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Abstract 

 
Recent research in retail facility layout has focused on developing analytical models to estimate visibility measures of 
novel rack layouts based on assumptions about a shopper’s field of view. However, because of the human element 
involved in the shopping experience, it is vital to compare these models relative to actual human performance. In this 
study, we evaluate the predictions of our previously developed analytical model (that estimates exposure of every 
location on a given rack layout assuming expected head movement) in a 3D Virtual Environment (VE). We conducted 
trials with 18 participants who were asked to find targets strategically placed on the racks for 9 unique layouts. A 
comparison of their performance with the analytical model suggested that our model performed well, but the 
performance varied across layouts. To enhance these exposure estimates from the analytical model, we combined it 
with parameters corresponding to human head movement collected from the VE study, along with layout and target 
location parameters, in a decision tree framework. Results indicate that combining analytical and empirical 
observations enhances the quality of estimates (test AUC = 0.9).  
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1. Retail Facility Layout 
The facility layout in a retail setting plays an important role in the presentation of products to customers [1]. In fact, 
sales are a function of the number of people who are exposed (visually connected) to products [2]. As such, researchers 
have widely alluded to product exposure as a measure of importance for retail layout design [3]. Designing retail 
layouts catered to human visibility would potentially result in reduced search time for already planned purchases, as 
well as influence shoppers to make more unplanned purchases. Retail managers meanwhile would benefit by 
strategically placing their products in ‘hot spots' potentially increasing impulse purchases. 

Our motivation for evaluating layouts based on exposure primarily stems from our personal visits to local 
retail stores, as well as discovery of up-and-coming retail layouts online (Figures 1-3). Racks placed at a more acute 
orientation could provide better alignment with human vision. Curved racks potentially allow shoppers to have a better 
view of products deep in the aisle, and can be visually more appealing. Many studies in the retail domain address or 
allude to human visibility, from both analytical [4,5] and empirical perspectives [6]. However, these studies do not 

Figure 1. Racks oriented at 45° Figure 2. Curved racks  Figure 3. Curved endcaps  Figure 1. Racks oriented at 45° Figure 2. Curved racks  Figure 3. Curved endcaps  
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consider the effect of layout (e.g., rack orientation and curvature) on shopper visibility. The existing analytical 
approaches also lack comparisons of their models to human behavioral data.  

The objective of this research is to compare our previously proposed analytical models with human 
performance through a study in a virtual store. That is, if our models suggested that orienting racks differently from a 
standard 90° would aid shoppers visually connect with more products, do actual shoppers experience that? What if 
the racks were curved as in Figure 2? Further, how would varying orientation and curvature affect the scanning pattern 
of shoppers? Would different layouts influence shoppers to make larger head rotations, or even increase the speed of 
their scanning? Using this information, we not only compare the performance of our analytical models with human 
performance, but also enhance the model’s predictions with key human performance factors to increase the quality of 
prediction. The main goal is to use such a combined analytical-empirical model in optimizing the rack orientation and 
curvature to meet specific objectives; e.g., maximizing impulse purchases due to increased product exposure (for the 
retailer) and/or minimizing search time (for the shopper). 

 
2. Existing Analytical Exposure 

Models with Human Vision 
Mowrey et al. [7] recently proposed an 
analytical model and an algorithm to 
capture the dynamic interaction between a 
walking shopper’s 2D field of regard 
(FoR) – the angular size of possible 
viewing angles for a fixation point – and a 
static layout of racks. They evaluated both 
exposure and intensity (time of exposure) 
of racks for varying orientations (θ).  

Guthrie and Parikh [8] expand 
their work to model this interaction in 3D, 
while also considering both the curvature 
(α) and height of racks. Figure 4 illustrates 
how they model a shopper 3D FoR. They 
consider angular limits of vision in both 
horizontal and vertical dimensions 
(Figures 4(a) and (d)), along with the depth 
of vision (DOV). The combination of both 
horizontal and vertical limits is modeled as 
an elliptical sector of a sphere; see Figure 
4(c), where they further break down these 
limits by head (𝛺𝛺) and eye (𝛷𝛷)  rotations. 
To illustrate how this shopper FoR interacts with a layout of racks, Figure 5 contains two layouts (θ =orientation and 
α=curvature) with overlaid profiles of the intensity of exposure (red = longest exposed, yellow = shortest exposed, 
white = not exposed). Notice the different intensity levels starting from rack 2 between these figures, which occur due 
to the dynamic interaction of the shopper FoR with the curvature and orientation of the racks, and the resulting 
obstruction of the shopper FoR.  

(c) Front view.  

(a) Top View.  

Figure 4. Modeling a 3D FoR. 

(a) Intensity of exposure for θ=90° and α=90° (b) Intensity of exposure for θ=30° and α=0° 

Figure 5. Rack layout with overlaid intensity.  

