
Visual Analytics of Cascaded Bottlenecks
in Planar Flow Networks

Abstract—Finding bottlenecks and eliminating them to in-
crease the overall flow of a network often appears in real world
applications, such as production planning, factory layout, flow
related physical approaches, and even cyber security. In many
cases, several edges can form a bottleneck (cascaded bottlenecks).
This work presents a visual analytics methodology to analyze
these cascaded bottlenecks. The methodology consists of multiple
steps: identification of bottlenecks, identification of potential im-
provements, communication of bottlenecks, interactive adaption
of bottlenecks, and a feedback loop that allows users to adapt flow
networks and their resulting bottlenecks until they are satisfied
with the flow network configuration. To achieve this, the definition
of a minimal cut is extended to identify network edges that form a
(cascaded) bottleneck. To show the effectiveness of the presented
approach, we applied the methodology to two flow network setups
and show how the overall flow of these networks can be improved.

Index Terms—Visual Analysis, Bottleneck Visualization, Flow
Networks, Planar Graphs, Maximum Flows, Minimum Cuts

I. INTRODUCTION

The analysis of flows is an important topic in various
applications, such as cyber-security [12], biological pathway
analysis [28], and cyber-physical manufacturing systems [13].
An important aspect arising in the context of optimizing
such networks is the identification and elimination of bottle-
necks [16].

The analysis of bottlenecks in such networks can be ac-
complished via flow networks, with entities represented as
nodes/vertices and their relation as edges of the network.
Depending on a network’s setting, each of these edges has a
specific capacity, describing the maximum flow between two
connected entities. To identify a bottleneck of a network, the
corresponding flow network is analyzed. Several requirements
need to be fulfilled for an analysis to be meaningful (see
Section II). Contrary to intuition, the bottleneck of a flow
network is not a single edge between two nodes. Instead,
a bottleneck is a set of edges. The minimum cut of a flow
network can help with describing these bottlenecks. This cut
separates the nodes of the flow network into two groups: one
that can be reached by the network’s source, and the other
defined by the remaining nodes. In this graph-theoretical setup,
the question arises how to identify the true bottleneck edge in
the group of minimum-cut edges, how to visually encode this
bottleneck, and how to increase the maximum flow in a flow
network, when there are no nodes that can be reached by the
source and sink simultanously (e.g., cascaded bottlenecks).

We introduce a visual analysis methodology for cascaded
bottlenecks in planar flow networks consisting of multiple
steps. It is based on the work of Post et al. [17] and extends the

definition of a minimum cut in a flow network by separating
the nodes in a network into three groups: nodes that can
be reached from the source, nodes that can reach the sink
of the network, and the remaining nodes. This definition
allows an enhanced classification of edges crossing these
regions to identify those edges that are the bottlenecks of the
network. When these regions are not attached to each other,
the presented methodology allows a user to identify poten-
tial bottlenecks, high-lighted for effective communication. To
define an intuitive visualization of bottlenecks in a network,
we present a visualization based on the Voronoi diagram [10]
derived from the underlying graph’s node layout. Color-coded
regions indicate bottleneck transition in a flow network. Our
visualization supports user interaction that enables theusers to
manually adapt cascaded bottlenecks and increase the overall
flow throughout a network. To study the influence of user
defined changes, our approach involves a visual feedback loop
to allow users to refine network settings until the network’s
flow properties are as desired, see Section III.

In summary, this paper makes the following contributions:
• An extended definition of the minimum cut for flow

networks
• An intuitive visualization of a minimum cut in a flow

network and cascaded bottlenecks
• An interactive visual analytics approach that allows users

to increase overall flow in a network
To show the effectiveness of the presented approach, we

show how to improve the overall flow in two networks and how
it satisfies the defined requirements for bottleneck analysis, see
Section IV.

II. RELATED WORK

This section summarizes the state of the art in minimum
cut visualization as well as techniques that help to increase
the overall flow in a network. Further, this section decsribes
the requirements that must be fulfilled to perform meaningful
bottleneck analysis.

A. Comparative Visualization of Minimum Cuts

Vehlow et al. [26] presented a state-of-the-art report sum-
marizing available network drawing methods with the goal
of grouping the nodes of graphs. Although they presented a
large variety of graph-drawing algorithms, an intuitive visual
mapping of the minimum cut itself was not presented. In
contrast, our approach introduces a visual encoding for the
minimum cut based on Voronoi diagram tiles.

