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Summary. Curve-skeletons of 3-D objects are medial axes shrunk to a single line.
There are several applications for curve-skeletons. For example, the animation of 3-D
objects, such as an animal or a human, as well as planning of flight paths for virtual
colonoscopy. Other applications are the extraction of center lines within blood vessel
where center lines are used to quantitatively measure vessel length, vessel diameter,
and angles between vessels. The described method computes curve-skeletons based
on a vector field that is orthogonal to the object’s boundary surface. A topological
analysis of this field then yields the center lines of the curve-skeletons. In contrast to
previous methods, the vector field does not need to be computed for every sampled
point of the entire volume. Instead, the vector field is determined only on the sample
points on the boundary surface of the objects. Since most of the computational time
was spent on calculating the force field in previous methods, the proposed approach
requires significantly less time while still achieving a better accuracy and robustness
compared to methods based on Voronoi tessellations.

1.1 Introduction

Curve-skeletons describe the very basic features of an object. They describe
a thinned version of the object represented as some type of stick model re-
sulting in the center-lines of the object. Therefore, the use of curve-skeletons
can prove useful for applications, such as animation [42] or flight planning for
virtual colonoscopy [19]. Similarly, accurate curve-skeleton methods can be
used for extracting quantitative measurements from computed tomography
(CT) scanned vascular structures. Here, the curve-skeleton describes the cen-
ter lines of the vessels. These can then be used to measure vessel radius, vessel
lengths, and angles between vessels within the volumetric image retrieved by
using the CT scanner. This is the application that motivated the development
of the algorithm described in this paper. In order to derive these measurements
from the volumetric image, an accurate extraction method for curve-skeletons
is desirable. For example, thinning-based techniques that work in the voxel
space of the volumetric image tend to generate jagged lines which are in no
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way suitable for determining angles between vessels. Similarly, inaccuracies
can occur when computing the radii of the vessels. Hence, an approach that
only uses the volumetric image in order to identify the boundary surface of
the contained object is more promising.

The algorithm described in this paper is exactly of this type. It is ca-
pable of extracting the boundary surface of an object that is defined by a
volumetric image at sub-voxel level. For this, it determines the location of the
maximal gradient within the volumetric image similar to Canny’s [9] maxima-
suppression technique but extended to three dimensions. Since the algorithm
only relies on points extracted from the volumetric image but not on the im-
age itself, it can also be applied to object’s defined by a point set without any
restrictions.

Techniques used for computing the topological graph of a vector field are
applied to determine the curve-skeleton. First, for all points vectors are com-
puted that are orthogonal to the object’s boundary surface. There are different
options for computing these vectors. They can be either derived by determin-
ing the normal vector of a plane that is defined by a least-square fit if the
point and its neighbors. Or – in case of the object being defined by a volu-
metric image – the image gradients determined in the previous step can be
used. In both cases, the normal vectors can be determined in such a way that
they are facing inwards with respect to the object. The entire vector field can
then be determined by computing a tetrahedrization of the entire point cloud
and then linearly interpolating within the tetrahedra. In order to ensure that
only the curve-skeleton in between the object is extracted, all tetrahedra that
are located outside the object are removed based on the normal vectors.

A topological analysis of the vector field within the faces of every tetra-
hedron yields points on the curve-skeleton. By following the topology of the
tetrahedrization, points on the curve-skeleton within neighboring tetrahedra
can be connected resulting in the entire curve-skeleton.

A detailed description of the algorithm can be found in section 1.3. The
next section illustrates related work and compares it to the described ap-
proach. Subsequently, the theoretical background with regard to the topo-
logical analysis of vector fields is explained. Section 1.4 shows results of the
algorithm applied to various data sets, followed by conclusions and future
work.

1.2 Related Work

Several approaches for extracting curve-skeletons or medial axis can be found
in the literature. A very good overview of available techniques can be found
in the paper by Cornea et al. [11].

Some methods start with all voxels of a volumetric image and use a thin-
ning technique to shrink down the object to a single line. Directional thinning
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approaches use a specific order in which voxels are removed. For example, di-
rections, such as up or down, are used to define this order and conditions are
used to identify endpoints [3, 8, 18, 23, 25, 29, 30, 33, 41]. Since these methods
are sensitive with respect to the order in which the voxels are removed the
resulting curve-skeleton may not be centered. Non-directional methods [6, 38]
or fully parallel approaches [14, 26, 28] do not suffer from this disadvantage.
Ideally, the topology of the object should be observed. Such an approach was
proposed by Lobregt et al. [24] which is the basic technique used in commer-
cial software systems, such as AnalyzeTM developed by the Mayo Clinic. The
disadvantage of this approach is that it tends to produce jagged lines which
do not allow accurate measurements of angles between parts of the object,
such as individual vessels of a vascular structure. Other approaches [39] clas-
sify the voxels in different groups, such as edge, inner, curve, or junction and
re-classify after removal of a voxel. A similar algorithm is proposed by Palagyi
et al. [29]. The disadvantage of thinning algorithms is that they can only be
applied to volumetric data sets due to the nature of these algorithms.