(b) Parameters for angular limits 
of vision. 

(d) Side view.  

Figure 4. Modeling a 3D FoR. 

(a) Intensity of exposure for θ=90° and α=90° (b) Intensity of exposure for θ=30° and α=0° 

Figure 5. Rack layout with overlaid intensity 
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3. Virtual Environment for Comparing the Analytical Model with Human Performance 
For this comparison, we evaluated human performance in a virtual environment (VE). This study was approved by 
Wright State University’s Institutional Review Board (IRB). 
 
3.1 VE Setup: The VE utilizes 27 LCD screens with LED backlight 
(each 55” in size) to create a three-walled CAVE-type immersive 
display to a height of 87 inches surrounding a 12x12 sq. ft. walkable 
area (see Figure 6). The optical tracking system composed of 11 
cameras provided maximum redundancy and accuracy to track the 
user’s head position. Based on that head position, the system recreates 
the user’s perspective view on all 27 displays in such a way that the 
user feels completely immersed in the scenario. A head tracker 
captures both horizontal (x-axis) and vertical (z-axis) head movements 
made by the human participant. Additional details about the VE setup 
can be found in Wischgoll et al. [9]. 
 
3.2 Study Design: We recruited 18 participants (of which 9 were female) between the ages of 19-26 years (avg=21.4) 
who had several years of prior shopping experience, and all were right-handed. Eleven participants had corrected 
vision and wore their glasses; all passed a visual acuity test. Each participant was informed through an IRB consent 
process before participating. We limited our study to evaluating 9 rack layouts comprising all combinations of 3 values 
each of theta and alpha (θ = 45°, 90°, 135° and α = 0°, 30°, 90°). All racks were above the participant’s eye height. 
Participants evaluated all 9 layouts over a 1-hour study period (including training). For each layout (containing 10 
racks on either side), a participant was asked to search for targets (12 red colored squares, 1″x1″ in size) strategically 
placed on the front and back faces of the racks at distinct rows (i.e., heights) and columns (i.e., distance from walking 
aisle). The shopper’s walking along the aisle was simulated by configuring the VE to move at a speed of 3.33 fps 
(similar to 3.41 fps in Daamen [10]) while the participant remained stationary. We simulated bidirectional travel by 
first letting the racks pass by the shopper in one direction and then reversing the environment to let the racks pass by 
in the reverse direction for the same layout. Participants were asked to push a button on a wireless device and call out 
the aisle number and side (left or right) when they saw a target. We conducted a total of 324 trials (18 trials x 18 
participants) while recording their head movements. 
 
4. Observed Human Behavior and Performance in the VE 
Since we were able to record the actual head movements for each participant, we derived several measures to broadly 
analyze their scanning patterns. For this study, we focus on horizontal scanning patterns; vertical scans were relatively 
consistent with minimal variance and thus are not discussed. First, we calculated both the ‘average head rotation’ and 
the ‘maximum head rotation’ specific to each layout (in both forward and reverse directions). Figure 7 shows the time 
history for angular position (horizontal) for one participant in a layout with θ=135º and α=0º.  

 
Figure 7. Head Rotation (horizontal) for single participant run 

 
Each time the participant’s head rotated across the center line of their pathway (0°), we recorded the maximum angle 
of the head turn. To derive an ‘average head rotation’ for each participant (p), we subsequently averaged these values 
(left and right, separately) across all orientations (θ), curvatures (α), and directions (d); these are notated as 
𝛺𝛺𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃
𝐻𝐻𝐻𝐻−𝐴𝐴𝐴𝐴𝐴𝐴and 𝛺𝛺𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃

𝐻𝐻𝐻𝐻−𝐴𝐴𝐴𝐴𝐴𝐴 , respectively. Averaging across both directions and across all participants helps estimate the 
overall ‘average head rotation,’ 𝛺𝛺𝜃𝜃𝜃𝜃𝜃𝜃

𝐻𝐻−𝐴𝐴𝐴𝐴𝐴𝐴. Similarly, we derive the average ‘maximum head rotation’ across the two 
sides and all participants as 𝛺𝛺𝜃𝜃𝜃𝜃𝜃𝜃𝐻𝐻−𝑀𝑀𝑀𝑀𝑀𝑀 .  
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Figure 6. The VE set up; our co-author 
pictured 