Brandes et al. [3] presented a planar visualization of the
minimum cut in flow networks by arranging a network in a
rectangular manner and adding a poly-line to indicate the cut.
This method is widely used in open-source solutions discussed
by [11], [14], [15]. Although this method provides a suitable
first indication of the minimum cut, it cannot indicate edges
in a flow network that represent a bottleneck in the network.
Our approach utilizes the method of Brandes et al. [3] as a
foundation and refines the definition of a minimum cut to
enhance transitions that form the bottleneck of the considered
system.

B. Cascaded Bottleneck Analysis

The identification and visualization of bottlenecks is an
important problem when considering overall flow in a network
[27]. This Section discusses the state of the art.

Alstott et al. [2] presented a method that supports the
identification and adaptation of cascaded bottlenecks through
a computational approach. Although this approach produces
a new flow network with an overall increased flow, it does
not allow users to review different options to increase the
flow. Therefore, our method visually communicates available
options to a user, to increase the overall flow of a network;
visually guides are presented to the user in this process.

Scholz-Reiter et al. [23] presented an analytical approach to
model dynamic bottlenecks in manufacturing systems. Their
approach can be used to classify edges in a flow network as
(cascaded) bottleneck edges. Although this approach allows
one to classify bottleneck edges, it does not allow one to vi-
sually inspect and adapt them. Our approach therefore includes
a visual tool to adjust bottleneck edges.

Qi et al. [19] presented a visual analytics approach to
identify bottlenecks in a road network by examining the
average speed of cars on a road segment. Although this
technique shows where traffic is currently moving slowly, it
does not provide insight to the real bottleneck edges in the
flow network. Thus, we present an approach that permits the
identification of bottleneck edges and allows users to adapt
them.

Methods to examine and increase the overall flow in a water
distribution system [20], [24] typically utilize graph theory
concepts, such as minimum cuts, to compute the optimal
setting of a water distribution network when considering
specific parameters. Although this approach provides decision
makers with a suitable overview of an optimal setting in a flow
network, it does not indicate which edges in the flow network
require adaptation to achieve the desired behavior. Our visual
approach makes it possible to identify bottlenecks in a flow
network and allows users to interactively adjust them.

C. Requirements for Bottleneck Analysis

In order to provide an effective analysis of cascaded bot-
tlenecks in planar flow networks, the following requirements
have to be satisfied.

R1: Identification of the bottlenecks [21]

In order to increase the overall flow in a flow network,
bottleneck edges must be identified. This includes single
bottlenecks that consist of one edge as well as bottlenecks
that are composed of multiple edges in the network.

R2: Identification of potential improvements [18]
In a variety of cases, more than one bottleneck can exist.

Multiple edges in a flow network can be classified as bot-
tleneck edges that can obtain a higher capacity in order to
increase overall flow in a network. The goal is to identify
different options.

R3: Communication of bottlenecks [4]
As users from different domains need to determine the edges

in a flow network where capacity needs to be increased, the
identified bottleneck edges need to be visually communicated
to users in an intuitive manner.

R4: Interactive adaptation of flow [22]
A flow network usually corresponds to specific physical

objects. Users need to be enabled to select the edge (objects)
that require a larger capacity.

R5: Feedback loop [6]
After altering the capacity of edges, the overall flow and

bottleneck edges can change. A feedback loop is required that
permits users to examine the effects of new settings, enabling
them to make further changes when necessary.

The overall goal is to provide a visual analytics tool that is
capable of satisfying these requirements.

III. METHODS

The analysis of bottlenecks in flow networks is an essential
task for many real world applications in planning and engi-
neering. This section presents a method to visually inspect
single bottleneck fronts in planar flow networks developed
by Post et al. [17]. Based on this, a method to analyze the
propagation of bottlenecks for a network with an ensemble of
different configurations is demonstrated.

A. Flow Networks

Fig. 1: Flow network consisting of vertices, directed edges,
a source and sink vertex, and a flow and capacity value per
edge. The capacity limits the flow. Except the source and sink,
all vertices preserve the flow [17].

This section relies on the general definition of flow networks
with a single source and sink, which is presented below.
Figure 1 shows an example for such a flow network. A network

N = (G, c, s, t) consists of a directed graph G = (V,E) with a
finite set of vertices V and a set of directed edges E ⊆ V ×V .
Here, the edges should not include self loops or multiple edges
in the same direction between any two nodes. The capacity
function c : E → R+ assigns a non-negative capacity value to
every edge in the network. The vertices s, t ∈ V with s 6= t
should be the only source and sink in the network, respectively.

