
Parallel Detection of Closed Streamlines in Planar Flows
Thomas Wischgoll

Department of Computer Science
University of Kaiserslautern

P.O. Box 3049
D-67653 Kaiserslautern, Germany

email: wischgol@informatik.uni-kl.de

Gerik Scheuermann
Department of Computer Science

University of Kaiserslautern
P.O. Box 3049

D-67653 Kaiserslautern, Germany
email: scheuer@informatik.uni-kl.de

Hans Hagen
Department of Computer Science

University of Kaiserslautern
P.O. Box 3049

D-67653 Kaiserslautern, Germany
email: hagen@informatik.uni-kl.de

ABSTRACT
Closed streamlines are an integral part of vector field topol-
ogy, since they behave like sources respectively sinks but
are often neither considered nor detected. If a streamline
computation makes too many steps or takes too long, the
computation is usually terminated without any answer on
the final behavior of the streamline. We developed an algo-
rithm that detects closed streamlines during the integration
process. Since the detection of all closed streamlines in a
vector field requires the computation of many streamlines
we extend this algorithm to a parallel version to enhance
computational speed.

To test our implementation we use a numerical sim-
ulation of a swirling jet with an inflow into a steady
medium. We built two different Linux clusters as paral-
lel test systems where we check the performance increase
when adding more processors to the cluster. We show that
we have a very low parallel overhead due to the neglectable
communication expense of our implementation.

KEY WORDS
vector field, 2D flow, parallel, streamline computation,
Linux cluster, closed streamline, limit cycle

1. Introduction

An intuitive and often used method for vector field visu-
alization is the calculation of streamlines. If one uses this
technique in turbulent fields, one encounters often the prob-
lem of closed streamlines.

The difficulty with standard integration methods is
that streamlines, approaching a closed curve, cycle around
that curve without ever approaching a critical point or
the boundary. Usually, one uses a stopping criteria like
elapsed time or number of integration steps to prevent in-
finite loops. Instead, we present here a parallel version of
an algorithm that detects this behavior and that can be used
to visualize closed streamlines since these topological fea-
tures are an essential topological property of the field. The
algorithm uses the underlying grid to check if the same cell
is crossed while integrating the streamline: this results in
a cycle of cells. In that case, the algorithm determines if
the streamline can leave this cell cycle or not. If it does
not leave it is proven that there exists a closed streamline

inside the cell cycle on condition that there is no critical
point inside the involved cells.

To determine the closed streamlines of a vector field
one has to compute many streamlines. In fact, we compute
the topological skeleton. This is a graph which connects the
critical points, where the vector field is zero, with stream-
lines called separatrices. This graph leads us to the closed
streamlines. Since the number of streamlines may be large
depending on the given vector field, this may take several
minutes or even hours. Therefore we propose a parallel
version of this algorithm to decrease computational time by
distributing the streamline computation to several clients.

As a parallel machine we use Linux clusters because
of the low price of standard PC components. The advan-
tage is that the processors are faster then the ones of for in-
stance an SGI/Cray T3E with the disadvantage of a slower
communication between server and client. But altogether,
a Linux cluster is the best way to get a great performance
at a low price.

In the next section we summarize previous work,
while section 3 gives some theoretical background. In sec-
tion 4 we explain the parallel version of the algorithm. The
results including performance tests are explained in sec-
tion 5. Finally, we conclude in section 6 and give some
ideas for improvements of our method.

2. Related Work

Previously [11], two of the authors published an algorithm
that computes streamlines while detecting if it runs into a
limit cycle in two dimensional flows. Haimes [3] discusses
a similar problem where residence time is used to find re-
circulation regions. When reaching a closed streamline the
residence time is infinite. The problem with closed stream-
lines is also related to the study of dynamical systems [2],
[5] which have also been an application area for visualiza-
tion. In the numerical literature, we can find several al-
gorithms for the calculation of closed curves in dynamical
systems [7], [10], but these algorithms are tailored to deal
with smooth dynamical systems where a closed form so-
lution is given. In contrast, visualization faces far more
often piecewise linear or bilinear vector fields. Here, the
knowledge of the grid and the linear structure of the field
in the cells allow a direct approach for the search of closed

streamlines.
Sujudi et al. [9] present a method for comput-

ing streamlines in a parallel environment by splitting the
dataset into several sub-domains. If the streamline leavesa
sub-domain another process responsible for the actual do-
main has to continue the computation. Reinhard et al. [8]
present a parallel rendering method that distributes tasks
for each ray which has to be computed to the different pro-
cessors of the parallel machine. A parallelization of line in-
tegral convolution is presented by Zöckler et al. [12] where
the vector field is divided into several subdomains depend-
ing on the number of processors used.