Guthrie, Parikh, Witlock, Glines, Flach, Watamaniuk and Wischgoll 

Further, we derived the average angular speed (degrees/second or deg/s), average crossing speed (deg/s), 
number of center crosses, bias, and extreme head activity. Average angular speed was calculated by taking the average 
change in head position (over an increment of 0.001 sec) divided by the total run time. The number of center crosses 
was calculated as the number of times participants’ heads rotated across the center point of the display (i.e., 0° line in 
Figure 7). Crossing speed is the average instantaneous velocity of a participant’s head rotation for all crosses in a run. 
Bias was defined as the proportion of time a participant’s head position was left of the center line, whereas ‘absolute 
bias’ represents the magnitude to which a participant favored either the right or left side. This is estimated as |0.5 – 
bias|. We define extreme head activity as the proportion of time where speed of head position was above 100 deg/s or 
acceleration above 500 deg/s2. This can be a factor in a participant not seeing a target due to such fast head movement.   
 Figure 8 depicts the normalized averages across 18 participants for each measure visualized as a star plot, for 
all 9 layouts. Values are normalized linearly on a 0-1 scale for each measure; 1 corresponds to the outer gridline, 0 is 
the center. Observing in Figure 8(a) the relatively high values of average angular speed, average head rotation, 
maximum head rotation, and extreme head activity for θ values of 135°, followed closely by 90°; these measures are 
close to 0 for θ = 45°. This is because rack orientations of 90° or greater required the shopper to use faster and larger 
head rotations to closely align their head rotation angle to the orientation of the racks given the constant forward 
translation. For racks oriented at 45°, however, much less head movement was required to see both rack faces.  

Further, racks oriented at 90° resulted in participants being more biased toward one side verses the other, in 
addition to making a minimal number of crosses at relatively high speeds. These movements may be due to the 
relatively condensed space for these layouts (i.e., deviations of θ and α from 90° and 0° result in increased floor space 
and travel path – space models not included due to space limitations), exposing participants to view a relatively large 
quantity of rack area per unit of time along their path. For reverse travel in each of these layouts, similar, but opposite 
patterns were observed likely because the angles in the reverse direction are complementary to the forward travel. So 
for the same participant, the behavior for θ = 135° in the forward direction would closely resemble that for θ = 45°in 
the reverse direction (Figure 8(b)). 

 
 

5. Comparison of the Exposure Models with Human Performance 
We compare predictions from our analytical model (where estimated intensity≥1s meant shopper is exposed to the 
target) with human performance data. Based on whether a participant sees a target (i.e., a ‘hit’) or does not see it (i.e., 
a ‘miss’), targets are classified as either true positive (TP or predicted hits; i.e., model predicts participant will see and 
participant actually sees), false positive (FP or unpredicted hits; i.e., model predicts participant will see, but participant 
does not see), true negative (TN or predicted misses; i.e., model predicts participant will not see and participant does 
not see) and false negative (FN or unpredicted misses; i.e.,  model predicts participant will not see, but participant 
sees). To then access the performance of our model, we calculated the positive prediction value (PPV), negative 
prediction value (NPV) and accuracy (ACC), where PPV= 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
, NPV= 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
, and ACC= 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇
. The PPV 

measure fundamentally tells us, ‘for targets our model predicted to be seen, what proportion were actually seen?’ NPV 
contrarily answers ‘for targets our model did not predict to been seen, what proportion were actually not seen?’ The 
ACC measure however represents (1 – total error rate), where the error rate accounts for both overestimates (FN) and 
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underestimates (FP). Figure 9 contains average values (across all participants for each layout); global averages were 
PPV=0.82, NPV=0.72, and ACC=0.77. Layouts with NPV=0 contained no targets not predicted to be seen.  

These results indicate that our 
analytical exposure models performed fairly 
well on certain layouts. For instance, for layouts 
with θ=135°, (forward travel) and θ=45° 
(reverse travel), the PPV was 1.0 and 0.98, 
respectively; ACC was acceptable too, 0.85 and 
0.80, respectively. On the contrary, our models 
performed relatively weaker for layouts with 
θ=45°, (forward travel) and θ=90° (reverse 
travel); PPV=0.71 and 0.81 (ACC=0.70 and 
0.71), respectively. One possible explanation 
for these differences may be the distribution of 
intensity values for specific layouts. For 
instance, the average intensity value of targets 
predicted to be seen for layouts with θ=135°, 
(forward travel) and θ=45° (reverse travel) were 
6.7 and 6.8 seconds respectively, whereas those 
for layouts with θ=45°, (forward travel) and 
θ=90° (reverse travel) were 3.9 and 4.2 seconds respectively.  Participants were more likely to see targets with higher 
intensity values in the former instances, leading to a higher match with the predictions from the analytical model; 
recall, if the intensity is >1 second, the analytical model would mark it as likely seen.  
 