A flow f : E → R+ is a function assigning a non-negative
flow value to each edge in the network. Hence, a flow network
is a network together with a specific flow on it. There are
several constraints that apply to such a flow. The flow should
be limited by the capacity, thus, ∀e ∈ E : f(e) ≤ c(e),
i.e., the flow along an edge is never larger than the edge’s
capacity. Also, all vertices except the source and sink should
preserve the flow, thus, ∀v ∈ V \ {s, t} :

∑
(w,v)∈E f(w, v) =∑

(v,w)∈E f(v, w), i.e., the total incoming flow is equal to
the total outgoing flow for a vertex. For the source, the total
outgoing flow is larger than the total incoming flow, and for
the sink this is reversed.

The value of an s-t-flow |f | =
∑

(s,w)∈E f(s, w) −∑
(w,s)∈E f(w, s) is the value of the outgoing flow of the

source s minus its incoming flow. Since all vertices except
the source s and sink t preserve the flow, this is the same
as the value of the incoming flow of the sink s minus its
outgoing flow. This work focuses on planar flow networks.
To restrict the general definition of (flow) networks to planar
(flow) networks, the respective graph G should be planar.
This means that G can be plotted in a plane without edges
crossing each other. Figure 1 shows an example for a planar
flow network with a proper embedding in the image plane.

(a) (b)

(c) (d)

Fig. 2: Residual network of an exemplary network with
maximum flow with vertices/edges reachable forwards from
source or backwards from sink (left images), and the original
network with minimum cut and classified Voronoi cells (right
images). The classical construction of a minimum cut (upper
images) suggests wrong bottleneck edges, while the new ex-
tended construction (lower images) shows the true bottleneck
transitions (blue to black) [17].

B. Maximum Flows
A maximum flow f̂ on a network N has the largest value

among all possible flows on N , thus, there exists no other

flow f with |f | > |f̂ |. Maximum flows are interesting, since
lower capacity constraints could be used to achieve flows with
smaller values. This means that given capacity constraints limit
maximum flows only. Thus, to evaluate the full potential of
networks, the maximum flows have to be analyzed. This leads
to the question of how to find a maximum flow for a given
network. The method of Ford and Fulkerson [9] is a general
approach to find such a maximum flow. To understand this
approach, the definition of a residual network needs to be used.

For a given flow network N = (G, c, s, t) with flow f the
residual network is defined as Nf = (Gf , cf , s, t) with Gf =
(V,Ef). Thus, the vertices V and the source s and sink t of
the residual network are the same as the ones of the given
network, though the edges Ef and their capacities cf change.
The edges and capacities of the residual network are defined
as follows. For each edge (v, w) ∈ E a forward edge (v, w) is
added to Ef if f(v, w) < c(v, w). The capacity of such a new
forward edge (v, w) is set to cf (v, w) = c(v, w) − f(v, w).
For each edge (v, w) ∈ E a backward edge (w, v) is added
to Ef if f(v, w) > 0. The capacity of a new backward edge
(w, v) is set to cf (w, v) = f(v, w). Following this definition,
a residual network describes the amount of flow that can be
added to an edge before the capacity limit is reached (forward
edge), and the amount of flow that can be subtracted from an
edge before a negative flow would arise (backward edge).

The method of Ford and Fulkerson operates on these
residual networks. A directed path from the source to the
sink is found in the residual network. This path is called an
augmenting path, since the flow of the edges in the original
network on this path can be improved thereby increasing the
value of the overall flow in the network. So for a forward
edge in the residual network, the flow of the original edge is
increased and for a backward edge in the residual network,
the flow of the original edge is decreased. This procedure is
iterated as long as no more augmenting paths can be found
in the residual network. It can be shown that the value of the
resulting flow is maximal, so the resulting flow is a maximum
flow.

The algorithm of Edmonds and Karp [7] uses a breadth-first-
search from the source to always find a shortest augmenting
path in the residual network. This ensures the termination of
the algorithm as well as a polynomial bound of the algorithm’s
run-time, leading to an efficient algorithm to find maximum
flows. It can be shown that the run-time complexity of this
algorithm is in O(|V | · |E|2), i.e., the run-time is bounded
asymptotically by k · |V | · |E|2 for a fixed constant k, |V |
vertices and |E| edges, and therefore is not dependent on the
capacities. Although even lower-complexity algorithms with a
complexity of nearly up to O(|V | · |E|) are known, the method
of Ford and Fulkerson was demonstrated above, as the shown
definitions like augmenting paths is used in the following.

