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Abstract
The wear behavior of cutting tools directly affects the quality of the machined part. The measure-

ment and evaluation of wear is a time consuming process and is subjective. Therefore, an image-based
wear measurement that can be computed automatically based on given image series of cutting tools
and an objective way to review the resulting wear is presented in this paper. The presented method
follows the industrial vision system pipeline where images of cutting tools are used as input which are
then transformed through suitable image processing methods to prepare them for the computation of
a novel image based wear measurement. For multiple cutting tool settings a comparative visualization
of the wear measurement outputs is presented. The effectiveness of the presented approach is shown
by applying the method to measure the wear of four different cutting tool shapes.

Introduction

Cutting tools, as applied in turning, milling or drilling processes, are exposed to wear due to the loads
they are subjected to in cutting processes [1]. In the cutting zone, high temperatures and high forces
emerge that result in abrasive and chemical wear of the tools. Commonly, the width of flank wear
land at the flank face of the tool is used as the wear criteria [3]. The width of the flank wear land is
determined manually via optical microscopes. This value is subjective and 1-Dimensional.

To solve this problem, an objective measure can be accomplished by different sensors [2] as shown
in Section Related Work. These sensors can be expensive, require maintenance, and therefore are
not available commonly in the shop floor. Instead, a technique is required that is independent from
additional hardware and can be run in basic settings such as given by optical microscopes. The required
measure should be flexible in terms of being able to handle different images of different cutting tools.
In addition to that, the approach should have low computational costs so that it can be run on a common
computer. Furthermore, this measure should be embedded in a visual system that allows the review of
the computational output during operation. At last, this system has to provide an intuitive visualization
of the evolved measure that allows an interactive exploration and comparison of wear behavior for
decision making [4].

To achieve these goals, this paper presents a visual industrial system consisting of the four clas-
sical steps (image acquisition, image processing, feature extraction, and decision making), which is
presented in Section Methods. As input, the system utilizes image series of cutting tools that can be
monitored at different stages of the cutting process. This visual industrial system is designed to de-
rive an objective measure based on the image input that is able to determine the wear of the captured
cutting tools by applying approved and suitable image processing techniques for image registration



and segmentation. The output of this algorithms can be used to define and calculate an image based
measure for wear. This leads to an objective wear measure that can be observed over the cutting pro-
cess without requiring additional sensors. To allow an intuitive and interactive handling of the wear
measure, the algorithm output is encapsulated in a linked view visualization system that helps decision
makers estimate the wear behavior of a cutting tools.

Therefore this paper contributes:

• An objective, image based metric of wear

• A visual industrial system for cutting tool observation

• A comparative visualization of cutting tool wear behavior

The industrial vision system presented in this study will be applied to the detection of the wear
evolution of four cutting tools in Section Decision Making. The utilization of the developed vision
system enables the statistical, geometrical and temporal analysis of the flank wear in an objective
manner. The results will be discussed in Section Discussion and future directions are given in section
Conclusion.

Related Work

This Section will give an overview over the state of the art of cutting tool wear analysis covering
the available cutting measurement methodologies and visual industrial systems designed for cutting
processes.

Cutting Tool Wear Measurement
Cutting tool wear can be described by various methods as outlined in [5]. The following Section

will present the most common groups in relation to the presented method.
Various approaches measuring the wear of cutting tools based on additional sensors are available

[7, 8, 9, 13]. They can work on-line and are able to directly output a trustworthy and accurate mea-
surement of wear. Their common drawback is the additional hardware required to obtain the wear
measurement. These sensors can be expensive and require maintenance. In contrast to these methods,
this paper presents a wear measurement that is computed solely on the basis of images captured from
the cutting tools.

Statistical analysis [11, 12] is a further tool that can be used to obtain a wear measurement based on
image inputs. Therefore, a statistical model is used to estimate the wear of cutting tools according to
their material properties. Although these algorithms output promising results without requiring input
images they are limited to cutting tools, with known physical properties. Therefore, the presented
approach offers a wear measurement that can be computed independently from the cutting tool by
reviewing images.

Stereoscopic images are another approach to estimating wear of cutting tools [17, 18]. This method
utilizes images of different perspectives to reconstruct the cutting tool’s changed shape. The difference
of the original geometry to the changes in geometry is visualized by a colorcoding. Although this
provides an accurate description of the wear surface, it requires a special image generation process
which is not available in each setting. In contrast to that, the presented method is able to estimate the
wear based on ordinary captured images.

