the parametric 
equations for the templates, we can generate radial 
vertex clusters by holding u constant and incre-
menting v as usual.

Each template’s interior vertex cluster is essen-
tially the set of vertices from each radial cluster 
that are closest to the template’s center of mass. 
Parametrically, we can generate the interior vertex 
cluster by setting v = p and incrementing u in the 
normal way. The interior vertex cluster isn’t part 
of the template transformation. It keeps track of 
the vertices in the reconstructed rib cage through-
out reconstruction so that we can export them 
later to generate the lung reconstruction.

Vertex cluster alignment using image space knowledge. 
The next step individually transforms the radial 
vertex clusters to match the thickness of the corre-
sponding portion of the rib segmentation. The re-
sulting transformed template’s bone radius at any 
point will closely match the true rib bone’s radius. 
But first we remove extra radial clusters from the 
end of the template’s anterior portion correspond-
ing to the extent of the segmented anterior ribs. 
We translate the entire template so that the out-
ermost vertex in its lateral section aligns with the 
outermost lateral pixel in the rib segmentation. 
We then translate radial vertex clusters on the 

template’s posterior portion vertically upward un-
til their uppermost vertices align with the top of 
the corresponding segmented rib edge. Similarly, 
we translate clusters from the rib’s anterior por-
tion downward. Figure 5 illustrates this process.

Next, we further refine the radial vertex clus-
ters. We take the vertex most closely aligned with 
a segmented edge as a pivot point. We then scale 
the cluster until one other vertex lies on the op-
posite segmented edge and its remaining vertices 
lie between the segmented edges. At this point, 
the reconstructed ribs’ PA projection should align 
with the segmentation from the PA x-ray image 
but not the lateral x-ray image. To correct this, we 
translate each template and scale it horizontally 
so that its front and rear border vertices lie on the 
outer rib cage boundary’s segmentation from the 
lateral x-ray image. The resulting structure that 
forms after we’ve deformed all the templates in 
this manner is a good approximation of the true 
3D structure of the patient’s ribs from the initial 
x-ray images. Figure 6 illustrates refinement of the 
rib cage reconstruction.

Lung Reconstruction
The geometric lung reconstruction uses both the rib 
reconstruction knowledge that we’ve already gener-
ated and the lung segmentation knowledge. Essen-
tially, we create a mesh that encompasses the inside 
of the reconstructed rib cage. Next, we carve out 
the portion of this mesh that corresponds to the 

Our reconstruction algorithms use knowledge extracted 
from x-ray images through segmentation. Researchers 

have proposed several techniques to segment rib borders 
in PA (posterior-anterior) x-ray images. Zhanjun Yue and 
others found approximate rib borders using the Hough 
transform and then refined them using R-Snakes.1 Bram 
van Ginneken and Bart ter Haar Romeny aligned statistical 
rib cage models with patient-specific data.2 Marco Loog 
and Bram van Ginneken used iterative pixel classification 
to segment rib borders.3 Frédéric Plourde and his col-
leagues performed semiautomatic segmentation of both 
the anterior and posterior ribs using directional filtering 
and parallel-edge following.4

In the past decade, researchers have also presented 
several methods to segment lung fields. Osamu Tsujii and 
his colleagues used adaptive-sized hybrid neural networks 
to classify whether pixels were part of a lung, on the basis 
of measurements taken at those pixels.5 Finally, Bram van 
Ginneken and Bart ter Haar Romeny effectively used a 
combination of pixel classification and rule-based segmen-
tation to segment lung fields in x-ray images.6
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lungs by extruding the segmented lungs up through 
it. We then refine the resulting mesh using polygon 
reduction and subdivision smoothing so that its 
surface is smooth like that of a real lung.

Segmented lung extrusion. We discretize the lung 
segmentation boundary into a series of vertices 
(as discussed earlier) so that we can extrude those 
vertices into 3D to generate a shape to serve as 
the basis for reconstructing the lungs. The result is 
two tube-like structures that resemble lungs from 
the front but are completely flat along the sides. 
We choose a discretization interval that’s coarser 
than the segmentation’s available accuracy. This 
prevents the resulting mesh from having many 
extremely skinny triangular faces when we merge 
it with another mesh whose accuracy is already 
limited by a lack of data between ribs.