3. Theory

The topological analysis of vector fields considers the
asymptotic behavior of streamlines. The origin set orα-
limit set of a streamlinec is defined by

{p ∈ R
2|∃(tn)∞

n=0
⊂ R, tn → −∞, lim

n→∞

c(tn) → p} .

The end set orω-limit set of a streamlineα is defined by

{p ∈ R
2|∃(tn)∞

n=0
⊂ R, tn → ∞, lim

n→∞

c(tn) → p} .

If the α- or ω-limit set of a streamline consists of only one
point, this point is a critical point or a point at the bound-
ary ∂D of our domainD. (It is assumed that the stream-
line stays at the boundary point forever in this notation.)
The critical points can be clearly identified because they
are simply the zeros of the vector field.

The most common case of anα- or ω-limit set in a
planar vector field containing more than one inner point of
the domain is a closed streamline[5]. This is a streamline
ca, so that there is at0 ∈ R with

ca(t + nt0) = ca(t) ∀n ∈ N .

To detect these closed streamlines we use the algo-
rithm proposed by the first two authors [11]. Interpolating
linearly on the given grid we get a continuous vector field.
To find closed streamlines we use the underlying grid to
find a region that is never left by the streamline. If there is
no critical point inside this region, we have found a closed
streamline according to the Poincaré-Bendixson-theorem.

4. Parallel Algorithm

In principle, the algorithm computes the topological skele-
ton [4] of the vector field which automatically leads to the
closed streamlines. Therefore we have to compute all the
critical points that are present in the vector field. Since
we only need the data of the cells, i.e. the position of the
vertices and the vectors at these vertices, to determine if
there exists a critical point inside the cell and where it is
located, we can transfer these tasks to the various clients
of the cluster. When the clients receive the index of a cell

they compute the critical point and return the position and
its type, if they have found one, to the server. All tasks are
controlled by a scheduler which is a part of the server.

The scheduling of the tasks works as follows: the
server creates one task for each cell containing the index
of this cell and queues it in the scheduler. The scheduler
itself checks if there are still tasks left and if there is any
client that has finished its task yet. If there is more than one
client without an active job, the fastest is chosen. Then the
next task is sent to this client. The client receives this task,
computes the critical point and sends it, if it has found one,
back to the server and tells the scheduler that it has finished
its job. Since the amount of data to control the clients and
transfer the critical points back to the server is very low, we
can fully benefit from the performance of each client.

After we have computed all critical points we start
streamlines at each saddle point in positive and negative
eigendirection with respect to the matrix of the linear inter-
polant and check for closed streamlines while computing
the streamlines as described in [11]. Computing stream-
lines is not a local task since the streamlines may cross any
region of the flow. Therefore we do not subdivide the data
into several blocks like in some rendering tasks [6]. Our
implementation uses a functional approach where we cre-
ate several tasks each of them representing the whole com-
putation of one streamline starting at a given position. Then
we use the scheduler to distribute the tasks to the various
clients of our cluster.

Since the data of the vector field including octree and
the program fit into64 MB of RAM we decided to use a
configuration where every client loads the whole dataset
into its own memory. This facilitates the fastest possible
access to the data. Since the server and every client loads
the data at the same time there is no time lost because oth-
erwise the clients would simply wait for the server until it
has loaded the dataset. When dealing with larger datasets
we have to use an out of core method which will be done
in the future.

Since we want to spread tasks that represent the whole
computation of one streamline, each task contains two
items: a point where the streamline has to start and the in-
tegration direction. The other data that is needed for the
computation is already present at each client because the
client has loaded the whole dataset yet. Due to the minimal
amount of data of each task the communication cost which
is produced by migrating tasks is very low.

To distribute the tasks to the various clients we use
the previously described scheduler: the server determines
the start positions of the streamline using each saddle point
found in the vector field. Then a task containing this start
position and the integration direction is created and spooled
into the queue of the scheduler, while the scheduler sends
the next job to the fastest client that has no active job. The
client receives this task, searches for closed streamlinesand
sends it, if it has found one, back to the server. Again, the
amount of data to control the clients and transfer the closed
streamlines back to the server is very low, so that we can

fully benefit from the performance of each client.

