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Abstract

In order to visualize temporal distances, i.e. the time for traveling
from one place to another, we arrange some selected cities accord-
ing to these distances. In this way, the new positions reflect the
connectivity of these cities with respect to time. Unlike existing ap-
proaches using tables, our method facilitates a global examination
of the connectivity of a whole country. For the database, any con-
nectivity information can be used as long as it is ensured that it is
unambiguous. Therefore, any transport system can be considered
and even a mixture of such systems could be visualized.
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1 Introduction

Till now, tables are used to visualize the durations of traveling from
one city to another which we call temporal distances. Such a de-
scription can hardly be evaluated globally. It is only useful for an-
swering local questions about the quality of connections. For an ex-
amination of the global interconnectivity, a global view is needed.
Such a global method is presented in this paper which arranges the
cities approximately proportional to the temporal distance. This re-
sults in a contraction within regions that have fast connections and
in an enlargement in regions with slower connections. The global
effect of a change of a schedule can be analyzed in this manner. The
cities have to be repositioned according to the old and new sched-
ule. Then one can compare the results: When the latter is compared
with the former a shorter distance between two cities means that
the connection is faster now and vice versa. In the same way, one
might check if building new railway tracks improves connectivity.
The advantage is the consideration of the surrounding regions in-
stead of only focusing on the connected cities.

The first problem we encounter, is the acquisition of valuable
data for the temporal distances. In this paper, we use the durations
of railway connections because these times are constant under the
assumption that the trains arrive on time. Traveling by car is not
very predictable, so we cannot get fixed values for the traveling
time. Therefore one has to eliminate interferences, such as traffic
congestions, otherwise it is not possible to define unique temporal
distances. But an interesting investigation in this context might be
to compare the visualization of an ideal journey by car with respect
to time with a more lasting one because of traffic congestions. This
would show the delays produced by traffic congestions at a global
point of view and would allow a global comparison to other differ-
ent transportation systems.

It is also possible to use a mixture of transport systems, for in-
stance a combination of normal trains and the German TransRapid,
if the relevant durations are provided in a unique manner. With this
information one can visualize improvements in the connectivity by
new transport systems.

The organization of the paper is as follows: Section 2 describes
the main ideas of the presented method while section 3 shows the
results in the application area. Finally, we give a conclusion in
section 4 and some ideas for future work in section 5.

2 Description of the Method

First, we have to give an exact definition for temporal distances.

Definition 2.1 Let A and B be two points and CAB a set of con-
nections between A and B with respect to any transport system.
Additionally, let T : CAB → R be a map which describes the du-
ration of the given connection. Then the temporal distance between
A and B is defined as:

t = min({T (x)|x ∈ CAB}) (1)
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Figure 1: Arrangement of four points

As already mentioned, the cities should be placed in such a way
that their distances are approximately proportional to the respective
temporal distance. The main problem is that one can place at most
three points, named for instance A, B and C, in a plane with pre-
defined distances. When placing the fourth point D as shown in
figure 1 with the exact distances to the other three points, it will
generally not lie in the same plane. Consequently, we have to ap-
proximate the distances to facilitate that all points are part of the
same plane:

Criterion 2.2 Let S ⊂ R2 be a finite set of points with S =
s1, . . . , sn and dij = ‖si − sj‖. Further, let tij be the tempo-
ral distance between the points si and sj in accordance with def-
inition 2.1. Then we are looking for an arrangement of the points
s1, . . . , sn that fulfil the following equation:
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This results in a problem we already know from graph drawing
as described in [1], [2] and [3]. In order to solve it we use a sim-
ulation of mass particles connected with springs to each other as
described in [4] to obtain an approximation to the solution of for-
mula 2. The main idea is to place a particle with unit mass at the
geographic position of every city. These particles are connected by
springs with restlengths proportional to the temporal distance of the
connections. Generally, this results in a mass-spring-system under
tension. Allowing the particles to move, this mass-spring-system
starts to oscillate. A damping of the springs slows down the oscil-
lation of the system. Finally, a equilibrium is reached where the
deviation of the restlengths from the actual lengths of the springs is
at a minimum. This equilibrium gives the desired new coordinates
of the cities. The existence of an equilibrium is guaranteed by the
damping factor. This solution can easily be computed with an ODE
solver described in [5] but for a faster algorithm one can use [6].