Visual Industrial Systems for Cutting Tools
Visual industrial systems aim at monitoring a production process during its operating to provide

on-line quality management [20]. The available visual industrial systems for cutting tools and their
abilities are summarized below.

Systems working on-line during the operation of a production line without outputting a visual
feedback of wear are widely used [15, 10]. The goal of these systems is to estimate the cutting tool



wear with the ultimate goal of determining when a cutting tool needs to be replaced by a new one.
Although this system lowers the effort in process control, it is not able to provide a visual feedback
to the decision maker. The result is a lack of trust in the monitoring system [4]. In contrast to the
summarized approaches, this paper provides a direct visual feedback to the decision maker.

Visual industrial systems providing a visualization are also available [14, 6, 16]. These systems
provide different outputs to identify the wear of a cutting tool and provide a visual alert for the de-
cision maker when to exchange the cutting tool. Although this is a suitable first step to determining
when intervention is required, these methods do not provide a relation between different cutting tool
behaviors. As the selection of a proper cutting tool is a crucial factor to the cutting process’s quality,
this is a desired feature. Therefore, the presented visual industrial system can be extended to the ability
of process monitoring of classical visual industrial systems to provide a comparative visualization of
the cuttings tool’s wear behavior.

Methods

The following Section presents a visual industrial system that is able to determine the flank wear of
cutting tools at specific points of time based on images captured of the cutting tool and provides a
comparison between different shapes of cutting tools. As shown in [20], an industrial vision system
can be divided in four stages: image acquisition, image processing, feature extraction, and decision
making. The following section will show how each of this steps can be performed using the presented
method.

Fig. 1: The industrial vision system pipeline applied to the presented use case: For each cutting tool
a data acquisition step is performed to obtain a reference image and images of the cutting tool after
different times of use. These images are forwarded in the visual system pipeline to obtain a local wear
measurement. For multiple results of these measurement a comparative visualization is presented in
this paper.

Image Acquisition
The Industrial Vision System is applied for determining the flank wear of turning tools (index-

able insert). Four indexable inserts with different cutting tool geometries [19, 28] were considered.
The wear state of each tool was recorded after successive cutting paths. The material machined was
Austempered Ductile Iron (ADI) 900, the cutting tool was made of coated cemented carbide. Further
Information on cutting and tool parameters are listed in Table 1.

Before the application of the tool (cutting path of 0 m), a reference image of the tool was recorded
with a common optical microscope. As can be seen in Fig. 2 left, no wear is detectable at this state.
After successive cutting paths of 50m, 150 m and 250 m images of the tool were recorded to capture



Indexable Insert
cemented carbide
· grain size: superfine (0.2 - 0.9 µm)
· 89.7 % tungsten carbide / 9.6 % cobalt / rest chrome
shape: DNMA 15 04 16
corner radius rϵ: 1.6 mm
tool included angle ϵ: 55°
wedge angle β: 90
cutting edge geometry:
· tool 1: sharp cutting edge
· tool 2: form-factor K ≈ 1 / cutting edge radius rβ ≈ 25 µm
· tool 3: form-factor K ≈ 1 / cutting edge radius rβ ≈ 55 µm
· tool 4: form-factor K ≈ 0,5 / cutting edge radius rβ ≈ 25 µm
Coating
AlTiN (approx. 2 µm)
Cutting process
cooling lubricant: dry
cutting speed: vc = 160 m/min
feed: f = 0.2 mm/U
depth of cut: ap = 2 mm
tool cutting edge angle: κ = 93°
tool orthogonal rake angle: γ = -6°
tool cutting edge inclination: λ = -6°

Table 1: Specifications of the four considered cutting tools in this study. Example images according
to each cutting tool can be found in Fig. 2.

the wear state of the tool (Fig. 2). In the figure, also the maximumwidth of the flank wear land V Bmax

was detected. As can be seen, this value is subjective and does not give any information on the wear
of the whole area of the flank face.

In industrial practice, tools are exchanged when a certain width of the flank wear land is reached.
This can result into premature exchange as the flank face might not be worn significantly despite a
high width of the flank wear land. On the other hand, it might also be the case that the flank face is
severely worn despite of a small width of the flank wear land. Hence an objective, 2-Dimensional
wear detection can improve sustainability and economy of cutting processes.