6. Enhancing the Analytical Exposure Models with Human Behavior 
Considering that the participants altered their scanning pattern based on the layout (whereas our analytical model 
assumed a single, fixed, FoR for all layouts), we sought to utilize these unique scanning patterns to enhance the quality 
of exposure predictions from the analytical models. As a first step, we combined both the analytical estimates and 
human behavior measures into a prediction model using decision trees. We chose this non-parametric approach for 
two reasons; first, the normality and relevant assumptions for use of ANOVA could not be verified, and second, the 
decision tree model aids in intuitive analysis via if-then rules. We built four decision tree models, each with an 
incremental addition of factors. Model 1 uses only the analytical model (AM) estimates (i.e., estimated intensity of 
exposure of a target in seconds). Model 2 included layout and target parameters (e.g., θ, α, direction, target location 
quantified as the row and column on a rack). Models 3 and 4 included human behavior factors (from Section 5); Model 
3 was allowed limited number of splits, while Model 4 was allowed to have unlimited splits. We used a train-
validation-test approach (60:20:20 split of 324 data elements), where the validation data was used to stop model 
training to avoid overfitting.  

Table 1 summarizes the 
performance of these models on AUC 
(area under the ROC curve) and test 
ACC. Notice that the Test AUC 
(measure of the model’s performance on 
unseen data), is reasonably high just 
with the predictions from the AM 
(Model 1). The other models show the 
incremental benefits to the Test AUC.  

Individual contributions of parameters for each model are shown in Table 2. The number of splits refers to 
the number of times a node is divided. G2 is the likelihood ratio chi-square statistic (i.e., higher values indicate higher 
variation within a parameter with respect to the response). A deeper analysis of these decisions trees revealed that the 
root node (first split) in all the 4 models was always based on the intensity estimate from the AM. This is intuitive as 
the quality of prediction of the AM is already fairly high. After this, the next few splits were largely dependent on the 
location of the target (rack face, and target column) and the layout (orientation and curvature). Further, with the 
exception of average head rotation, the splits for human parameters in Models 3 and 4 were generally located towards 
the bottom of the decision trees (farthest from the root node). In both models, average head rotation occurred as the 
2nd split for lower intensity values. In other words, if intensity values were low, the odds of a participant seeing the 

Table 1. The four enhanced exposure models based on decision trees 

# Factors included in the 
Decision Trees 

# of 
Splits 

AUC ACC 
Train 
(60%) 

Validation 
(20%) 

Test 
(20%) 

Test 
(20%) 

1 Analytical Model (AM) 21 0.861 0.857 0.860 0.795 
2 AM + layout + target 29 0.923 0.905 0.890 0.818 

3 AM + layout + target + human 
(limited splits) 27 0.922 0.881 0.889 0.828 

4 AM + layout + target + human 63 0.938 0.908 0.912 0.835 
 

α = 

θ = 

Figure 9. PPV, NPV, and ACC averaged across 18 participants 
α = 

θ = 
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target were highly dependent on the 
average extent to which they rotated their 
head. Overall, Models 2 and 3 appear to 
strike a good trade-off between the quality 
of exposure predictions for a layout and 
the model’s complexity. 

 
7. Conclusion and Next Steps 
The objective of this study was to 
compare the findings from a recently 
proposed analytical model (for estimating 
exposure of racks in a 3D retail store) to 
human performance. To do this, we 
designed a virtual environment of a retail 
rack layout, where curved racks were 
placed at various orientations. We asked 
18 participants to search for targets in 9 
unique layouts. Our trials revealed 
substantial variation in the head 
movement of these participants. The 
analytical model, that assumed an 
expected horizontal head movement with 
a single scan at each shopper step, 
appeared to perform reasonably well. However, further enhancements to the exposure estimates are possible with the 
inclusion of target and layout parameters in a decision tree framework. The inclusion of human behavior parameters 
further increased the prediction quality, but only marginally. Essentially, both Models 2 and 3 seem to provide good 
tradeoff in terms of quality of estimates and complexity.  

As next steps, we plan to use either Model 2 or 3 as exposure estimates in an optimization model to determine 
the optimal rack orientation and curvature that maximizes total exposure under space constraints. If possible, we will 
derive expected impulse purchase (retailer) and improved experience (shopper) as functions of total exposure of a 
layout in subsequent optimization models. 
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Target column 7 201.8 Avg. head rotation 5 109.7 
Curvature 5 88.0 Curvature 6 90.2 
Orientation 4 76.3 Avg. angular speed 4 63.2 
Direction 1 25.2 Abs. bias 3 34.9 
Target row 1 23.1 Direction 4 30.3 
Model 3: Intensity + layout + target 

+ some human parameters 
Avg. crossing 
speed 3 29.9 

AM-Intensity 5 968.6 Center crosses 2 26.1 
Face (front/back) 4 186.0 Saccade time 2 25.9 
Target column 7 163.4 Max head rotation 2 25.0 
Curvature 5 92.9 Target row 1 7.7 
Orientation 3 66.7    
Avg. head rotation 1 51.4    
Avg. angular speed 1 51.1    
Direction 1 18.1    
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