To avoid an overall expansion or contraction of the mass-spring-
system, one has to scale the restlengths because the temporal and
the real distance normally have nothing in common. We determine
a scaling factor using the following formula where dij and tij are
defined in the same way as in criterion 2.2:

s =
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P
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Figure 2: Initial positions of the cities

This scaling factor facilitates that the positions of the cities are
only influenced by the temporal distances.

A similar approach is used by [7] where information is placed on
a sphere. Therefore mass particles are placed on the inner sphere
of two concentric spheres. Every mass particle is connected to each
other with a spring where the stiffness of the springs is proportional
to the similarity of the corresponding information. Additionally,
a connection between the mass particles and the outer sphere is
introduced, so that the mass particles stay on the sphere.

3 Results

Figure 3: Cities arranged according to temporal distances

This section illustrates the visualization results. To get the data
for the temporal distances, we chose all 96 cities in Germany with
an InterCity railway station and asked for the 9216 connections be-
tween every pair of cities. For that purpose, we used the service
provided by the Deutsche Bahn AG on their WorldWideWeb pages1.
Then we defined the temporal distance between two cities by scal-
ing the duration of the respective connection with an appropriate
factor described in equation 3 to avoid an unnecessary expansion or
contraction.

Figure 2 shows the initial positions of the cities while figure 3
displays the arrangement of the cities according to the temporal dis-
tances. To enhance the identification of the markers for the cities,
some cities are labeled by their name. The label is placed with

1URL: http://bahn.hafas.de



Figure 4: Initial map with positions of the cities

its lower left corner at the position of the marker. Additionally,
lines are drawn from the original coordinates of the cities, which
are marked with a smaller white ball, to the displaced position of
the marker.

To analyze the relaxation of the springs in the used mass-spring-
system the markers are colored from red to blue. For the color scale,
an analogy to visualization of temperature is used: Cities with re-
laxed springs are colored blue. Red markers represent cities where
the difference between the length of the springs and the correspond-
ing restlengths reaches the highest level; concerning the coloring
this can be compared to a liquid under pressure which gets warm.
A red marker shows only that the springs are not as relaxed as a
spring connected to a city with a more blue marker, but it is not
a sign for a failure of the algorithm. For example, the city in the
upper right corner lying on an island has a slow connection to the
other cities, so the distances to the other cities are enlarged by the
algorithm. Because of its position near to the border the springs
can relax until they reach their restlengths which is visualized by
the blue marker.

In figure 3, one can see that the cities in Eastern Germany are
pushed away from the center. This is due to the fact that the railway
tracks are still slower there than in the western part, so the temporal
distances are larger. Another effect is that the cities connected by
the same railway track get arranged on a string. This can be seen in
the left middle part of figure 3 where cities like Cologne and Bonn
are placed.

For further examination it is useful to have a map corresponding
to the cities so that one can identify them easier. In the case of the
repositioned cities this map has to be deformed appropriately. Fig-
ure 4 shows the initial map of Germany with all considered cities.
To get a distorted map with respect to the deformed positions of

Figure 5: Deformed map with cities arranged according to temporal
distances

the cities we use an approach similar to those mentioned in [8], [9],
[10] or [11]. Therefore we start with a triangulation of the cities
at their initial positions. Then the vertices are moved towards the
new positions of the cities computed as described in section 2 as
long as possible without destroying the triangulation. To prevent
too long and small triangles the algorithm guarantees that the ver-
tices do not get to close to the edges. Then one can use the initial
triangulation and the actual one to define a deformation by comput-
ing a linear map for each triangle which maps the initial into the
actual one. After that, the vertices are triangulated again and the
same procedure starts all over again until every vertex has reached
its desired position or no more movement is possible. In the lat-
ter case the edge which prevents a further movement must be bent
around the desired position of that vertex. This step guarantees that
every position can be reached.