Mathematically, an image I is a two-dimensional matrix of pixels. The matrix has the size of
the image resolution, where each pixel can be addressed by its x and y coordinate. Each pixel in a
colored image holds the three different values encoding the color (red, green and blue). They can be
referenced as (x, y).r, (x, y).g and (x, y).b. These conventions will be used throughout this paper.
Usually, the values of the color components can vary between 0 (no color) and 255 (full color). To
ease the calculation, these values are normalized to be located between 0 and 1.

Image Processing
After the image acquisition is performed, the resulting set of images can be forwarded to the image

processing step of the industrial visual system pipeline. This step is required to correct minor issues
in the input images, such as registration and segmentation. Skipping this step would lead to incorrect
wear measurement outputs and therefore wrong decision making.

Image processing in general is a widely used term that covers multiple disciplines such as image
enhancement, image segmentation and geometric feature extraction [21].

For the available images in the presented case, two tasks belonging to the image processing pipeline
need to be solved. First, the cutting tools are not equally aligned in the input images, which requires



Fig. 2: Images of the four considered cutting tools before their use and after 0m, 50m, 150 and 250m.

a correction step called image registration. Second, it is required to identify the region in the image,
that belongs to the cutting tool through image segmentation. The following sections will show which
algorithms are used in particular and how they perform on the given input image.

Image Registration: As Figure 3 shows, the captured images are not aligned perfectly. This is
caused by the manual placement of the cutting tool to obtain an image. For a further comparison of
the images they need to be aligned such that these can be compared to the original image of the cutting
tool. This problem is known as image registration. There exists a large variety of image registration
methods each targeting different settings [22].

In general, all these methods work on two input images: a fixed image and a moving image. The
algorithm tries to estimate a transformation of the moving image that maps this moving image to the
fixed image as good as possible. Therefore, the algorithm is designed iteratively where an optimization
function is used to derive the required transformation. This function works on the basis of a specific
metric that determines the overlay of the two images. In this specific case, an enhanced correlation
coefficient [23] that is invariant to photometric distortions in contrast and brightness is used.

For each image of a specific cutting tool and its reference image, the image registration process is
performed to identify the transformation that matches them as good as possible. A sample registration
result can be found in Figure 3. a) displays the original image of the cutting tool before its use. b)
Shows the cutting tool used for 150m. It can be observed, that the tool is shifted to the bottom in
this image. c) Shows the 150 m used cutting tool after the image registration process. The red line
indicates that the shift was corrected. Based on this result, the wear of the displayed cutting tool can
be estimated by showing the difference between the registered images.

Fuzzy Image Segmentation Classically, a segmentation is defined as the partition of image pixels
into different groups, so called segments [24]. This can be accomplished by various different algo-
rithms that work based on different models. All of these algorithms output a second image that tags
the original image’s pixels according to the segment which they belong to.

Although these algorithms are used in a large variety, they come with one major problem. The
fixed assignment of image pixels to classes does not allow communication of the uncertainty of the



Fig. 3: Example of successful image registration. a) Reference image of cutting tool (fixed image).
b) Cutting tool of a) after 150 m use. The tool is shifted in the image due to the manual placement
on front of the camera (moving image). c) Output of image registration process for a) and b) as input
images.

image segmentation process. As real world images are usually affected by various inaccuracies, a fixed
segmentation output can contain various classification inaccuracies. In contrast to a fixed segmentation
assignment, a fuzzy segmentation assignment is able to communicate the uncertainty of a segmentation
process.

The method utilized in this paper is based on an initial user input [25]. With this input, the user
contributes his or her knowledge on where the cutting tool and the background are located in the
image into the segmentation process. These points are referred to as seed points sedge and sback. There
exist various algorithms which do not require user input. Although they can be run automatically, they
often require additional information about the image that needs to be segmented. With the given image
samples, this information is not available.

Fig. 4: a) Gray scaled image of cutting edge 3 with the user selected seed points for the cutting edge
(blue) and the background (gray). b) Segmentation result color coded with the seed point’s colors.
c) Weight of cutting edge segment for each pixel (white: full ownership, black: not ownership). This
result is forwarded in the visual industrial system pipeline. d) Uncertainty colorcoded with purple
highlighting the pixels in the image that cannot be clearly segmented.

