
Distributed Computation of Planar Closed Streamlines

Thomas Wischgoll, Gerik Scheuermann, and Hans Hagen

University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany

ABSTRACT

Closed streamlines are an integral part of vector field topology, since they behave like sources respectively sinks but are
often neither considered nor detected. If a streamline computation makes too many steps or takes too long, the computation
is usually terminated without any answer on the final behavior of the streamline. We developed an algorithm that detects
closed streamlines during the integration process. Since the detection of all closed streamlines in a vector field requires
the computation of many streamlines we extend this algorithm to a parallel version to enhance computational speed.

To test our implementation we use a numerical simulation of aswirling jet with an inflow into a steady medium. We
built two different Linux clusters as parallel test systemswhere we check the performance increase when adding more
processors to the cluster. We show that we have a very low parallel overhead due to the neglectable communication
expense of our implementation.

Keywords: vector field, 2D flow, parallel, streamline computation, Linux cluster, closed streamline, limit cycle

1. INTRODUCTION

An intuitive and often used method for vector field visualization is the calculation of streamlines. If one uses this technique
in turbulent fields, one encounters often the problem of closed streamlines.

The difficulty with standard integration methods is that streamlines, approaching a closed curve, cycle around that
curve without ever approaching a critical point or the boundary. Usually, one uses a stopping criteria like elapsed time
or number of integration steps to prevent infinite loops. Instead, we present here a parallel version of an algorithm that
detects this behavior and that can be used to visualize closed streamlines since these topological features are an essential
topological property of the field. The algorithm uses the underlying grid to check if the same cell is crossed while
integrating the streamline: this results in a cycle of cells. In that case, the algorithm determines if the streamline can leave
this cell cycle or not. If it does not leave it is proven that there exists a closed streamline inside the cell cycle on condition
that there is no critical point inside the involved cells.

To determine the closed streamlines of a vector field one has to compute many streamlines. In fact, we compute the
topological skeleton. This is a graph which connects the critical points, where the vector field is zero, with streamlines
called separatrices. This graph leads us to the closed streamlines. Since the number of streamlines may be large depending
on the given vector field, this may take several minutes or even hours. Therefore we propose a parallel version of this
algorithm to decrease computational time by distributing the streamline computation to several clients.

As a parallel machine we use Linux clusters because of the lowprice of standard PC components. The advantage is that
the processors are faster then the ones of for instance an SGI/Cray T3E with the disadvantage of a slower communication
between server and client. But altogether, a Linux cluster is the best way to get a great performance at a low price.

In the next section we summarize previous work, while section 3 gives some theoretical background. In section 4 we
explain the parallel version of the algorithm. The results including performance tests are explained in section 5. Finally,
we conclude in section 6 and give some ideas for improvementsof our method.

Further author information: (Send correspondence to T.W.)
T.W.: E-mail: wischgol@informatik.uni-kl.de, Telephone: +49 631 205 3800
G.S.: E-mail: scheuer@informatik.uni-kl.de, Telephone:+49 631 205 3899
H.H.: E-mail: hagen @informatik.uni-kl.de, Telephone: +49 631 205 4072

2. RELATED WORK

Previously, two of the authors1 published an algorithm that computes streamlines while detecting if it runs into a limit
cycle in two dimensional flows. Haimes2 discusses a similar problem where residence time is used to find recirculation
regions. When reaching a closed streamline the residence time is infinite. The problem with closed streamlines is also
related to the study of dynamical systems,3 4 which have also been an application area for visualization.In the numerical
literature, we can find several algorithms for the calculation of closed curves in dynamical systems,5 6 but these algorithms
are tailored to deal with smooth dynamical systems where a closed form solution is given. In contrast, visualization faces
far more often piecewise linear or bilinear vector fields. Here, the knowledge of the grid and the linear structure of the
field in the cells allow a direct approach for the search of closed streamlines.