C. Minimum Cuts

To find bottlenecks in networks, maximum flows can be
considered. For a given network with a path from source to
sink, if all edges in the network were unsaturated the value of

(a) (b)

Fig. 3: A planar flow network and its extended minimum cut (image (a)). The spatial separation of the blue and black regions
shows that the flow network does not have a single bottleneck front. A method to analyze cascaded bottlenecks is required.
The strongly connected components for the residual network are shown color-coded (shades of purple), and their transitions
form candidates for the cascaded bottlenecks of interest (image (b)).

the flow could be increased. So for a maximum flow in this
network there have to be saturated edges. For these edges the
flow value equals the capacity value, so the flow cannot be
increased any further. One could easily think that increasing
the capacity of such an edge would result in a larger maximum
flow, i.e., such an edge would be called a bottleneck edge in
the following. It turns out that this intuition is incorrect and
an increase of the capacity of such an edge is not guaranteed
to increase the value of the maximum flow. To countervail this
effect, this work focuses on cuts instead of flows.

An s-t-cut C = (S, S′) is a partition of the vertices V into
the disjunct sets S ⊂ V with s ∈ S and S′ ⊂ V with t ∈ S′

such that S ∪ S′ = V . The capacity of an s-t-cut |C| =∑
(v,w)∈E : v∈S ∧ w∈S′ c(v, w) is the sum of the capacities

of edges from a vertex in S to a vertex in S′. A minimum cut
Č of a network N has the smallest capacity among all possible
cuts of N , so there exists no other cut C with |C| < |Č|.

The max-flow min-cut theorem [8] from graph and opti-
mization theory states |f̂ | = |Č|, so the value of a maximum
flow is equal to the capacity of a minimum cut and vice versa.
This means that instead of considering maximum flows for
the analysis of the performance and bottlenecks of networks,
minimum cuts can be utilized.

The standard approach to find a minimum cut for a given
network is to first calculate the maximum flow as described
above, and then to collect all vertices that are reachable from
the source vertex in the resulting final residual network. Those
vertices form the set Š of the cut, with Š′ = V \ Š being
the set of remaining vertices. The desired minimum cut is
Č = (Š, Š′).

Figure 2(a) shows the residual network of the maximum
flow, the collection of vertices starting from the source in blue,
and the remaining vertices in white. To enhance the intuitive-
ness of the visualization and enable users to easily analyze
minimum cuts, Figure 2(b) colors the Voronoi cells [10] of
each vertex by a partition-specific color, blue for the vertices
in S and white for all other vertices in S′. The Voronoi cell of
a vertex is the region of all points that are closer to this vertex
then to all other vertices. By using Voronoi cells that share a

common border to other cells of the same color, regions for
both partitions of the minimum cut are formed.

As can be seen, the previously considered edge (Source,B)
starts and ends in the blue region and cannot be increased to
increase the value of the maximum flow. Hence, this edge is
not a bottleneck edge. In general, for all edges ending in S
(blue region) by construction there exists a directed path in the
residual network from the source to the endpoint of the edge.
Thus, instead of increasing the capacity of such an edge, the
flow along this path could be improved. An edge ending in S
(blue region) cannot be a bottleneck edge. In contrast to this,
one could investigate the behavior of an edge starting in the
blue region and leading to the white region. As and example,
the edge (A,C) with values “3/3” is considered. Again the
intuition fails and the considered edge is not a bottleneck edge.

This shows that the general definition of a cut is not enough
to find bottleneck edges. To compensate this shortcoming, this
work extends the construction of a minimum cut by adding a
third set T ⊂ V to the partition. Figures 2(c) and 2(d) show
the same visualizations as before, but this time all vertices that
have a directed path to the sink in the residual network are
collected in the set T and colored in black. All vertices that
are not reached from the source or do not reach the sink form
the set R ⊂ V with R = V \ (S ∪ T) and are left white. The
new partition is P = (S,R, T) (blue / white / black regions)
with disjoint sets S,R, T ⊂ V , and S∪R∪T = V , and s ∈ S
and t ∈ T .