Beginning with the user-defined starting points the algorithm assigns each point probability of be-
longing to the cutting tool or to the background. This is accomplished by measuring the distance from
an arbitrary pixel to each starting point. This distance is chosen as the geodetic path in the presented
case. In the presented case, we consider all pixels connected to their 4 direct neighboring pixels (top,
bottom, left and right). The length of this connection is the difference of the pixel values that are con-
nected. With this setup, the goal is to identify the distance for each pixel to the user defined starting
points. Therefore, it is obvious that there are multiple options. From all these options the shortest path
is searched. Therefore, the Dijkstra-Algorithm can be utilized [26]. Based on this, for each pixel it is
possible to identify the shortest path to one of the starting points for the cutting edge and the back-
ground. This distances for an arbitrary pixel p are referred to as dedge(x) (dedge) and dback(x) (dback).



Based on these distances, it is possible to assign each pixel a probability whether it belongs to the
cutting edge or not using the following equations:

ωedge =
(dedge)−2

(dedge + dback)−2
, ωback =

(dback)−2

(dedge + dback)−2
(1)

The weights ωedge and ωback sum up to 1. The smaller the distance of a pixel to a starting point of
the edge the higher the weight gets. On the other hand, this decreases the weight of this pixel for the
background. This works for the background class similarly. Based on this calculation, it is possible to
obtain a weighted segmentation result for an input image that divides a pixel in two probabilities: first,
the probability to belong to the cutting tool and second, the probability of belonging to the background.

Fig 4 shows the segmentation result for the first image of the acquired image series. The seed
points are shown in a). The resulting segmentation is colorcoded in b). The weights for the cutting
tool are shown in c). These weights are forwarded along the visual industrial system pipeline whereas
d) shows the uncertainty of the segmentation result. Purple indicates pixels that cannot be clearly
separated into tool or background. In the following calculations of the visual industrial system this is
a useful information to enhance the proposed wear measurement.

Feature Extraction - Image Based Wear Measurement
As shown in Section Acquisition, the image processing step outputs a set of differently long cutting

tools registeredwith their reference image and a segmentation for each reference image determining all
pixels that belong to the cutting tool. Based on this input, this paper presents a novel image-based wear
measurement. As the wear of a cutting tool is visible in the captured images as a changing upper border
of the cutting tool, the goal of the wear measurement is to capture this area specifically. Therefore, a
suitable mathematical description of the difference between the reference image to the image of the
worn cutting tool is required.

Considering a pixel location (x, y) the difference of an arbitrary pixel color component (in the
given case red, green and blue) can be calculated by D(x, y)c = Iref (x, y).c − Icurr(x, y).c, where c
can be red, blue or green. Based on this difference, the wear measurement can be defined as:

wearx,y = (0.21D(x, y).r + 0.72D(x, y).g + 0.07D(x, y).b)ωedge (2)

This outputs a value between 0 (no wear) and 1 (absolute wear) The chosen factors for each color
channel are given by the luminosity equation [27]. This equation determines the brightness of a color.
The weighting of the different color channels with the luminosity measurement lead to the result that
the lightness of the difference is taken into account. As can be seen in the images, the brightness of the
cutting tool surface changes if wear occurs. Therefore, luminosity is a suitable way to identify wear
in images.

Fig. 5: a) Reference Image of cutting tool 3. b) Cutting tool used 150 m (registered). Wear measure-
ment of each pixel shown with thresholds c) 0.0 resulting in RMS = 0.294 d) 0.1 resulting in RMS =
0.376 and c) 0.2 resulting in RMS = 0.482.

The weight of the reference image segmentation works as a stencil that controls the amount of how
important the current error is. If the pixel entirely (ωedge = 1) belongs to the cutting tool, it needs to
be considered completely. If the pixel does not belong to the cutting tool (ωedge = 0), this error does



not need to be considered. This allows the algorithm to neglect image differences in the cutting tool
background which do not contribute to the wear of the cutting tool.

As the reference image and the currently considered image can vary in each pixel due to image
artifacts, minor image changes are not of interest for the wear estimation. Therefore, a threshold can
be used to neglect all wear values that are smaller than the chosen value.

Figure 5 shows the local wears of a cutting tool in use. The darker the red color appears, the higher
the error is. The alpha value of the visible red color is depicted based on the resulting wear measure.
This results in a transparent red color, when the resulting wear is very low, whereas in contrast to this
a high wear measurement out results in an opaque red. The reference image of cutting tool 3 (a)) and
the image after 150 m (b)) are considered in this example. Different thresholds are used to select the
visualized wear measurements. c) 0.0, b) 0.1 and e) 0.2. The images show how minor wear values are
filtered. The noise produced by image artifacts is reduced by raising the threshold. The image shows
that the area of wear can be clearly identified.