To avoida this disadvantage, other approaches deploy the distance trans-
form [17] or distance field in order to obtain a cruve-skeleton. For each point
inside the object, the smallest distance to the boundary surface is determined.
For this, the Euclidian metric or the <3,4,5> metric [5] can be used. Also, fast
marching methods [35, 40] can be deployed to compute the distance field. Vox-
els representing the center lines of the object are identified by finding ridges
in the distance field. The resulting candidates must then be pruned first. The
resulting values are then connected using a path connection or minimum span
tree algorithm [37, 43, 46]. Methods used to identify points on the ridges in-
clude distance thinning [10, 15, 16, 32], divergence computing [7], gradient
searching [4], thresholding the bisector angle [27], geodesic front propaga-
tion [31], or shrinking the surface along the gradient of the distance field [34].
The distance field can also be combined with a distance-from-source field to
compute a skeleton [47].

Techniques based on Voronoi diagrams [2, 13] define a medial axis using the
Voronoi points. Since this approach usually does not result in a single line but
rather a surface shaped object, the points need to be clustered and connect
in order to obtain a curve-skeleton. Voronoi-based methods can be applied
to volumetric images as well as points sets. Due to the fact that clustering
of the resulting points is required these approaches lack some accuracy. In
addition, they tend to create points outside the object itself if there is an
open or missing area within the object’s boundary.

1.3 Methodology

It is assumed that the reader is familiar with singularities in vector fields and
2-D vector field topology. If necessary, a good overview of these topics can be
found in [20, 44, 45].
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The algorithm for determining the curve-skeleton consists of several steps.
If the object is given as a volumetric image the object’s boundary has to
be extracted first. Then, a vector field is computed that is orthogonal to
the object’s boundary surface. Once the vector field is computed, the curve-
skeleton can be determined by applying a topological analysis to this vector
field. The following subsections explain these steps in detail.

1.3.1 Extracting the Boundary of the Object

If the object is given as a set of points, for example measured by a laser
scanner, the object’s boundary is already defined. If the object is defined
by a volumetric image, for example from a CT scan, the boundary of the
object has to be determined first. A volumetric image consists of voxels aligned
along a regular, three-dimensional grid. Since it is generally not likely that
the boundary of the original object is exactly located at these voxels, better
precision can be achieved by finding the exact location in between a set of
pixels. Since an accurate representation of the object’s boundary is crucial to
the algorithm, improving the precision is an essential step. The method used
within the described system uses similar techniques as described by Canny’s
non-maxima suppression [9, 21] but extended to three dimensions.

First, the image gradients are computed. Using a fixed threshold, all voxels
with a gradient length below this threshold are neglected. Then, the gradients
of the remaining voxels are compared to its neighbors to identify local maxima
along the gradient. In 3-D, the direct neighborhood of a single voxel generally
consists of 26 voxels forming a cube that surrounds the current pixel. In order
to find the local maximum along the current gradient, the gradients in the
neighborhood in positive and negative direction of the current gradient have
to be determined. The current implementation of the described system uses
linear interpolation. Based on these three gradient values, i.e. the original
image gradient and the two interpolated values, the location of the maximal
gradient can be identified, resulting in a more accurate representation of the
object’s boundary.

Once all points on the boundary are extracted from the volumetric image
using this gradient approach with sub-voxel precision, the resulting point cloud
can be further processed in order to identify the skeleton.

1.3.2 Computing the Vector Field

The described method computes a curve-skeleton by applying a topological
analysis to a vector field that is determined based on the geometric configura-
tion of the object of which the curve-skeleton is to be determined. The vector
field is computed in such a way that the vectors are orthogonal to the object’s
boundary surface. The vectors in between the object are then interpolated
linearly.
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Different approaches are possible for calculating such a vector field. A
repulsive force field can be determined that uses the surrounding points on
the object’s boundary surface as used by Cornea et al. [12]. The repulsive force
is defined similarly to the repulsive force of a generalized potential field [1, 22].
The basic idea is to simulate a potential field that is generated by the force
field inside the object by charging the object’s boundary.

Another way is to define a normal vector by using the neighboring points in
addition to the current one and then defining a plane that is approximated by
these points. The normal of this plane then defines the vector corresponding
to the current point.