5. Results

Our algorithm is implemented in C++, while the server
communicates with the clients using PVM[1]. The differ-
ent tasks are encapsulated in C++-classes. This facilitates
that the tasks can transfer itself to the client on demand
and the clients only need to call a method to execute the
received task.

Figure 1. Configuration of the swirling jet simulation

To test the performance of our implementation we use
mainly two different systems. One is a Linux cluster con-
sisting of seven clients. Each node is equipped with an
AMD Duron 600 or AMD Duron 700 processor and64 MB
of RAM. The server is a multiprocessor computer with two
Pentium III 500 processors. The second system is based on
some of our desktop computers with a Pentium II 350. We
use Linux and normal PC components since this is a cheap
way to get a great performance compared to other parallel
computers. In order to get a more heterogeneous configu-
ration we mix both systems by using all Linux computers
available in our group for a last performance test.

The test dataset is a simulation of a swirling jet with
an inflow into a steady medium. The simulation uses a
cylindrical domain and assumes rotational symmetry, so
that we are left with a two dimensional vector field on a
plane through the center axis of the cylinder. In this ap-
plication one is interested in investigating the turbulence
of the vector field and in recirculation zones where the
fluid stays very long. Swirling jets play a significant role
in many combustion processes. It is important to find
such recirculation regions indicated by closed instanta-
neous streamlines. This permits the conclusion that even
in the three dimensional flow the fluid will stay there for a
longer period of time. Figure 1 shows the configuration of
this simulation. The jet is located in the front in the cen-
ter of the cylindrical domain indicated by a small cylinder.
The domain is displayed in light grey. The closed stream-

lines of that vector field found by our algorithm are shown
on the cutting plane that divides the turbine diagonal into
two halves. In figure 2 a hedgehog consisting of the vec-
tors displayed as arrows is included. The vector field has
362 critical points and for the topology including closed
streamlines about six hundred streamlines have to be com-
puted.

Processor Floating-point index
Pentium II 350 2.404
Pentium III 500 3.561
AMD Athlon 650 5.163
AMD Duron 600 4.768
AMD Duron 700 5.547

Figure 3. Floating-point indices of the different processors

To determine the optimal timing of our algorithm we
used the benchmark utilitynbench1 in order to get a suit-
able ratio between the speeds of the processors.Nbench
is a port to Linux/Unix of release 2 of BYTE Maga-
zine’s BYTEmark benchmark program2. We computed the
floating-point indexof each processor which gives the rel-
ative speed of the floating-point unit compared to an AMD
K6-233 processor. The results can be found in figure 3.
Using these values we computed the floating-point index
of the whole parallel machine by summing up the indices
corresponding to the involved processors and calculated the
optimal runtime by neglecting the communication between
server and clients.

2 51 3 4
processors

time

100

600

300

400

500

200

Figure 4. Time needed to compute closed streamlines using
Pentium PII-350 processors displayed as graph

Figures 4 and 5 show the timings on the desktop com-
puters. Up to five machines were used. The optimal timings
are displayed using a dashed line while the real timings are
shown by a solid line. This configuration is very suitable
for testing the scalability of our implementation because
every computer has identical performance. Obviously, the

1http://www.tux.org/˜mayer/linux/bmark.html
2http://www.byte.com/bmark/bmark.htm

Figure 2. Closed streamlines including hedgehog on a cutting plane of a swirling jet simulation

CPUs Time Optimum
1 612s —
2 306s 306s
3 205s 204s
4 158s 153s
5 134s 122s

Figure 5. Time needed to compute closed streamlines using
Pentium PII-350 processors shown in a table

computation time is halved if the number of processors is
doubled which indicates a good scalability of our imple-
mentation since they only differ slightly from the optimal
ones.

The timings of the algorithm running on our Linux
cluster with up to seven clients is displayed in figures 6 and
7. Again, the optimal timings are displayed using a dashed
line while the real timings are shown by a solid line. Since
the server has two processors there are always running at
least two tasks at the same time on this machine. Adding
more clients to the Linux cluster the time needed for the al-
gorithm is reduced correspondingly to the speed of its pro-

time

300

100

200

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17
processors

8

Figure 6. Time needed to compute closed streamlines using
a Linux cluster with AMD Duron 600 and AMD Duron 700
processors displayed as graph

cessor. Again, we can see that we nearly benefit from the
full performance of each client due to the minimal commu-
nication between server and client as can be seen from the
difference between the optimal and the real timings.

