Distributed Computation of Planar Closed Streamlines

Thomas Wischgoll, Gerik Scheuermann, and Hans Hagen
University of Kaiserslautern, P.O. Box 3049, 67653 Kaikergrn, Germany

ABSTRACT

Closed streamlines are an integral part of vector field mgglsince they behave like sources respectively sinksreut a
often neither considered nor detected. If a streamline coatipn makes too many steps or takes too long, the compntati
is usually terminated without any answer on the final behasfithe streamline. We developed an algorithm that detects
closed streamlines during the integration process. Simeelé¢tection of all closed streamlines in a vector field nexpui
the computation of many streamlines we extend this algoritiha parallel version to enhance computational speed.

To test our implementation we use a numerical simulationiling jet with an inflow into a steady medium. We
built two different Linux clusters as parallel test systemttere we check the performance increase when adding more
processors to the cluster. We show that we have a very lowlglanaerhead due to the neglectable communication
expense of our implementation.

Keywords. vector field, 2D flow, parallel, streamline computation, ixrcluster, closed streamline, limit cycle

1. INTRODUCTION

An intuitive and often used method for vector field visudiiza is the calculation of streamlines. If one uses this mémpie
in turbulent fields, one encounters often the problem ofedagreamlines.

The difficulty with standard integration methods is thaeamlines, approaching a closed curve, cycle around that
curve without ever approaching a critical point or the baanyd Usually, one uses a stopping criteria like elapsed time
or number of integration steps to prevent infinite loopstdad, we present here a parallel version of an algorithm that
detects this behavior and that can be used to visualizecckisgamlines since these topological features are antedsen
topological property of the field. The algorithm uses the erhdng grid to check if the same cell is crossed while
integrating the streamline: this results in a cycle of cétighat case, the algorithm determines if the streamlimdeave
this cell cycle or not. If it does not leave it is proven thatrh exists a closed streamline inside the cell cycle on tiondi
that there is no critical point inside the involved cells.

To determine the closed streamlines of a vector field onedhasmpute many streamlines. In fact, we compute the
topological skeleton. This is a graph which connects thicafipoints, where the vector field is zero, with streangine
called separatrices. This graph leads us to the closedrdires. Since the number of streamlines may be large depgndi
on the given vector field, this may take several minutes ondwaurs. Therefore we propose a parallel version of this
algorithm to decrease computational time by distributhmg$treamline computation to several clients.

As a parallel machine we use Linux clusters because of theilm& of standard PC components. The advantage is that
the processors are faster then the ones of for instance d@@@IT3E with the disadvantage of a slower communication
between server and client. But altogether, a Linux clusténe best way to get a great performance at a low price.

In the next section we summarize previous work, while sacdigives some theoretical background. In section 4 we
explain the parallel version of the algorithm. The resuitduding performance tests are explained in section 5.lligina
we conclude in section 6 and give some ideas for improvenudmigr method.

Further author information: (Send correspondence to T.W.)
T.W.: E-mail: wischgol@informatik.uni-kl.de, Telephane49 631 205 3800
G.S.: E-mail: scheuer@informatik.uni-kl.de, Telephoré9 631 205 3899
H.H.: E-mail: hagen @informatik.uni-kl.de, Telephone9#@B1 205 4072

2. RELATED WORK

Previously, two of the authotrgpublished an algorithm that computes streamlines whiledigty if it runs into a limit
cycle in two dimensional flows. Haimésliscusses a similar problem where residence time is useddadtirculation
regions. When reaching a closed streamline the residemerisi infinite. The problem with closed streamlines is also
related to the study of dynamical systefriisyhich have also been an application area for visualizatiothe numerical
literature, we can find several algorithms for the calcalatf closed curves in dynamical systefrfsbut these algorithms
are tailored to deal with smooth dynamical systems wheresed form solution is given. In contrast, visualizatiorefgic
far more often piecewise linear or bilinear vector fields.réjehe knowledge of the grid and the linear structure of the
field in the cells allow a direct approach for the search o$etbstreamlines.