The resulting map is displayed in figure 5 in which one can
clearly recognize that the city at the upper right corner is moved
upwards and the surrounding island is following this displacement.
The same is valid for the earlier stated facts: The east part of Ger-
many gets enlarged because of the longer temporal distances in that
region. Also the middle part of the river Rhein near the Ruhrgebiet
is not deformed very much because of the fact that the cities like
Cologne or Bonn lying directly at that river are connected by the
same railway track and consequently get arranged on a string.



4 Conclusions

We presented a useful tool for examining the connectivity of every
kind of transport system with respect to time. The main advantage
is that the results can be analyzed directly at a global point of view
without complex studies of the produced material. As already stated
in the introduction, there are several different applications. When
comparing different situations with respect to connectivity it is use-
ful to provide a fix scaling factor in spite of determining it by the
algorithm. Otherwise the results may get disturbed by a different
increase or decrease in size.

Because of its low requirements on the given database – only
the durations of the connections have to be provided in a file with
a simple structure – it can be extended to every kind of transport
system and even a mixture of these.

5 Future Work

As the interested reader may already have recognized, the shown
deformation is only C0-continuous but not even C1. Therefore
some regions can show nasty displacements which is mainly evoked
by the process of bending edges. Consequently, future research
has to improve this deformation and might replace it by a C1-
continuous mapping. Another problem can also be discerned: Re-
gions, where the number of cities and therefore the number of mass
particles in the simulation process of section 2 is small, shrink un-
proportionally compared to regions with a higher density of cities.
This has to be avoided to ensure a more precise picture of temporal
distances.

Because of the fact that we only use one traveling direction be-
tween two cities, we like to consider both directions in our future
research, perhaps by deforming the underlying plane according to
the difference between the two temporal distances.

Another interesting application would be to use international air-
ports as cities and its air traffic to determine the temporal distances.
Therefore the cities have to be placed on a globe which allows the
use of the radial direction as an additional degree of freedom which
can be used to visualize the direction with greater temporal distance
in analogy to the flat case.

6 Acknowledgement

The authors thank the Deutsche Bahn AG for enduring the massive
requests on their WorldWideWeb server to get the durations of the
railway connections created by our shell scripts.

References

[1] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placement. Software Practice and Experience,
2(11), 1991.

[2] A. Frick, A. Ludwig, and H. Mehldau. A Fast Adaptive Lay-
out Algorithm for Undirected Graphs, pages 388–403. Proc.
Graph Drawing. Springer-Verlag LNCS 894, 1995.

[3] J. Cohen. Drawing graphs to convey proximity: an incremen-
tal arrangement method. ACM Trans. CHI, 4(11):197–229,
1997.

[4] Andrew Witkin, editor. An Introduction to Physically Based
Modeling. Siggraph 95, August 1995.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C. Cambridge University Press,
1988.

[6] M. Chalmers. A linear iteration time layout algorithm for vi-
sualising high-dimensional data. IEEE Visualization, pages
127–132, 1996.

[7] M. H. Gross, T. C. Sprenger, and J. Finger. Visualizing infor-
mation on a sphere. IEEE Information Visualization, pages
11–16, 1997.

[8] W. R. Tobler. Map Transformations of Geographic Space.
PhD thesis, University of Washington, 1961.

[9] W. R. Tobler. Pseudo-cartograms. The American Cartogra-
pher, 13(1):43–50, 1986.

[10] Herbert Edelsbrunner and Roman Waupotitsch. A combi-
natoral approach to cartograms. Computational Geometry,
7:343–360, 1997.

[11] Donald H. House and Christopher J. Kocmoud. Continuous
cartogram construction. IEEE Visualization, pages 197–204,
1998.

[12] Will Schroeder, Ken Martin, and Bill Lorenson. The Visual-
ization Toolkit. Prentice Hall, 1997.