If the data is given as a volumetric data set the image gradients can be
used to define the vectors on the object’s boundary surface. These image
gradients are computed already as they are needed for extracting the object’s
boundary and determining the sub-voxel precision as previously described.
Since the points are only moved along the direction of the image gradient when
determining the sub-voxel precision, this image gradient is still orthogonal to
the object’s boundary surface and therefore represents a good approximation
for the desired vector field. Note that all three methods result in vectors
pointing to the inside of the object.

1.3.3 Determining the Curve-Skeleton

In order to determine the curve-skeleton of the object, a tetrahedrization of all
points on the object’s boundary is computed first. For this, Si’s [36] very fast
implementation of a Delaunay tetrahedrization algorithm is used. By using
the previously computed vectors that point to the inside of the object, outside
tetrahedra can be distinguished from tetrahedra that are located inside the
object. This way, all outside tetrahedra can be removed, leaving a Delaunay
tetrahedrization of the inside of the object only. Since vectors are known for
each vertex of every tetrahedron, the complete vector field can be computed
using this tetrahedrization by interpolating tri-linearly within each tetrahe-
dron. This vector field is then used to identify points of the curve-skeleton
which are connected which each other later on.

Since the vector field is now defined within the entire object, one could
use an approach similar to the one used by Cornea et al. [12] at this point
and compute the 3-D topological skeleton of the vector field which yields the
curve-skeleton of the object. However, since singularities are very rare in a
3-D vector field Cornea et al. had to introduce additional starting points for
the separatrices, such as low divergence points and high curvature points, in
order to get a good representation of the curve-skeleton. Therefore, a different
approach is described in this paper that analyzes the vector field on the faces
of the tetrahedra.

In order to be able to perform a topological analysis on the faces of the
tetrahedra, the vector field has to be projected onto those faces first. Since
tri-linear interpolation is used within the tetrahedra, it is sufficient to just
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project the vectors at the vertices onto each face and then interpolate linearly
within the face using these newly computed vectors. Based on the resulting
vector field, a topological analysis can be performed on each face of every
tetrahedron.

Points on the curve-skeleton can then be identified by computing the sin-
gularities within the vector field interpolated within each and every face of
the tetrahedrization. For example, for a perfectly cylindrical object, the vec-
tors computed at the cylinder’s boundary point directly at the center of the
cylinder. When looking at the resulting vector field at a cross section of the
cylinder, a focus singularity is located at the center of the cylinder within this
cross section. The location of this focus singularity resembles a point on the
curve-skeleton of the cylinder. Hence, a singularity within a face of a tetrahe-
dron indicates a point of the curve-skeleton. Since the vectors at the object’s
boundary point inwards, only sinks need to be considered in order to identify
the curve-skeleton. Due to the fact that not all objects are cylindrical in shape
and due to numerical errors and tolerances, points on the curve-skeleton can
be identified by looking for sinks that resemble focus and spiral singularities.

Obviously, only faces that are close to being a cross section of the object
should be considered to identify points on the curve-skeleton. In order to
determine tetrahedra whose faces resemble a cross-section of the object, the
vectors at the vertices can be used. If the vectors at the vertices, which are
orthogonal to the object’s boundary, are approximately coplanar with the
face, then this face describes a cross section of the object. As a test, the scalar
product between the normal vector of the face and the vector at all three
vertices can be used. If the result is smaller than a user-defined threshold
this face is used to determine points on the curve-skeleton. Computing the
singularity on one of these faces then results in a point which is part of the
curve-skeleton. Since linear interpolation is used within the face, only a single
singularity can be present in each face.

Once individual points of the curve-skeleton are computed by identifying
the focus and spiral singularities within the faces of the tetrahedra, this set
of points needs to be connected in order to retrieve the entire curve-skeleton.
Since the tetrahedrization describes the topology of the object, the connec-
tivity information of the tetrahedra can be used. Thus, identified points of
the curve-skeleton of neighboring tetrahedra are connected with each other
forming the entire curve-skeleton.

1.3.4 The Algorithm

The algorithm for extracting curve-skeletons consists basically of five steps.
If the object is given as a volumetric image the object’s boundary needs to
be extracted from the volumetric image based on a gradient threshold. To
increase accuracy, the points are moved along the gradient direction to achieve
sub-pixel precision as previously described. Then, vectors orthogonal to the
object’s boundary surface need to be determine. These can be derived from a
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least-square fitted plane of a set of neighboring points and then use its normal
vector, or – in the case that the object is defined by a volumetric image –
the gradient vectors can be used directly. Subsequently, the point cloud is
tetrahedralized so that the resulting tetrahedra can be used to interpolate the
vector field using the previously determined vectors at the vertices. Tetrahedra
that are located outside the object are not considered when extracting the
curve-skeleton. Finally, the topology can be determined on every face resulting
in points on the curve-skeleton. By connecting the points found within two
neighboring tetrahedra the complete curve-skeleton is generated as a last step.