Sujudi et al’ present a method for computing streamlines in a parallégt@mment by splitting the dataset into several
sub-domains. If the streamline leaves a sub-domain anptbeess responsible for the actual domain has to contiraue th
computation. Reinhard et &lpresent a parallel rendering method that distributes témkeach ray which has to be
computed to the different processors of the parallel machiparallelization of line integral convolution is preset by
Zockler et al where the vector field is divided into several subdomaingddjng on the number of processors used.

3. THEORY

The topological analysis of vector fields considers the gagtic behavior of streamlines. The origin setelimit set of
a streamline is defined by
{p € R?|3(t,)5% C R, t,, — —o00, lim ¢(t,) — p}.

The end set ow-limit set of a streamlinex is defined by
{p € R?3(t,)5%y C R, t, — 00, lim c¢(t,) — p}.

If the a- or w-limit set of a streamline consists of only one point, thignb@s a critical point or a point at the boundary
0D of our domainD. (Itis assumed that the streamline stays at the boundany fuoever in this notation.) The critical
points can be clearly identified because they are simplyeheszof the vector field.

The most common case of an or w-limit set in a planar vector field containing more than oneeinpoint of the
domain is a closed streamlifieThis is a streamline,, so that there is & € R with

co(t +ntp) =co(t) VneN.

4. PARALLEL ALGORITHM

In principle, the algorithm computes the topological sta’ of the vector field which automatically leads to the closed
streamlines. While integrating the streamlines we cheuleifun into a closed streamline. The basic idea is to determin
a region of the vector field that is never left by a streamlinezase of a continuous vector field the Poincaré-Bendixson
Theorem ensures that this streamline approaches a closadhtine if no critical point exists in that region. We assum
that the data of the vector field is given on a grid consistiitgiangles and/or quadrilaterals. The vectors inside bacel
interpolated linearly resp. bilinearly so that we get a sardus vector field as needed for the theorem.

A streamline approaching a closed streamline has to retr@same cell again. In this case we check if the cells were
crossed by the streamline in the same order for the last tms turhis results in &ell cyclewhich identifies the above
mentioned region. To examine if this cell cycle is left by ieeamline we detect possible changes by checking the edges
of the cells of the cell cycle. Therefore we identify points@ach edge which we calbtential exitsvhere an outflow
out of the cell cycle may occur in the vicinity. These points &lentical with the vertices of the edge and points where
the vector field is tangential to the edge.

Then we have to figure out if the actually investigated stigawill leave the cell cycle near such an exit. Therefore
we integrate a streamline backwards from the potentialtexdee if it leaves the cell cycle. If it does not leave after
it crossed every cell of the cell cycle it converges to oueatnline. We call this potential exitreal exit because the
streamline will leave the cell cycle after a finite numbenofis near that exit. Figure 1 displays an example for thad.cas

Figure 1: If a real exit can be reached, the streamline will leave tiiecgele.

If the backward integrated streamline leaves the cell ¢yhblere will also be an entry point as shown in figure 2. A
streamline starting at that point cannot be crossed by dualiy investigated streamline. Consequently we canramde
the cell cycle at this exit.

If there is no real exit for the streamline, we have proven tia streamline will never leave the cell cycle. If there is
no critical point inside the cell cycle the Poincaré-Bexsdin-Theorem ensures that there exists a closed streamibe
cell cycle and the integral curve tends toward it.

Figure2: If no real exit can be reached, the streamline will approaciosed streamline.

To parallize this algorithm we have to compute all the caitjgoints that are present in the vector field, first. Since we
only need the data of the cells, i.e. the position of the gestiand the vectors at these vertices, to determine if thests e
a critical point inside the cell and where it is located, we transfer these tasks to the various clients of the clugtben
the clients receive the index of a cell they compute thegaiithoint and return the position and its type, if they hauenfib
one, to the server. All tasks are controlled by a scheduléctwil a part of the server.