Rib interior-vertex-cluster tetrahedralization. Real 
lungs don’t have flat edges but curve along with 
the ribs’ interior. The lung fields’ extrusion alone 
doesn’t capture this fact, and no information is 
available directly from the x-rays to generate this 
structure. So, we use the reconstructed rib cage we 
already generated. Recall that we grouped several 

vertices from each rib template into the interior 
vertex clusters before transforming the rib tem-
plates. There’s nothing in the rib cage reconstruc-
tion process that removes these vertices from each 
rib’s inner border after we’ve transformed the tem-
plates. So, we generate a new mesh that fills the rib 
cage’s interior by computing the Delaunay tetrahe-
dralization of the vertices from each deformed rib 
template’s interior vertex cluster.4

Rib interior and lung intersection. The new mesh cap-
tures approximately how the lungs’ outer border 
follows the inside of the rib cage, but it’s solid in 
the center and near the bottom where the trachea, 
diaphragm, vertebrae, and heart normally would 
be. The silhouette of these features is white in the 
PA x-ray image, so the lung segmentation doesn’t 
include them. Thus, the next step of the lung re-
construction is to carve the lung fields out by tak-
ing the Boolean intersection of the two meshes 
already obtained. Figure 7 illustrates the lung re-
construction up to this point.

Knowledge-assisted 3D lung boundary refinement. 
The initial reconstructed lung mesh has several 
problems that we must correct to improve the 

(a) (b) (c)

(d) (e) (f)

Figure 5. The initial pass of the radial-vertex-cluster transformation: (a) the initial rib templates, (b) rib templates with extra 
vertices removed from the end of the anterior section, (c–f) radial clusters translated vertically to align with the segmentation at 
different stages of this process. This shows the process of transforming the rib template to match the segmented ribs from the PA 
x-ray image.
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lung reconstruction’s accuracy. In particular, it 
contains hard edges at the boundaries of where 
the rib cage interior and lung extrusion meshes 
intersect. We could correct this problem through 
a combination of polygon reduction and sub-
division smoothing. However, this process isn’t 
entirely straightforward. The initial mesh of the 
reconstructed lungs will inevitably contain a vari-
able number of strangely shaped polygons, despite 
our best efforts to limit this outcome at several 
steps in the reconstruction. Subdivision smooth-
ing alone produces undesirable results because of 
the poor aspect ratio of some of the mesh’s faces. 
Even if we perform polygon reduction first to make 
the faces more uniform, artifacts of the recon-
struction process will manifest themselves in the 
final smoothed model for variable percentages of 
polygon reduction. This makes determining a fixed 
reduction percentage difficult.

The solution is to use knowledge gathered from 
previous tests with similar input data to generate a 
good starting estimate of the reduction percentage, 
and then let users refine this estimate on the basis 
of their knowledge of real lungs’ actual shape. The 
users employ a slider to control the polygon reduc-
tion percentage while the software system displays 
the result of polygon reduction and smoothing in 
real time. Ideally, we’d like to keep as much of the 
initial structure as possible, because as we remove 
more polygons, the reconstructed lungs slowly 
move further from the inside of the reconstructed 
ribs. On the other hand, geometric oddities will 
more likely occur at low polygon reduction per-
centages, so we must find an ideal intermediate 
percentage for each case.

Figure 8 illustrates this interactive refinement 
process based on lung reconstructions for two pa-
tients with significantly different bone structures. 

(d) (e) (f)

(a) (b) (c)

Figure 6. Refinement of a rib reconstruction: (a–c) radial vertex clusters scaled so that their projections align with a segmented 
rib’s two opposing edges at different stages as the algorithm processes every radial cluster sequentially, (d) the reconstructed rib 
cage after the first pass of vertex cluster transformation, (e) rib templates translated and scaled to align with the segmentation 
of the lateral rib cage projection, and (f) the final reconstructed rib cage. These are the required steps for aligning the ribs to the 
lateral x-ray image.v
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(a)

(b)

(c)

Discretized segmentation Lung �eld extrusion

Interior vertex clusters Delaunay tetrahedralization

Boolean intersection

Figure 7. The initial phase of the lung reconstruction: (a) We extrude the discretized lung segmentation into two hollow lung 
fields. (b) We generate a polygon mesh by taking the Delaunay tetrahedralization of each rib’s interior vertex clusters after the 
rib reconstruction is complete. (c) We create the initial reconstructed lung meshes by taking the Boolean intersection of the 
extruded lung fields and the Delaunay tetrahedralization. This represents the pipeline of the lung reconstruction algorithm to 
derive the initial model of the lung.