All edges starting in T (black region) cannot be bottleneck
edges, since by construction there exists a directed path in
the residual network from the starting point of the edge to
the sink. All edges ending in R (white region) also cannot
be bottleneck edges, since by construction they do not have a
directed path in the residual network from their endpoint to the
sink. Increasing the capacity of such an edge could increase
the value of a flow from the source to the edge’s endpoint, but
not to the sink. The overall flow would not increase, hence the
edge is no bottleneck. Analogously, edges starting in R (white
region) also cannot be bottleneck edges.

Proof: Let (v, w) ∈ E with v ∈ S and w ∈ T be an

(a) (b)

Fig. 4: The flow network from Figure 3(a) with its cascaded bottleneck candidates (image (a)). This flow network is used for
the construction of the forward graph (image (b)).

edge leading from S (blue region) to T (black region). By
construction, there exists a directed path (v1, v2, ..., vn) with
v1, v2, ..., vn ∈ V and v1 = s and vn = v in the residual net-
work from the source s to the starting point v of the edge. By
construction there also exists a directed path (w1, w2, ..., wm)
with w1, w2, ..., wm ∈ V and w1 = w and wm = t in the
residual network from the endpoint w of the edge to the
sink t. If both paths had a common vertex vi = wj , the
path (s = v1, v2, ..., vi−1, vi = wj , wj+1, ..., wm−1, wm = t)
would be an augmenting path, and hence the given flow would
not have been a maximum flow. Thus, both paths are disjoint
and do not increase the overall flow without modifying c(v, w).
Also, the flow f(v, w) of the given edge equals its capacity
c(v, w), because otherwise the edge (v, w) would be included
in the residual network and the path (s = v1, v2, ..., vn =
v, w = w1, w2, ..., wn = t) would be an augmenting path.
But by modifying the capacity c(v, w) to a greater value
c′(v, w) > c(v, w) it holds that f(v, w) < c′(v, w), thus, the
edge (v, w) is included in the modified residual network. This
leads to an augmenting path (s = v1, v2, ..., vn = v, w =
w1, w2, ..., wn = t) that can be used to increase the value
of the overall flow. Hence, increasing the capacity of an edge
from S to T increases the value of the maximum flow, thus, all
edges from S (blue region) to T (black region) are bottleneck
edges.

The overall approach works by first performing a max-flow
calculation followed by two separate breadth-first-searches in
the residual network starting forward from the source and
backwards from the sink, respectively. Since the residual
network has the same number of vertices and at most twice
the number of edges than the original network, the run-time
complexity of the breadth-first-searches is in O(|V | + |E|),
i.e., the complexity and limitations of the overall approach are
dependent on the chosen max-flow algorithm, as described
above.

We described a method to visually analyze single bottleneck
fronts in planar flow networks. Here, transitions from S (blue
region) to T (black region) were bottlenecks. As Figure 3(a)
shows, there are cases where there are no direct edges leading
from S to T since the blue and the black regions are separated

spatially. These flow networks do not have a single bottleneck
front but cascaded bottlenecks sequentially following one
another. The question arises how the overall flow can be
increased, since there is no single edge with a capacity limit
that can be increased to do so.

To develop a method to analyze cascaded bottlenecks in
planar flow networks, the strongly connected components
(SCCs) [1] of the residual networks are evaluated (see Fig-
ure 3(b)). The SCCs can be calculated efficiently by Tarjan’s
algorithm [25] which has a run-time that is linear in the
number of vertices and edges. The general definition of
strongly connected components is a unique (except permu-
tation) decomposition C1 ∪ ... ∪ Ck = V of the vertices V
into a minimal number of disjunct sets C1, ..., Ck ⊆ V of
mutually reachable vertices with ∀ v, w ∈ Ci : v reaches w
for all i ∈ {1, ..., k}. The components have maximal size and
there is a directed path from each vertex to each other vertex
within the same SCC, and no directed path either to or from
the vertices of another SCC. Since the residual graph is the
graph of the residual flow, its SCCs indicate candidates for
the bottlenecks. Additional flow can move freely within one
SCC, while crossing the boundary between two neighboring
SCCs might lead to the need to increase the capacity value of
this particular edge (see Figure 3(b)).