As shown in the example, the presented wear measurement is a local criteria that can be computed
for each pixel in an image independently. In contrast to that, a global criteria that determines the wear
of the entire tool is required. To achieve this, the root mean square of all wear measurements provides
a global measurement of wear for each considered image.

Based on this measurement, it is possible to determine the wear for each image of a cutting tool
after a specific time of use in two ways: a quantitative measurement of wear through the root mean
square and a visual highlighting of the location of area where the wear occurs.

Decision Making - Visual System

Fig. 6: Resulting visualization for wear behavior of cutting edges 1-4. The visualization consists of
two parts. An ensemble root mean square graph showing the rise of wear during the cutting process
in an comparative manner. On top of that, the wear measurement for all considered cutting edges is
embedded in the original images to highlight the location of wear.



As shown in Section multiple samples of cutting tool are available that are coated with different
shapes. Due the the different shapes, different amounts of wear can be expected [19] . Therefore, a
comparative visualization is required to show how the wear of each cutting tool evolves over time and
also how the wear evolves depending on the different shape.

Therefore, Fig. 6 shows the resulting interface for the decision maker. The interface is divided
into two parts: the ensemble root mean square graph and a stacked view of the wear measurement
embedded in the original images.

The root mean square graph plots the root mean square results at each point in time for one cutting
tool in one color. Therefore, the resulting plot contains four graphs as four different cutting tool are
considered. As can be observed, the rise of wear over time for each cutting tool can be monitored. In
addition to that, the root mean square of wear between different types of cutting edges can be seen
clearly.

On top of the ensemble root mean square graph, the wear measurements for each pixel are dis-
played. The visualization solely shows the area where the wear occurs. Instead of solely visualizing
the wear measurement output, the measurement is embedded in the registered images of the cutting
tool. This results in a highlighting of areas that are affected by wear. This provides an intuitive way of
reviewing the wear behavior over time by considering the horizontally aligned images and compara-
tive reviewing of different cutting edge geometries at a specific point in time by considering vertically
aligned images. The images have a colored background that has the same color as the corresponding
root mean square graph. In addition to that, the position of the images is depending on the time point
and its position in the ensemble root mean square graph.

In summary this method implements an entire visual industrial system, that can be used to de-
termine the wear affects of cutting tools at different points in the production process and provide an
comparative visualization of effects for different cutting edge geometries.

Discussion

As Fig 6 shows, the presented visual industrial system is able to generate and visualize the wear
of cutting tools in an intuitive and general manner. The system is suitable for all kinds of images
independent in size and color. The system solely utilizes the provided image input which makes it
independent from further sensors that can be expensive or require maintenance. Still, the additional
usage of sensor information is not excluded and could also be incorporated as a color-coding in the
visualization.

The utilized image processing algorithm is suitable in the presented case as the results indicate.
Still, they increase the computational effort. A real-time usage as desired in on-line scenarios can
therefore not be guaranteed and may need further optimizations of the algorithms.

The visualization itself is easy to understand as the available image series are ordered as a two-
dimensional matrix (x-Axis: time of use, y-Axis: tool number). This allows the decision maker to
estimate the quality of a coating and compare it to others. The visualization is not restricted to a
specific number of time-steps or amount of cutting tools considered. Of course, the complexity of the
visualization raises with the number of input images used in the comparison.

The quality of the utilized wear measurement highly depends on the considered images. Anything
that is not visible in the image cannot be computed. As this would also not be visible with the naked
eye, this precision is sufficient.

In summary, the presented visual system is a powerful tool to calculate and visualize the wear of
cutting tools. Further experiments on how accurate the measurement matches sensor-based measure-
ments are subject of further investigation.



Conclusion

This paper presented an industrial vision system that is able to use arbitrary images of cutting edges,
prepare them with suitable image processing methods and apply a novel wear measurement to identify
the amount and location of wear without considering further sensors. The results for multiple wear
measurements can be visualized in an intuitive way to compare different cutting edge coatings and
review the wear of cutting tools over time. The Vision System can be applied to any cutting tool, i.e.
drilling andmilling tools can also be evaluated. In future works, the system and the wearmeasurements
will be related to force measurements of the process. The goal is to gain a factor relating the force to the
area of flank wear (N/µm²) and to define a new abort criterion for tool exchange. This new objective
and 2-dimensional abort criterion will help to increase efficiency of cutting processes and to reduce
waste.
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