55% 70% 85% 95%55% 70% 85% 95%

(a)

(b)

55% 70% 85% 95%

Figure 8. Interactive knowledge-based lung field refinement for two patients with significantly different bone structures: (a) 
patient 1 and (b) patient 2. The yellow arrows identify geometric artifacts of the reconstruction, which proper user-driven 
polygon reduction and subdivision smoothing can remove.
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The initial resulting reconstructed lungs looked 
similar, but they produced geometric oddities at 
variable polygon reduction percentages. A person 
driving the process can easily spot abnormal phe-
nomena in the smoothed lungs’ surface and make 
the necessary adjustments in seconds.

We performed the rib and lung reconstructions 
on the same data sets we mentioned earlier in the 
lung segmentation section. Figure 9 shows the re-
sults for five patients, from several views. Over-
all, the reconstruction results look good, although 
some minor distortions appear in the ribs’ lateral 
portion because we’re currently unable to segment 
the ribs reliably using the lateral x-ray images. We 
hope to further validate the lung reconstruction 
algorithm’s results against a CT scan of a human 
torso by creating simulated x-rays through volume 

renderings, performing rib and lung reconstruc-
tions, and then comparing the results to the origi-
nal CT. Future comparisons with CT data should 
also help us gain knowledge about areas where 
distortions occur, so that we can mitigate those 
problems.

Application: Knowledge-Assisted  
Volume Clipping
One of the best potential applications for the 
lung reconstruction algorithm is to use the recon-
structed lungs’ boundaries to clip out the most 
interesting portion of data from approximate 
volumetric reconstructions. This will greatly im-
prove a user’s ability to visualize the data without 
manually identifying the lungs in the volume. Sev-
eral volumetric reconstruction methods, such as 

(a) (b) (c) (d) (e)

Figure 9. Final output from the rib and lung reconstruction algorithms for five patients with significantly different bone 
structures, rendered from an anterior-lateral-left view (top row), anterior-lateral-right view (second row), front (third row), and 
side (fourth row): (a) patient 1, (b) patient 2, (c) patient 3, (d) patient 4, and (e) patient 5. This illustrates the high quality of the 

resulting ribs and lungs generated by the reconstruction algorithms.
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the inverse radon transform5 and epipolar image 
analysis,6 require only two input images. However, 
their output is approximate when used with PA 
and lateral x-ray image data. Also, the output is 
typically somewhat boxy because these methods 
project all the true 3D information onto a plane 
during the x-ray process. Volume renderings of 
such data appear very busy, and key features are 
difficult to discern (which is why the ability to 
remove voxels that don’t correspond to a lung is 
useful).

In the example images presented here, we used 
the inverse radon transform on the pair of PA and 
lateral x-ray images to create the approximate vol-
umetric reconstruction. However, the same tech-
nique would apply regardless of how we generated 
the volume.

To perform volume clipping on the basis of the 
reconstructed lung fields, we first voxelized these 
fields using the techniques that Nilo Stolte and 
Arie Kaufman described.7 We then recursively 
filled the lung surface’s voxelization to create a 
mask of the lungs. We gave a 0 intensity value to 
voxels in the inverse-radon-transform volume if 
they corresponded to the voxels outside the lungs 
in the mask. The resulting rendering of the clipped 
volume presents a far clearer picture of the data 
corresponding to the lungs (see Figure 10).

Although the resulting clipped volume from 
our 3D reconstruction techniques is an ap-

proximation of the lungs, it provides a new way 
to visualize the data, which could be helpful for 
disease detection applications. Visualizations 
generated by rotating the volumetric lungs while 

adjusting the transfer functions can help medi-
cal doctors notice subtle oddities that they might 
have overlooked if they had evaluated only the PA 
x-ray image.

Medical professionals will ultimately evaluate 
whether such reconstruction techniques can help 
increase the accuracy of current disease detection 
methods. Any technique that can even slightly 
decrease the number of false-positive and false-
negative diagnoses is of great value. So, 3D recon-
structions in situations in which only 2D x-ray 
images are currently available is a viable research 
area in which more work would be helpful.�
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