Our last test used all Linux machines of our visualiza-
tion group. This resulted in a parallel machine consisting of

CPUs Time Optimum
2 224s —
3 138s 134s
4 99s 96s
5 77s 74s
6 63s 61s
7 53s 50s
8 46s 43s
9 39s 37s
17 28s 24s

Figure 7. Time needed to compute closed streamlines using
a Linux cluster with AMD Duron 600 and AMD Duron 700
processors shown in a table

six Pentium II-350, two AMD Athlon 650, one dual proces-
sor machine with two Pentium III-500, four AMD Duron
600, and three AMD Duron 700. Altogether, the algorithm
used seventeen processors and it took28 seconds to com-
pute all closed streamlines present in our test dataset. As
expected, this is faster than using the cluster alone corre-
sponding to the speed of the processors and slightly slower
than the optimal runtime of24 seconds. This also tests our
implementation in a more heterogeneous parallel machine
due to the different speeds of the processors. It shows that
we can decrease the time needed for the computation by
adding more processors no matter what sort of machine it
is.

6. Conclusions and Future Work

We have presented a parallelization of our algorithm that
detects closed streamlines. The time needed for the com-
putation is reciprocally proportional to the number of CPUs
used in the cluster which gives a great performance en-
hancement when increasing the number of clients. Until
the number of clients is lower than the number of stream-
lines that have to be computed, the overall performance of
the cluster increases. Altogether, our implementation uses
the full performance of the parallel machine.

Since the clients in our cluster only have64 MB of
RAM we are currently working on an out of core method
to cope with larger datasets compared to the one we used in
this paper. When dealing with larger vector fields we can
fully benefit from the performance increase of our method.

7. Acknowledgment

This research was supported by the DFG project “Vi-
sualisierung nicht-linearer Vektorfeldtopologie”. Further,
we like to thank Tom Bobach, Holger Burbach, Stefan
Clauss, Jan Frey, Christoph Garth, Aragorn Rockstroh,
René Schätzl and Xavier Tricoche for their programming
efforts. The continuous support of all members of the

computer graphics and visualization team in Kaiserslautern
gives us a nice working environment. Wolfgang Kollmann,
MAE Department of the University of California at Davis,
provided us with the dataset.

References

[1] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine, A Users’
Guide and Tutorial for Networked Parallel Computing. The
MIT Press, Cambridge, 1994.

[2] J. Guckenheimer and P. Holmes.Dynamical Systems and
Bifurcation of Vector Fields. Springer, New York, 1983.

[3] R. Haimes. Using Residence Time for the Extraction of
Recirculation Regions.AIAA Paper 99-3291, 1999.

[4] J. L. Helman and L. Hesselink. Visualizing Vector Field
Topology in Fluid Flows. IEEE Computer Graphics and
Applications, 11(3), pp. 36–46, May 1991.

[5] M. W. Hirsch and S. Smale.Differential Equations, Dy-
namical Systems and Linear Algebra. Academic Press, New
York, 1974.

[6] V. Isler, C. Aykanat, and B. Ozguc. Subdivision of 3d space
based on the graph partitioning for parallel ray tracing. In
P. Brunet and F. Jansen, editors,Photorealistic Rendering in
Computer Graphics. Proceedings of the Second Eurograph-
ics Workshop on Rendering, pp. 182–90. Springer-Verlag,
1994.

[7] M. Jean. Sur la méthode des sections pour la recherche de
certaines solutions presque périodiques de syst‘emes forces
periodiquement.International Journal on Non-Linear Me-
chanics, 15, pp. 367 – 376, 1980.

[8] E. Reinhard, A. Chalmers, and F. W. Jansen. Hybrid
Scheduling for Parallel Rendering using Coherent Ray
Tasks. InProceedings of IEEE Parallel Visualization and
Graphics Symposium. ACM SIGGRAPH, New York, 1999.

[9] D. Sujudi and R. Haimes. Integration of Particle and
Streamlines in a spatially-decomposed Computation. In
Proceedings of the Parallel Computational Fluid Dynam-
ics. IEEE Computer Society Press, Los Alamitos CA, 1996.

[10] M. van Veldhuizen. A New Algorithm for the Numerical
Approximation of an Invariant Curve.SIAM Journal on
Scientific and Statistical Computing, 8(6), pp. 951 – 962,
1987.

[11] T. Wischgoll and G. Scheuermann. Detection and Visual-
ization of Closed Streamlines in Planar Flows.IEEE Trans-
actions on Visualization and Computer Graphics, 7(2),
2001.

[12] M. Zöckler, D. Stalling, and H.-C. Hege. Parallel lineinte-
gral convolution. InParallel Computing, volume 23, 1996.