Sujudi et al.7 present a method for computing streamlines in a parallel environment by splitting the dataset into several
sub-domains. If the streamline leaves a sub-domain anotherprocess responsible for the actual domain has to continue the
computation. Reinhard et al.8 present a parallel rendering method that distributes tasksfor each ray which has to be
computed to the different processors of the parallel machine. A parallelization of line integral convolution is presented by
Zöckler et al.9 where the vector field is divided into several subdomains depending on the number of processors used.

3. THEORY

The topological analysis of vector fields considers the asymptotic behavior of streamlines. The origin set orα-limit set of
a streamlinec is defined by

{p ∈ R
2|∃(tn)∞

n=0
⊂ R, tn → −∞, lim

n→∞
c(tn) → p} .

The end set orω-limit set of a streamlineα is defined by

{p ∈ R
2|∃(tn)∞

n=0 ⊂ R, tn → ∞, lim
n→∞

c(tn) → p} .

If the α- or ω-limit set of a streamline consists of only one point, this point is a critical point or a point at the boundary
∂D of our domainD. (It is assumed that the streamline stays at the boundary point forever in this notation.) The critical
points can be clearly identified because they are simply the zeros of the vector field.

The most common case of anα- or ω-limit set in a planar vector field containing more than one inner point of the
domain is a closed streamline.4 This is a streamlineca, so that there is at0 ∈ R with

ca(t + nt0) = ca(t) ∀n ∈ N .

4. PARALLEL ALGORITHM

In principle, the algorithm computes the topological skeleton10 of the vector field which automatically leads to the closed
streamlines. While integrating the streamlines we check ifwe run into a closed streamline. The basic idea is to determine
a region of the vector field that is never left by a streamline.In case of a continuous vector field the Poincaré-Bendixson-
Theorem ensures that this streamline approaches a closed streamline if no critical point exists in that region. We assume
that the data of the vector field is given on a grid consisting of triangles and/or quadrilaterals. The vectors inside a cell are
interpolated linearly resp. bilinearly so that we get a continuous vector field as needed for the theorem.

A streamline approaching a closed streamline has to reenterthe same cell again. In this case we check if the cells were
crossed by the streamline in the same order for the last two turns. This results in acell cyclewhich identifies the above
mentioned region. To examine if this cell cycle is left by thestreamline we detect possible changes by checking the edges
of the cells of the cell cycle. Therefore we identify points on each edge which we callpotential exitswhere an outflow
out of the cell cycle may occur in the vicinity. These points are identical with the vertices of the edge and points where
the vector field is tangential to the edge.

Then we have to figure out if the actually investigated streamline will leave the cell cycle near such an exit. Therefore
we integrate a streamline backwards from the potential exitto see if it leaves the cell cycle. If it does not leave after
it crossed every cell of the cell cycle it converges to our streamline. We call this potential exit areal exit because the
streamline will leave the cell cycle after a finite number of turns near that exit. Figure 1 displays an example for that case.

Figure 1: If a real exit can be reached, the streamline will leave the cell cycle.

If the backward integrated streamline leaves the cell cycle, there will also be an entry point as shown in figure 2. A
streamline starting at that point cannot be crossed by our actually investigated streamline. Consequently we cannot leave
the cell cycle at this exit.

If there is no real exit for the streamline, we have proven that the streamline will never leave the cell cycle. If there is
no critical point inside the cell cycle the Poincaré-Bendixson-Theorem ensures that there exists a closed streamlinein our
cell cycle and the integral curve tends toward it.

Figure 2: If no real exit can be reached, the streamline will approach aclosed streamline.

To parallize this algorithm we have to compute all the critical points that are present in the vector field, first. Since we
only need the data of the cells, i.e. the position of the vertices and the vectors at these vertices, to determine if there exists
a critical point inside the cell and where it is located, we can transfer these tasks to the various clients of the cluster.When
the clients receive the index of a cell they compute the critical point and return the position and its type, if they have found
one, to the server. All tasks are controlled by a scheduler which is a part of the server.