The boundaries of the SCCs from Figure 3(b) are used
to show the cascaded bottlenecks of interest in Figure 4(a).
Since there is no single edge with a capacity value that could
be increased to increase the overall flow, the question arises
which capacity values to increase. To tackle this issue, the
forward graph (see Figure 4(b)) is constructed. For a given
flow network N = (G, c, s, t) with directed graph G = (V,E)
and flow f the forward graph is defined as the weighted
graph GF = (V,EF , wF). The vertices V are the same as
the ones of the given network, though the edges EF with
their new weights wF change. The edges and weights of
the forward graph are defined as follows: For each edge
(v, w) ∈ E with f(v, w) < c(v, w) a forward edge (v, w)
with weight wF (v, w) = 0 is added to EF . For each edge
(v, w) ∈ E with f(v, w) = c(v, w) a forward edge (v, w)
with weight wF (v, w) = 1 is added to EF . For each edge

(a) (b) (c)

Fig. 5: The forward/backward graphs are used to calculate the shortest forward/backward distance from the source/sink to each
vertex, respectively (images (a) and (b)). The distances range from 0 (rich color) to 2 (pale color). By utilizing different color
channels both distances can be displayed simultaneously in an unambiguous way (image (c)).

(v, w) ∈ E with f(v, w) > 0 a backward edge (w, v) with
weight wF (w, v) = 0 is added to EF . The definition of the
backward graph GB = (V,EB , wB) is analogous but with
reversed edge orientations.

The forward and backward graphs can now be utilized
to calculate the distance of the shortest weighted path from
source and sink to each vertex, respectively (see Figure 7).
These distances are now called forward distance and back-
ward distance, respectively. This can be done efficiently by
Dijkstra’s algorithm [5] in O(|E| + |V | · log|V |) run-time.
The construction of the forward and backward graphs ensure
that only forward edges that are saturated in the flow network
increase the distance. When those edges are used in a shortest
path within the forward or backward graph, their capacity
values need to be increased to transport additional flow. Since
shortest paths are used, it is ensures that only a minimal
number of these network edges have to be adapted to increase
the overall flow. In the following it is demonstrated how
this can be applied to develop a method to analyze cascaded
bottlenecks.

IV. RESULTS

To show the effectiveness of our approach, we tested it by
applying it to two flow network examples.

A. Visual System for cascaded bottleneck analysis

The methods presented in Section III can be utilized to
interactively analyze cascaded bottlenecks in planar flow net-
works, see Figure 6. In this case, for each strongly connected
component (SCC) all combinations of one edge going in and
one edge going out of the same component are connected by a
minimal augmenting path in the residual network. Additional
flow can travel freely on these paths, while the incoming and
outgoing edges themselves can be bottlenecks. In contrast to
that, by construction a transition from an SCC of one color to
an SCC of another color always indicates a bottleneck, since
the forward or the backward distance has changed between
SSCs. This is the reason for the construction and visualization
of the forward/backward distance rendered as color-coded
components in Figure 6.

The augmenting paths within each SCC are shown as spline
curve segments in Figure 6. Each segment can by selected by

the user. Not all possible segments are shown. To enhance
usability and restrict the selection to meaningful segments,
segments are filtered and unwanted segments discarded. Here,
all segments that start or end with an edge decreasing in
forward distance or increasing in backward distance are omit-
ted. These segments lead to SCCs that can be reached more
efficiently by a different path and are discarded.

When a continuous path from source to sink is formed
by the selected segments, this path is used to increase the
capacities of bottleneck edges along the path. The capacities
are increased by the minimal residual flow of a non-bottleneck
edge along the path. After updating the maximum flow compu-
tations, at least one non-bottleneck edge on the path becomes
saturated and the overall flow is increased as much as possible
without adjusting non-bottleneck edges. This process describes
one iteration shown in Figure 6 per column, demonstrating the
effectiveness of our interactive method to analyze cascaded
bottlenecks.

B. Multiple Sources and Sinks

In order to show the applicability of the presented approach
to flow networks containing more than one source and sink,
we applied the presented methodology to a exemplary water
supply flow network.

The network can be reviewed in Figure 7(a). It contains
5000 nodes with 100000 edges. 10 of the nodes are source
nodes and 10 are sink nodes. Nodes can be water reservoirs
(indicated by the blue tank icon), factories (indicated by the
gray factories icon) or residential areas (indicated by the gray
houses).

The resulting visualization of cascaded bottlenecks can be
reviewed in Figure 7(b). The resulting cascaded bottleneck
edge is highlighted in purple. In the examined network, the
goal is to identify the bottleneck edges between water reser-
voirs and factories in order to promote a working economy
system for the future.