The scheduling of the tasks works as follows: the serveitesaane task for each cell containing the index of this cell
and queues it in the scheduler. The scheduler itself chédkerie are still tasks left and if there is any client that has
finished its task yet. If there is more than one client withmugctive job, the fastest is chosen. Then the next task is sen
to this client. The client receives this task, computes titeeal point and sends it, if it has found one, back to theveer
and tells the scheduler that it has finished its job. Sinceatheunt of data to control the clients and transfer the alitic
points back to the server is very low, we can fully benefit fridwa performance of each client.

After we have computed all critical points we start strealsiat each saddle pointin positive and negative eigendirec
tion with respect to the matrix of the linear interpolant aheck for closed streamlines while computing the streasslin
as previously describeld. Computing streamlines is not a local task since the stre@slinay cross any region of the
flow. Therefore we do not subdivide the data into severalksidige in some rendering tasks. Our implementation uses
a functional approach where we create several tasks eablemfepresenting the whole computation of one streamline
starting at a given position. Then we use the scheduler tolaise the tasks to the various clients of our cluster.

Since the data of the vector field including octree and thgmanm fit into 64 MB of RAM we decided to use a
configuration where every client loads the whole datasetitatown memory. This facilitates the fastest possible s€ce
to the data. Since the server and every client loads the t#te aame time there is no time lost because otherwise the
clients would simply wait for the server until it has loadée tdataset. When dealing with larger datasets we have to use
an out of core method which will be done in the future.

Since we want to spread tasks that represent the whole catigrubf one streamline, each task contains two items:
a point where the streamline has to start and the integrdiiention. The other data that is needed for the computéion

already present at each client because the client has |ldh€el@chole dataset yet. Due to the minimal amount of data of
each task the communication cost which is produced by ningy#asks is very low.

To distribute the tasks to the various clients we use theipusly described scheduler: the server determines thie star
positions of the streamline using each saddle point fourtldérvector field. Then a task containing this start positioth a
the integration direction is created and spooled into treuguof the scheduler, while the scheduler sends the nexvjob t
the fastest client that has no active job. The client resdivis task, searches for closed streamlines and sends hiai
found one, back to the server. Again, the amount of data ttralthe clients and transfer the closed streamlines back to
the server is very low, so that we can fully benefit from thef@anance of each client.

5. RESULTS

Our algorithm is implemented in C++, while the server comioates with the clients using PVM. The different tasks
are encapsulated in C++-classes. This facilitates thatasles can transfer itself to the client on demand and thatslie
only need to call a method to execute the received task.

Figure 3: Configuration of the swirling jet simulation

To test the performance of our implementation we mainly ugedifferent systems. One is a Linux cluster consisting
of seven clients. Each node is equipped with an AMD Duron GOAMD Duron 700 processor angit MB of RAM.
The server is a multiprocessor computer with two PentiurB0D processors. The second system is based on some of our
desktop computers with a Pentium Il 350. We use Linux and abf@ components since this is a cheap way to get a
great performance compared to other parallel computexsder to get a more heterogeneous configuration we mix both
systems by using all Linux computers available in our grarmsflast performance test.

The test dataset is a simulation of a swirling jet with an infloto a steady medium. The simulation uses a cylindrical
domain and assumes rotational symmetry, so that we are isfiavéwo dimensional vector field on a plane through the
center axis of the cylinder. In this application one is iested in investigating the turbulence of the vector field iand
recirculation zones where the fluid stays very long. Swirjets play a significant role in many combustion processges. |
is important to find such recirculation regions indicatectlmsed instantaneous streamlines. This permits the csiodu
that even in the three dimensional flow the fluid will stay g a longer period of time. Figure 3 shows the configuration
of this simulation. The jet is located in the front in the aardf the cylindrical domain indicated by a small cylindeher
domain is displayed in light gray. The closed streamlinethaf vector field found by our algorithm are shown on the
cutting plane that divides the turbine diagonal into twovkal In figure 4 a hedgehog consisting of the vectors disgdlaye

Figure 4. Closed streamlines including hedgehog on a cutting pla@esefirling jet simulation

as arrows is included. The vector field I8 critical points and for the topology including closed strdiaes about six

hundred streamlines have to be computed.