The scheduling of the tasks works as follows: the server creates one task for each cell containing the index of this cell
and queues it in the scheduler. The scheduler itself checks if there are still tasks left and if there is any client that has
finished its task yet. If there is more than one client withoutan active job, the fastest is chosen. Then the next task is sent
to this client. The client receives this task, computes the critical point and sends it, if it has found one, back to the server
and tells the scheduler that it has finished its job. Since theamount of data to control the clients and transfer the critical
points back to the server is very low, we can fully benefit fromthe performance of each client.

After we have computed all critical points we start streamlines at each saddle point in positive and negative eigendirec-
tion with respect to the matrix of the linear interpolant andcheck for closed streamlines while computing the streamlines
as previously described.1 Computing streamlines is not a local task since the streamlines may cross any region of the
flow. Therefore we do not subdivide the data into several blocks like in some rendering tasks.11 Our implementation uses
a functional approach where we create several tasks each of them representing the whole computation of one streamline
starting at a given position. Then we use the scheduler to distribute the tasks to the various clients of our cluster.

Since the data of the vector field including octree and the program fit into64 MB of RAM we decided to use a
configuration where every client loads the whole dataset into its own memory. This facilitates the fastest possible access
to the data. Since the server and every client loads the data at the same time there is no time lost because otherwise the
clients would simply wait for the server until it has loaded the dataset. When dealing with larger datasets we have to use
an out of core method which will be done in the future.

Since we want to spread tasks that represent the whole computation of one streamline, each task contains two items:
a point where the streamline has to start and the integrationdirection. The other data that is needed for the computationis

already present at each client because the client has loadedthe whole dataset yet. Due to the minimal amount of data of
each task the communication cost which is produced by migrating tasks is very low.

To distribute the tasks to the various clients we use the previously described scheduler: the server determines the start
positions of the streamline using each saddle point found inthe vector field. Then a task containing this start position and
the integration direction is created and spooled into the queue of the scheduler, while the scheduler sends the next job to
the fastest client that has no active job. The client receives this task, searches for closed streamlines and sends it, ifit has
found one, back to the server. Again, the amount of data to control the clients and transfer the closed streamlines back to
the server is very low, so that we can fully benefit from the performance of each client.

5. RESULTS

Our algorithm is implemented in C++, while the server communicates with the clients using PVM.12 The different tasks
are encapsulated in C++-classes. This facilitates that thetasks can transfer itself to the client on demand and the clients
only need to call a method to execute the received task.

Figure 3: Configuration of the swirling jet simulation

To test the performance of our implementation we mainly use two different systems. One is a Linux cluster consisting
of seven clients. Each node is equipped with an AMD Duron 600 or AMD Duron 700 processor and64 MB of RAM.
The server is a multiprocessor computer with two Pentium III500 processors. The second system is based on some of our
desktop computers with a Pentium II 350. We use Linux and normal PC components since this is a cheap way to get a
great performance compared to other parallel computers. Inorder to get a more heterogeneous configuration we mix both
systems by using all Linux computers available in our group for a last performance test.

The test dataset is a simulation of a swirling jet with an inflow into a steady medium. The simulation uses a cylindrical
domain and assumes rotational symmetry, so that we are left with a two dimensional vector field on a plane through the
center axis of the cylinder. In this application one is interested in investigating the turbulence of the vector field andin
recirculation zones where the fluid stays very long. Swirling jets play a significant role in many combustion processes. It
is important to find such recirculation regions indicated byclosed instantaneous streamlines. This permits the conclusion
that even in the three dimensional flow the fluid will stay there for a longer period of time. Figure 3 shows the configuration
of this simulation. The jet is located in the front in the center of the cylindrical domain indicated by a small cylinder. The
domain is displayed in light gray. The closed streamlines ofthat vector field found by our algorithm are shown on the
cutting plane that divides the turbine diagonal into two halves. In figure 4 a hedgehog consisting of the vectors displayed

Figure 4: Closed streamlines including hedgehog on a cutting plane ofa swirling jet simulation

as arrows is included. The vector field has362 critical points and for the topology including closed streamlines about six
hundred streamlines have to be computed.