In this example, it becomes clear, that the bottleneck edges
would be hard to determine without utilizing the provided
visualization. It can be seen, that one factory is the end of
a bottleneck edge that connects this factory with a water
reservoir.

(a) (c) (e)

(b) (d) (f)

Fig. 6: Iterations of the feedback loop. The current flow network and all its filtered path segments are represented by spline
curves (white) in the top images. The user can select path segments (magenta) and construct a path from source to sink (bottom
images). This path is applied by increasing edge capacities on the path accordingly and calculating the increased overall flow
for the next iteration. Only the capacities of edges leading from one to another component must be considered for potential
adjustment. The component colors indicate the relative effort to send flow from the source to the component (blue), or from
the component to the sink (black). Richer colors indicate relatively less effort and thereby fewer bottlenecks that must be
overcome to increase overall flow.

In the presented visualization, users can select specific edges
along the highlighted bottleneck edges and adjust them as
shown in the previous example. Therefore, decision makers
can create future restructuring plans for the water supply
service.

C. Discussion

As discussed in Section II, an effective visual analytics tool
for cascaded bottlenecks must satisfy specific requirements.
In the following, we summarize how these requirements are
satisfied by our methodology.

R1: Identification of bottlenecks
The presented methodology introduces a mathematical basis

to identify bottlenecks in flow networks. In addition, direct
bottleneck edges can be differentiated from cascaded bottle-
necks by determining whether there exists an edge that can be
reached by the sink and the source simultanously.

R2: Identification of potential improvements
To identify potential improvements, this research presents

a methodology that classifies the different parts of a flow
network where flow can circulate freely. The transition of these
areas potentially improves overall flow in the network.

R3: Communication of bottlenecks
To communicate network characteristics effectively, we

have devised a visual system that encodes bottlenecks of
a flow network and visually highlights areas where flow

can circulate freely. A visualization also indicates cascaded
bottleneck edges.

R4: Interactive adaptation of flow
As the goal is to increase overall flow in a network, the

presented methodology allows a user to interact with the flow
network being analyzed. A user can increase cascaded bottle-
neck edges. This task is supported by an intuitive guidance
provided to the user in the entire cascaded bottleneck.

R5: Feedback loop
When changing a flow network configuration, the overall

flow and bottlenecks of the network can change. Our system
communicates a newly designed flow network to the user
and therefore supports a visual feedback loop. Users have the
ability to improve a flow network until they are satisfied with
its properties.

V. CONCLUSION

We have introduced a novel approach to visualize bottle-
necks (single and cascaded) in flow networks applicable to a
variety of real-world applications. For example, product flows
and constraints of a manufacturing system can be mapped
to a network. We extended the definition of a minimum cut
of a network to identify bottleneck edges. This extended
definition was used as a basis to visualize minimum cuts and
bottlenecks in production systems based on Voronoi regions.
This approach supports a fast and intuitive identification
of bottleneck transitions in a flow network. Based on this

(a)

(b)

Fig. 7: The presented approach applied to a flow network
with multiple sources and sinks. The network presents a
water supply system in a town with residential areas, factories
and water reservoirs. The purple line indicates a cascaded
bottleneck between a water reservoir and a factory.

definition, cascaded bottlenecks can be identified. To improve
them, users need to increase the capacity of multiple edges
in a flow network. The presented work visually encodes all
possible improvements and provides intuitive interaction for
users.

REFERENCES

[1] A. V. Aho, J. E. Hopcroft, and J. Ullman. Data Structures and
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1983.

[2] J. Alstott, S. Pajevic, E. Bullmore, and D. Plenz. Opening bottlenecks
on weighted networks by local adaptation to cascade failures. Journal
of Complex Networks, 3(4):552–565, 2015.

[3] U. Brandes, S. Cornelsen, and D. Wagner. How to Draw the Minimum
Cuts of a Planar Graph, pages 89–119. Springer Berlin Heidelberg,
2001.

[4] L. Braun, M. Volke, J. Schlamp, A. von Bodisco, and G. Carle. Flow-
inspector: a framework for visualizing network flow data using current
web technologies. Computing, 96(1):15–26, 2014.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[6] Z. Dong, Y. Pan, Z. Zhang, Y. Dong, and X. Huang. Modeling and
control of fluid flow networks with application to a nuclear-solar hybrid
plant. Energies, 10(11):1–21, 2017.