1.4 Results

The algorithm was tested on several different data sets. It was mainly designed
for extracting center lines on CT scanned images of porcine hearts where
the arterials were previously perfused with a contrast enhancing polymer.
Figure 1.1(left) shows an example of such a data set.

Fig. 1.1. Volume rendering (with shading enabled) of a previously perfused porcine
heart which was scanned using a standard hospital CT scanner (left) and curve-
skeleton of the porcine heart data set using the described algorithm; to enhance
visibility in the paper the thickness of the lines and points within the image is
increased (right).

The described algorithm is capable of extracting the curve-skeleton from
such a volumetric data set in order to identify the center lines of the arterial
vessels. The resulting curve-skeleton is depicted in figure 1.1(right). The figure
shows the curve-skeleton extracted by the described algorithm as well as the
point set representing the vessel boundaries.
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Due to the densely located vessels of the right coronary arterial (RCA)
tree, the extracted curve-skeleton seems rather cluttered and it is difficult to
distinguish between lines at different depths. However, the extracted curve-
skeleton exactly describes the center lines of the arterial vessels found within
the data set. When using a sub-section of the porcine heart data set, it can
be seen that the curve-skeleton is well defined and located at the center of the
arterial vessels, as shown in figure 1.2.

Fig. 1.2. Sub-section of the porcine heart data set visualized as a volume rendered
image (left) and the extracted curve-skeleton of the same sub-section of the porcine
heart data set (right).

The described algorithm for extracting curve-skeletons has some definite
advantages over, for example, Voronoi-based approaches. Voronoi-based ap-
proaches define a medial axis that is not necessarily a line, but more like a set
of points defining a surface. In a post-processing step, these points need to
be shrunk down to define a line. Even though the arterial vessels are rather
round due to the fact that they are pressurized, a Voronoi-based algorithm
only determines a fuzzy line around the actual center line of the vessels. In
case the the boundary is not fully defined, meaning that there is a hole in the
boundary surface, Voronoi-based approaches tend to move points describing
the medial axis outside the object itself, thus far off the center-line. This can-
not occur with the described algorithm since center points are only determined
for tetrahedra that are located inside the object.

The described algorithm works well with other types of data sets. The first
example is a pure cylindrical shaped data set. The cylinder is perfectly round;
hence, the algorithm should find a straight line as the curve-skeleton. As can
be seen in figure 1.3, the algorithm generates the correct curve-skeleton for
this data set.

The second example shows the cow data set (figure 1.4) as a volume ren-
dered image and the point set describing the object’s boundary and the curve-
skeleton extracted based on these points.

Figure 1.5 depicts the results of the next example, the monster data set.
Again, both the volume rendered image and the curve-skeleton including the
point describing the object’s boundary are shown.

The last example shown in figure 1.6 depicts the mushroom data set. This
example indicates that the algorithm can also handle more oddly shaped ob-
jects that are not exactly cylindrical shaped.
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Fig. 1.3. Cylinder data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased.

Fig. 1.4. Cow data set visualized as a volume rendered image (left) and the ex-
tracted curve-skeleton of the same data set (right); to enhance visibility in the paper
the thickness of the lines and points within the image is increased.

Fig. 1.5. Monster data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased.

Fig. 1.6. Mushroom data set visualized as a volume rendered image (left) and the
extracted curve-skeleton of the same data set (right); to enhance visibility in the
paper the thickness of the lines and points within the image is increased.
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1.5 Conclusions and Future Work

In this paper, an algorithm for extracting a curve-skeleton from data sets given
as point clouds or volumetric images was presented. The described algorithm is
based on a topological analysis of a vector field derived from the configuration
of the point set describing the object’s boundary contained in the data set.
Due to the fact that it is no longer necessary to compute the vector field on a
multitude of points but instead only for points on the object’s boundary the
described algorithm is significantly faster while still preserving a high accuracy
of the extracted curve-skeleton. It took the algorithm a few seconds to extract
the curve-skeleton for the smaller data sets. For the porcine heart data set, the
algorithm needed a little more than an hour to determine the curve-skeleton.
This is comparably fast, considering that in our tests Cornea’s et al. [12]
algorithm would have required several months to compute the potential field
alone.

It is planned to use the described algorithm for deriving precise quantita-
tive measurements from CT scanned specimens, such as vascular structures.
In order to be able to measure vessel lengths, vessel diameters, and angles
between vessels an accurate representation of the center lines of the vessels
is required. These center lines can be determined by the described algorithm
for extracting curve-skeletons applied to the volumetric image generated by a
CT scanner.
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