Processor Floating-point index
Pentium II 350 2.404
Pentium III 500 3.561
AMD Athlon 650 5.163
AMD Duron 600 4.768
AMD Duron 700 5.547
Intel Celeron 800 6.125
AMD Thunderbird 1400 11.227

Figure 5: Floating-point indices of the different processors

To determine the optimal timing of our algorithm we used the benchmark utilitynbench∗ in order to get a suitable
ratio between the speeds of the processors.Nbenchis a port to Linux/Unix of release 2 of BYTE Magazine’s BYTEmark

∗http://www.tux.org/˜mayer/linux/bmark.html

benchmark program†. We computed thefloating-point indexof each processor which gives the relative speed of the
floating-point unit compared to an AMD K6-233 processor. Theresults can be found in figure 5. Using these values we
computed the floating-point index of the whole parallel machine by summing up the indices corresponding to the involved
processors and calculated the optimal runtime by neglecting the communication between server and clients.

2 51 3 4
processors

time

100

600

300

400

500

200

Figure 6: Time needed to compute closed streamlines using Pentium PII-350 processors displayed as graph

CPUs Time Optimum
1 612s —
2 306s 306s
3 205s 204s
4 158s 153s
5 134s 122s

Figure 7: Time needed to compute closed streamlines using Pentium PII-350 processors shown in a table

Figures 6 and 7 show the timings on the desktop computers. Up to five machines were used. The optimal timings are
displayed using a dashed line while the real timings are shown by a solid line. This configuration is very suitable for testing
the scalability of our implementation because every computer has identical performance. Obviously, the computation time
is halved if the number of processors is doubled which indicates a good scalability of our implementation since they only
differ slightly from the optimal ones.

The timings of the algorithm running on our Linux cluster with up to seven clients is displayed in figures 8 and 9.
Again, the optimal timings are displayed using a dashed linewhile the real timings are shown by a solid line. Since the
server has two processors there are always running at least two tasks at the same time on this machine. Adding more
clients to the Linux cluster the time needed for the algorithm is reduced correspondingly to the speed of its processor.
Again, we can see that we nearly benefit from the full performance of each client due to the minimal communication
between server and client as can be seen from the difference between the optimal and the real timings.

In our next test we also used the Linux desktop machines in allthe offices of our visualization group. This resulted in
a parallel machine consisting of six Pentium II-350, two AMDAthlon 650, one dual processor machine with two Pentium
III-500, four AMD Duron 600, and three AMD Duron 700. Altogether, the algorithm used seventeen processors and it
took 28 seconds to compute all closed streamlines that are present in our test dataset. As expected, this is faster than

†http://www.byte.com/bmark/bmark.htm

time

300

100

200

1 2 3 4 5 6 7 9 10 11 13 14 15 16 178 12
processors

3018 19 20 21 22 23 24 25 26 27 28 29

Figure 8. Time needed to compute closed streamlines using a Linux cluster with AMD Duron 600 and AMD Duron 700 processors
displayed as graph

CPUs Time Optimum
2 224s —
3 138s 134s
4 99s 96s
5 77s 74s
6 63s 61s
7 53s 50s
8 46s 43s
9 39s 37s
17 28s 24s
30 17s 9s

Figure 9. Time needed to compute closed streamlines using a Linux cluster with AMD Duron 600 and AMD Duron 700 processors
shown in a table

using the cluster alone corresponding to the speed of the processors and slightly slower than the optimal runtime of24
seconds. This also tests our implementation in a more heterogeneous parallel machine due to the different speeds of the
processors. It shows that we can decrease the time needed forthe computation by adding more processors no matter what
sort of machine it is.