Processor Floating-point index
Pentium Il 350 2.404
Pentium I11 500 3.561
AMD Athlon 650 5.163
AMD Duron 600 4.768
AMD Duron 700 5.547
Intel Celeron 800 6.125
AMD Thunderbird 1400 11.227

Figure5: Floating-point indices of the different processors

To determine the optimal timing of our algorithm we used teadhmark utilitynbenchi in order to get a suitable
ratio between the speeds of the procesddb®nchs a port to Linux/Unix of release 2 of BYTE Magazine’s BY TErka

*http://lwww.tux.org/"mayer/linux/bmark.html

benchmark prograin We computed thdloating-point indexof each processor which gives the relative speed of the
floating-point unit compared to an AMD K6-233 processor. Tégults can be found in figure 5. Using these values we
computed the floating-point index of the whole parallel maelry summing up the indices corresponding to the involved
processors and calculated the optimal runtime by neglgtiiéa communication between server and clients.

time

600 -
500
400 +
300 -+

200

100

> processors

Figure 6. Time needed to compute closed streamlines using Pentiwd8Rlprocessors displayed as graph

CPUs| Time | Optimum
1 612s —

2 306s 306s

3 205s 204s

4 158s 153s

5 134s 122s

Figure 7: Time needed to compute closed streamlines using Pentit®5@Iprocessors shown in a table

Figures 6 and 7 show the timings on the desktop computerso figet machines were used. The optimal timings are
displayed using a dashed line while the real timings are shiwa solid line. This configuration is very suitable for tegt
the scalability of our implementation because every coehas identical performance. Obviously, the computatioe t
is halved if the number of processors is doubled which indiga good scalability of our implementation since they only
differ slightly from the optimal ones.

The timings of the algorithm running on our Linux cluster lwiip to seven clients is displayed in figures 8 and 9.
Again, the optimal timings are displayed using a dashedihie the real timings are shown by a solid line. Since the
server has two processors there are always running at igagasks at the same time on this machine. Adding more
clients to the Linux cluster the time needed for the algamiis reduced correspondingly to the speed of its processor.
Again, we can see that we nearly benefit from the full perforoeaof each client due to the minimal communication
between server and client as can be seen from the differetegbn the optimal and the real timings.

In our next test we also used the Linux desktop machines thalbffices of our visualization group. This resulted in
a parallel machine consisting of six Pentium 11-350, two AMEhlon 650, one dual processor machine with two Pentium
[11-500, four AMD Duron 600, and three AMD Duron 700. Altodpetr, the algorithm used seventeen processors and it
took 28 seconds to compute all closed streamlines that are presentritest dataset. As expected, this is faster than

Thttp://www.byte.com/bmark/bmark.htm

200

100 —+

I L L L L e L L
1 2 3 456 78 910112

Figure 8. Time needed to compute closed streamlines using a Linuxeclusth AMD Duron 600 and AMD Duron 700 processors

13 14 15 16 1B 19 20 21

displayed as graph

CPUs| Time | Optimum
2 224s —
3 138s 134s
4 99s 96s
5 77s 74s
6 63s 61s
7 53s 50s
8 46s 43s
9 39s 37s
17 28s 24s
30 17s 9s

f— processors
24 25 26 27 28 AD

Figure 9. Time needed to compute closed streamlines using a Linuxeclusth AMD Duron 600 and AMD Duron 700 processors
shown in a table

using the cluster alone corresponding to the speed of theepsors and slightly slower than the optimal runtim@sf
seconds. This also tests our implementation in a more lggasmus parallel machine due to the different speeds of the
processors. It shows that we can decrease the time needée fmymputation by adding more processors no matter what
sort of machine it is.