[7] J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM, 19(2):248–264, 1972.

[8] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum
flow through a network. Information Theory, IEEE Transactions on,
2(4):117–119, 1956.

[9] L. R. Ford and D. R. Fulkerson. Maximal Flow through a Network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[10] S. Fortune. Voronoi diagrams and delaunay triangulations. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, pages 377–388. CRC Press, Inc., 1997.

[11] S. Halim. https://visualgo.net/maxflow. online, 2017.
[12] J. Jaffe. Bottleneck flow control. IEEE Transactions on Communica-

tions, 29(7):954–962, 1981.
[13] M. Kikolski. Identification of production bottlenecks with the use of

plant simulation software. Ekonomia i Zarzadzanie, 8(4):103–112, 2017.
[14] S. Klamt, J. Saez-Rodriguez, and E. D. Gilles. Structural and functional

analysis of cellular networks with cellnetanalyzer. BMC Systems
Biology, 1:open access, 2007.

[15] S. Klamt and A. von Kamp. An application programming interface for
cellnetanalyzer. BioSystems, 105:162–168, 2011.

[16] C. G. Lee and S. C. Park. Survey on the virtual commissioning
of manufacturing systems. Journal of Computational Design and
Engineering, 1(3):213 – 222, 2014.

[17] T. Post, B. Hamann, H. Hagen, and J. C. Aurich. Ensemble Visualization
of Bottlenecks in Planar Flow Networks. In Physical Modeling for
Virtual Manufacturing Systems and Processes, volume 869 of Applied
Mechanics and Materials, pages 234–243. Trans Tech Publications,
2017.

[18] A. P. Punnen and R. Zhang. Bottleneck flows in networks. CoRR,
abs/0712.3858, 2007.

[19] H. Qi, M. Liu, L. Zhang, and D. Wang. Tracing road network bottleneck
by data driven approach. PLOS ONE, 11(5):1–16, 05 2016.

[20] F. Rahmani, K. Muhammed, K. Behzadian, and R. Farmani. A graph
theory based configuration of water distribution systems for optimum
operation, 07 2016.

[21] C. Roser, M. Nakano, and M. Tanaka. A practical bottleneck detection
method. In Proceedings of the 33Nd Conference on Winter Simulation,
WSC ’01, pages 949–953, Washington, DC, USA, 2001. IEEE Computer
Society.

[22] J. Schlamp, R. Holz, Q. Jacquemart, G. Carle, and E. W. Biersack.
HEAP: reliable assessment of BGP hijacking attacks. IEEE Journal on
Selected Areas in Communications, 34(6):1849–1861, 2016.

[23] B. Scholz-Reiter, K. Windt, and H. Liu. Modelling dynamic bottlenecks
in production networks. International Journal of Computer Integrated
Manufacturing, 24(5):391–404, 2011.

[24] R. J. Shen, Q. G. Jia, Y. Y. Liang, and J. Zhang. Identify the bottleneck
of water network by using graph theory. In Materials Science and
Information Technology, volume 433 of Advanced Materials Research,
pages 4794–4797. Trans Tech Publications, 2 2012.

[25] R. Tarjan. Depth first search and linear graph algorithms. SIAM
JOURNAL ON COMPUTING, 1(2), 1972.

[26] C. Vehlow, F. Beck, and D. Weiskopf. Visualizing group structures in
graphs: A survey. Computer Graphics Forum, pages n/a–n/a, 2016.

[27] Y. Wang, Q. Zhao, and D. Zheng. Bottlenecks in production networks:
An overview. Journal of Systems Science and Systems Engineering,
14(3):347–363, Sep 2005.

[28] H. Yu, P. M. Kim, E. Sprecher, V. Trifonov, and M. Gerstein. The
importance of bottlenecks in protein networks: Correlation with gene
essentiality and expression dynamics. PLoS Computational Biology,
3(4), 2007.

	I Introduction
	II Related Work
	II-A Comparative Visualization of Minimum Cuts
	II-B Cascaded Bottleneck Analysis
	II-C Requirements for Bottleneck Analysis

	III Methods
	III-A Flow Networks
	III-B Maximum Flows
	III-C Minimum Cuts

	IV Results
	IV-A Visual System for cascaded bottleneck analysis
	IV-B Multiple Sources and Sinks
	IV-C Discussion

	V Conclusion
	References