Then we also added the Linux machines in our student rooms fora last test. These are five machines equipped with
an Intel Celeron 800, two machines with a Pentium III-500, and six with an AMD Thunderbird 1400 processor. So we
end up with30 processors. Our algorithm needed17 seconds. Compared to the optimal timing of9 seconds this is a little
bit too slow. This is due to the slow network connection. Because all computers reside in different areas of our working
group and several other processes such as network file systemalso use this network we do not have the full bandwidth
available. Consequently, the communication costs are not neglectable anymore so that the real and the optimal timings
differ.

6. CONCLUSIONS AND FUTURE WORK

We have presented a parallelization of our algorithm that detects closed streamlines. The time needed for the computation
is reciprocally proportional to the number of CPUs used in the cluster which gives a great performance enhancement
when increasing the number of clients. Until the number of clients is lower than the number of streamlines that have to be

computed, the overall performance of the cluster increases. Altogether, our implementation uses the full performanceof
the parallel machine.

Since the clients in our cluster only have64 MB of RAM we are currently working on an out of core method to cope
with larger datasets compared to the one we used in this paper. When dealing with larger vector fields we can fully benefit
from the performance increase of our method.

ACKNOWLEDGMENTS

This research was supported by the DFG project “Visualisierung nicht-linearer Vektorfeldtopologie”. Further, we like to
thank Tom Bobach, Holger Burbach, Stefan Clauss, Jan Frey, Christoph Garth, Aragorn Rockstroh, René Schätzl and
Xavier Tricoche for their programming efforts. The continuous support of all members of the computer graphics and
visualization team in Kaiserslautern gives us a nice working environment. Wolfgang Kollmann, MAE Department of the
University of California at Davis, provided us with the dataset.

REFERENCES

1. T. Wischgoll and G. Scheuermann, “Detection and Visualization of Closed Streamlines in Planar Flows,”IEEE
Transactions on Visualization and Computer Graphics7(2), 2001.

2. R. Haimes, “Using Residence Time for the Extraction of Recirculation Regions,”AIAA Paper 99-3291, 1999.
3. J. Guckenheimer and P. Holmes,Dynamical Systems and Bifurcation of Vector Fields, Springer, New York, 1983.
4. M. W. Hirsch and S. Smale,Differential Equations, Dynamical Systems and Linear Algebra, Academic Press, New

York, 1974.
5. M. Jean, “Sur la méthode des sections pour la recherche decertaines solutions presque périodiques de syst‘emes

forces periodiquement,”International Journal on Non-Linear Mechanics15, pp. 367 – 376, 1980.
6. M. van Veldhuizen, “A New Algorithm for the Numerical Approximation of an Invariant Curve,”SIAM Journal on

Scientific and Statistical Computing8(6), pp. 951 – 962, 1987.
7. D. Sujudi and R. Haimes, “Integration of Particle and Streamlines in a spatially-decomposed Computation,” in

Proceedings of the Parallel Computational Fluid Dynamics, IEEE Computer Society Press, Los Alamitos CA, 1996.
8. E. Reinhard, A. Chalmers, and F. W. Jansen, “Hybrid Scheduling for Parallel Rendering using Coherent Ray Tasks,”

in Proceedings of IEEE Parallel Visualization and Graphics Symposium, ACM SIGGRAPH, New York, 1999.
9. M. Zöckler, D. Stalling, and H.-C. Hege, “Parallel line integral convolution,” inParallel Computing, 23, 1996.

10. J. L. Helman and L. Hesselink, “Visualizing Vector FieldTopology in Fluid Flows,”IEEE Computer Graphics and
Applications11, pp. 36–46, May 1991.

11. V. Isler, C. Aykanat, and B. Ozguc, “Subdivision of 3d space based on the graph partitioning for parallel ray trac-
ing,” in Photorealistic Rendering in Computer Graphics. Proceedings of the Second Eurographics Workshop on
Rendering, P. Brunet and F. Jansen, eds., pp. 182–90, Springer-Verlag, 1994.

12. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,and V. Sunderam,PVM: Parallel Virtual Machine, A
Users’ Guide and Tutorial for Networked Parallel Computing, The MIT Press, Cambridge, 1994.