Then we also added the Linux machines in our student roon fast test. These are five machines equipped with
an Intel Celeron 800, two machines with a Pentium I11-50Q] aix with an AMD Thunderbird 1400 processor. So we
end up with30 processors. Our algorithm neededseconds. Compared to the optimal timingafeconds this is a little
bit too slow. This is due to the slow network connection. Resgaall computers reside in different areas of our working
group and several other processes such as network file sgéternse this network we do not have the full bandwidth
available. Consequently, the communication costs are eglentable anymore so that the real and the optimal timings
differ.

6. CONCLUSIONSAND FUTURE WORK

We have presented a parallelization of our algorithm thtdale closed streamlines. The time needed for the compantati
is reciprocally proportional to the number of CPUs used i ¢luster which gives a great performance enhancement
when increasing the number of clients. Until the numberieids is lower than the number of streamlines that have to be

computed, the overall performance of the cluster increasksgether, our implementation uses the full performaoftce
the parallel machine.

Since the clients in our cluster only hag¢ MB of RAM we are currently working on an out of core method t@eo
with larger datasets compared to the one we used in this pafem dealing with larger vector fields we can fully benefit
from the performance increase of our method.

ACKNOWLEDGMENTS

This research was supported by the DFG project “Visualisigmicht-linearer Vektorfeldtopologie”. Further, wediko
thank Tom Bobach, Holger Burbach, Stefan Clauss, Jan Fiayst6ph Garth, Aragorn Rockstroh, René Schatzl and
Xavier Tricoche for their programming efforts. The contims support of all members of the computer graphics and
visualization team in Kaiserslautern gives us a nice wayldnvironment. Wolfgang Kollmann, MAE Department of the
University of California at Davis, provided us with the dsga

REFERENCES

. T. Wischgoll and G. Scheuermann, “Detection and Visatilin of Closed Streamlines in Planar FlowH?EE
Transactions on Visualization and Computer Graphi(®), 2001.

2. R. Haimes, “Using Residence Time for the Extraction ofiRetation Regions,AIAA Paper 99-32911999.

. J. Guckenheimer and P. Holm&snamical Systems and Bifurcation of Vector Fiel8pringer, New York, 1983.

4. M. W. Hirsch and S. Smal®ifferential Equations, Dynamical Systems and Linear AtgeAcademic Press, New
York, 1974.

5. M. Jean, “Sur la méthode des sections pour la rechercloertiEines solutions presque périodiques de syst'emes
forces periodiquementlihternational Journal on Non-Linear Mechanit$, pp. 367 — 376, 1980.

6. M. van Veldhuizen, “A New Algorithm for the Numerical Apgximation of an Invariant Curve SIAM Journal on
Scientific and Statistical Computig6), pp. 951 — 962, 1987.

7. D. Sujudi and R. Haimes, “Integration of Particle and &tnénes in a spatially-decomposed Computation,” in
Proceedings of the Parallel Computational Fluid Dynami€&EE Computer Society Press, Los Alamitos CA, 1996.

8. E. Reinhard, A. Chalmers, and F. W. Jansen, “Hybrid Scliveglfor Parallel Rendering using Coherent Ray Tasks,”
in Proceedings of IEEE Parallel Visualization and GraphicsppsiumACM SIGGRAPH, New York, 1999.

9. M. Zockler, D. Stalling, and H.-C. Hege, “Parallel limrgegral convolution,” irParallel Computing23, 1996.

10. J. L. Helman and L. Hesselink, “Visualizing Vector Fidldpology in Fluid Flows,""EEE Computer Graphics and
Applicationsll, pp. 36—-46, May 1991.

11. V. Isler, C. Aykanat, and B. Ozguc, “Subdivision of 3d apd&ased on the graph partitioning for parallel ray trac-
ing,” in Photorealistic Rendering in Computer Graphics. Procegdinf the Second Eurographics Workshop on
RenderingP. Brunet and F. Jansen, eds., pp. 182-90, Springer-ya984.

12. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manctald V. SunderamRVM: Parallel Virtual Machine, A

Users’ Guide and Tutorial for Networked Parallel Computifitne MIT Press, Cambridge, 1994.

=

w

